Package 'migraph'

July 3, 2022
Title Tools for Multimodal Network Analysis
Version 0.10.6
Date 2022-07-03
Description A set of tools for analysing multimodal networks.
All functions operate with matrices, edge lists, and 'igraph', 'network', and 'tidygraph' objects, and on one-mode, two-mode (bipartite), and sometimes three-mode networks.
It includes functions for measuring
centrality, centralization, cohesion, closure, and constraint,
as well as for network block-modelling and regression.
The package is released as a complement to
'Multimodal Political Networks' (2021, ISBN:9781108985000), and includes various datasets used in the book in addition to other network data.

URL https://github.com/snlab-ch/migraph
BugReports https://github.com/snlab-ch/migraph/issues
Depends R (>= 3.6.0)
License MIT + file LICENSE
Language en-GB
Encoding UTF-8
LazyData true

RoxygenNote 7.2.0

Imports dplyr, generics, ggforce, ggplot2, ggraph, igraph, network, future, furrr, patchwork, pillar, purrr, rlang, sna, tidygraph, tidyr
Suggests concaveman, covr, ggdendro, knitr, oaqc, readxl, rmarkdown, roxygen2, testhat
VignetteBuilder knitr
NeedsCompilation no
Author James Hollway [cph, cre, aut, ctb] (IHEID, https://orcid.org/0000-0002-8361-9647),
Jael Tan [ctb] (IHEID, https://orcid.org/0000-0002-6234-9764),Bernhard Bieri [ctb] (https://orcid.org/0000-0001-5943-9059),Henrique Sposito [ctb] (IHEID, https://orcid.org/0000-0003-3420-6085)
Maintainer James Hollway james.hollway@graduateinstitute.ch
Repository CRAN
Date/Publication 2022-07-03 14:30:02 UTC
R topics documented:
add 3
as 4
autographr 6
centralisation 7
centrality 8
closure 11
cluster 12
cohesion 13
community 14
components 15
create 16
diversity 18
equivalence 20
features 22
generate 24
ggevolution 25
gglineage 26
grab 27
graph_census 28
holes 29
is. 31
ison_adolescents 33
ison_algebra 34
ison_brandes 35
ison_karateka 36
ison_marvel 37
ison_networkers 38
ison_projection 39
ison_southern_women 40
layouts 40
mark_nodes 41
mark_ties 43
mpn_bristol 44
mpn_cow 45
mpn_elite_mex 47
mpn_elite_usa 48
mpn_evs 50
mpn_ryanair 51
mpn_senate 112 52
node_census 54
read 56
reformat 59
regression 61
tests 63
transform 65
Index 67

Description

These functions allow users to add attributes to a graph from another graph or from a specified vector supplied by the user.

Usage

add_node_attribute(object, attr_name, vector)
add_tie_attribute(object, attr_name, vector)
copy_node_attributes(object, object2)
join_ties(object, object2, attr_name)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
attr_name Name of the new attribute in the resulting object.
vector A vector of values for the new attribute.
object2 A second object to copy nodes or edges from.

Functions

- add_node_attribute: Insert specified values from a vector into the graph as node attributes
- add_tie_attribute: Insert specified values from a vector into the graph as tie attributes
- copy_node_attributes: Copies node attributes from a given graph into specified graph
- join_ties: Copies ties from another graph to specified graph and adds a tie attribute identifying the ties that were newly added

See Also

Other manipulations: as(), grab, reformat, transform()

Examples

```
add_node_attribute(mpn_elite_mex, "wealth", 1:35)
add_node_attribute(mpn_elite_usa_advice, "wealth", 1:14)
add_tie_attribute(ison_adolescents, "weight", c(1,2,1,1,1,3,2,2,3,1))
autographr(mpn_elite_mex)
both <- join_ties(mpn_elite_mex, generate_random(mpn_elite_mex), "random")
autographr(both)
random <- to_uniplex(both, "random")
autographr(random)
autographr(to_uniplex(both, "orig"))
```


Description

The as_ functions in \{migraph\} coerce objects between several common classes of social network objects. These include:

- edgelists, as data frames or tibbles
- adjacency (one-mode/unipartite) and incidence (two-mode/bipartite) matrices
- \{igraph\} graph objects
- \{tidygraph\} tbl_graph objects
- \{network\} network objects

An effort is made for all of these coercion routines to be as lossless as possible, though some object classes are better at retaining certain kinds of information than others. Note also that there are some reserved column names in one or more object classes, which could otherwise lead to some unexpected results.

Usage

```
as_edgelist(object, twomode = FALSE)
as_matrix(object, twomode = FALSE)
as_igraph(object, twomode = FALSE)
as_tidygraph(object, twomode = FALSE)
as_network(object, twomode = FALSE)
```


Arguments

object
twomode

An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{$ tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Logical option used to override heuristics for distinguishing incidence (two- mode/bipartite) from adjacency (one-mode/unipartite) networks. By default FALSE.

Details

Edgelists are expected to be held in data.frame or tibble class objects. The first two columns of such an object are expected to be the senders and receivers of a tie, respectively, and are typically named "from" and "to" (even in the case of an undirected network). These columns can contain integers to identify nodes or character strings/factors if the network is labelled. If the sets of senders and receivers overlap, a one-mode network is inferred. If the sets contain no overlap, a two-mode network is inferred. If a third, numeric column is present, a weighted network will be created.
Matrices can be either adjacency (one-mode) or incidence (two-mode) matrices. Incidence matrices are typically inferred from unequal dimensions, but since in rare cases a matrix with equal dimensions may still be an incidence matrix, an additional argument twomode can be specified to override this heuristic.
This information is usually already embedded in \{igraph\}, \{tidygraph\}, and \{network\} objects.

Value

The currently implemented coercions or translations are:

to/from	edgelists	matrices	igraph	tidygraph	network	goldfish
edgelists (data frames)	X	X	X	X	X	X
matrices	X	X	X	X	X	X
igraph	X	X	X	X	X	X
tidygraph	X	X	X	X	X	X
network	X	X	X	X	X	X

See Also

Other manipulations: add, grab, reformat, transform()

Examples

```
test <- data.frame(id1 = c("A","B","B","C","C"),
    id2 = c("I","G","I","G","H"))
as_edgelist(test)
as_matrix(test)
as_igraph(test)
```

```
as_tidygraph(test)
as_network(test)
```

```
autographr
```

Quickly graph networks with sensible defaults

Description

The aim of this function is to provide users with a quick and easy graphing function that makes best use of the data, whatever its composition. Users can also tailor the plot according to their preferences regarding node size, colour, and shape. The function also supports visualisation of network measures such as centrality.

Usage

```
autographr(
    object,
    layout = "stress",
    labels = TRUE,
    node_color = NULL,
    node_group = NULL,
    node_shape = NULL,
    node_size = NULL,
    edge_color = NULL,
)
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { A migraph-consistent object. } \\
\text { layout } & \begin{array}{l}
\text { An igraph layout algorithm, currently defaults to 'stress'. } \\
\text { labels } \\
\text { node_color }
\end{array} \\
\text { Logical, whether to print node names as labels if present. } \\
\text { node_group } & \begin{array}{l}
\text { Node variable in quotation marks to be used for coloring the nodes. It is easiest } \\
\text { if this is added as a node attribute to the graph before plotting. } \\
\text { Node variable in quotation marks to be used for drawing convex but also con- } \\
\text { cave hulls around clusters of nodes. These groupings will be labelled with the } \\
\text { categories of the variable passed. }
\end{array} \\
\text { node_shape } & \begin{array}{l}
\text { Character string in quotation marks referring to the name of a node attribute } \\
\text { already present in the graph to be used for the shapes of the nodes. Shapes } \\
\text { follow the ordering "circle", "square", "triangle", so this aesthetic should be } \\
\text { used for a variable with only a few categories. }
\end{array} \\
\text { node_size } & \begin{array}{l}
\text { Node variable in quotation marks to be used for the size of the nodes. This can be } \\
\text { any continuous variable on the nodes of the network. Since this function expects } \\
\text { this to be an existing variable, it is recommended to calculate all node-related } \\
\text { statistics prior to using this function. }
\end{array}
\end{array}
$$

> edge_color Tie variable in quotation marks to be used for coloring the nodes. It is easiest if this is added as an edge or tie attribute to the graph before plotting.
> $\ldots$$\quad$ Extra arguments.

See Also

Other mapping: layouts

Examples

```
ison_adolescents %>%
    mutate(shape = rep(c("circle", "square"), times = 4)) %>%
    mutate(color = rep(c("blue", "red"), times = 4)) %>%
    autographr(node_shape = "shape", node_color = "color")
autographr(ison_karateka, node_size = 8)
ison_adolescents %>%
    mutate(high_degree = node_is_max(node_degree())) %>%
    activate(edges) %>%
    mutate(high_betweenness = tie_is_max(tie_betweenness(ison_adolescents))) %>%
    autographr(node_color = "high_degree", edge_color = "high_betweenness")
```

centralisation Measures of network centralisation

Description

Measures of network centralisation

Usage

graph_degree(object, normalized = TRUE, direction = c("all", "out", "in"))
graph_closeness(object, normalized = TRUE, direction = c("all", "out", "in"))
graph_betweenness(object, normalized = TRUE, direction = c("all", "out", "in"))
graph_eigenvector(object, normalized = TRUE)

Arguments

object
An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{$ tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
normalized Logical scalar, whether the centrality scores are normalized. Different denominators are used depending on whether the object is one-mode or two-mode, the type of centrality, and other arguments.
direction Character string, "out" bases the measure on outgoing ties, "in" on incoming ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses as numerator the sum of differences between the maximum centrality score for the mode against all other centrality scores in the network, whereas "in" uses as numerator the sum of differences between the maximum centrality score for the mode against only the centrality scores of the other nodes in that mode.

Functions

- graph_degree: Calculate the degree centralization for a graph
- graph_closeness: Calculate the closeness centralization for a graph
- graph_betweenness: Calculate the betweenness centralization for a graph
- graph_eigenvector: Calculate the eigenvector centralization for a graph

See Also

Other measures: centrality, closure, cohesion(), diversity, features, holes

Examples

```
graph_degree(ison_southern_women, direction = "in")
graph_closeness(ison_southern_women, direction = "in")
graph_betweenness(ison_southern_women, direction = "in")
graph_eigenvector(mpn_elite_mex)
graph_eigenvector(ison_southern_women)
```

```
centrality Measures of node and tie centrality
```


Description

These functions calculate common centrality measures for one- and two-mode networks. All measures attempt to use as much information as they are offered, including whether the networks are directed, weighted, or multimodal. If this would produce unintended results, first transform the salient properties using e.g. to_undirected() functions. All centrality and centralization measures return normalized measures by default, including for two-mode networks.

Usage

node_degree(object, normalized = TRUE, direction = c("all", "out", "in"))
tie_degree(object, normalized = TRUE)
node_closeness(object, normalized = TRUE, direction = "out", cutoff = NULL)

```
tie_closeness(object, normalized = TRUE)
node_betweenness(object, normalized = TRUE, cutoff = NULL)
tie_betweenness(object, normalized = TRUE)
node_eigenvector(object, normalized = TRUE, scale = FALSE)
tie_eigenvector(object, normalized = TRUE)
node_reach(object, normalized = TRUE, k = 2)
```


Arguments

object	An object of a migraph-consistent class: - matrix (adjacency or incidence) from \{base\} R - edgelist, a data frame from \{base\} R or tibble from \{tibble\} - igraph, from the \{igraph\} package - network, from the \{network\} package - tbl_graph, from the \{tidygraph\} package
normalized	Logical scalar, whether the centrality scores are normalized. Different denominators are used depending on whether the object is one-mode or two-mode, the type of centrality, and other arguments.
direction	Character string, "out" bases the measure on outgoing ties, "in" on incoming ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses as numerator the sum of differences between the maximum centrality score for the mode against all other centrality scores in the network, whereas "in" uses as numerator the sum of differences between the maximum centrality score for the mode against only the centrality scores of the other nodes in that mode.
cutoff	Maximum path length to use during calculations.
scale	Logical scalar, whether to rescale the vector so the maximum score is 1.
k	Integer of steps out to calculate reach

Value

A single centralization score if the object was one-mode, and two centralization scores if the object was two-mode.

Depending on how and what kind of an object is passed to the function, the function will return a tidygraph object where the nodes have been updated

A numeric vector giving the betweenness centrality measure of each node.
A numeric vector giving the eigenvector centrality measure of each node.

Functions

- node_degree: Calculates the degree centrality of nodes in an unweighted network, or weighted degree/strength of nodes in a weighted network.
- tie_degree: Calculate the degree centrality of edges in a network
- node_closeness: Calculate the closeness centrality of nodes in a network
- tie_closeness: Calculate the closeness of each edge to each other edge in the network.
- node_betweenness: Calculate the betweenness centralities of nodes in a network
- tie_betweenness: Calculate number of shortest paths going through an edge
- node_eigenvector: Calculate the eigenvector centrality of nodes in a network
- tie_eigenvector: Calculate the eigenvector centrality of edges in a network
- node_reach: Calculate nodes' reach centrality

References

Faust, Katherine. 1997. "Centrality in affiliation networks." Social Networks 19(2): 157-191. doi:10.1016/S03788733(96)003000.
Borgatti, Stephen P., and Martin G. Everett. 1997. "Network analysis of 2-mode data." Social Networks 19(3): 243-270. doi:10.1016/S03788733(96)003012.
Borgatti, Stephen P., and Daniel S. Halgin. 2011. "Analyzing affiliation networks." In The SAGE Handbook of Social Network Analysis, edited by John Scott and Peter J. Carrington, 417-33. London, UK: Sage. doi:10.4135/9781446294413.n28.
Bonacich, Phillip. 1991. "Simultaneous Group and Individual Centralities." Social Networks 13(2):155-68. doi:10.1016/03788733(91)900180.

See Also

to_undirected() for removing edge directions and to_unweighted() for removing weights from a graph.
Other measures: centralisation, closure, cohesion(), diversity, features, holes

Examples

```
node_degree(mpn_elite_mex)
node_degree(ison_southern_women)
tie_degree(ison_adolescents)
node_closeness(mpn_elite_mex)
node_closeness(ison_southern_women)
(ec <- tie_closeness(ison_adolescents))
plot(ec)
ison_adolescents %>%
    activate(edges) %>% mutate(weight = ec) %>%
    autographr()
node_betweenness(mpn_elite_mex)
node_betweenness(ison_southern_women)
(tb <- tie_betweenness(ison_adolescents))
plot(tb)
```

```
ison_adolescents \%>\%
    activate(edges) \%>\% mutate(weight = tb) \%>\%
    autographr()
node_eigenvector(mpn_elite_mex)
node_eigenvector(ison_southern_women)
tie_eigenvector(ison_adolescents)
node_reach(ison_adolescents)
```

closure Measures of network closure

Description

These functions offer methods for summarising the closure in configurations in one-, two-, and three-mode networks.

Usage

graph_reciprocity(object, method = "default")
graph_transitivity (object)
graph_equivalency (object)
graph_congruency(object, object2)

Arguments

object A one-mode or two-mode matrix, igraph, or tidygraph
method For reciprocity, either default or ratio. See ?igraph: :reciprocity
object2 Optionally, a second (two-mode) matrix, igraph, or tidygraph

Details

For one-mode networks, shallow wrappers of igraph versions exist via graph_reciprocity and graph_transitivity.
For two-mode networks, graph_equivalency calculates the proportion of three-paths in the network that are closed by fourth tie to establish a "shared four-cycle" structure.

For three-mode networks, graph_congruency calculates the proportion of three-paths spanning two two-mode networks that are closed by a fourth tie to establish a "congruent four-cycle" structure.

Functions

- graph_reciprocity: Calculate reciprocity in a (usually directed) network
- graph_transitivity: Calculate transitivity in a network
- graph_equivalency: Calculate equivalence or reinforcement in a (usually two-mode) network
- graph_congruency: Calculate congruency across two two-mode networks

References

Robins, Garry L, and Malcolm Alexander. 2004. Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Computational \& Mathematical Organization Theory 10(1): 69-94. doi:10.1023/B:CMOT.0000032580.12184.c0.
Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press. doi:10.1017/9781108985000

See Also

Other measures: centralisation, centrality, cohesion(), diversity, features, holes

Examples

graph_reciprocity(ison_southern_women)
graph_transitivity(ison_southern_women)
graph_equivalency(ison_southern_women)
cluster Methods for equivalence clustering

Description

Methods for equivalence clustering

Usage

cluster_hierarchical(census, distance)
cluster_concor(object, census)

Arguments

census A matrix returned by a node_*_census() function.
distance Character string indicating which distance metric to pass on to stats: dist. By default "euclidean", but other options include "maximum", "manhattan", "canberra", "binary", and "minkowski". Fewer, identifiable letters, e.g. "e" for Euclidean, is sufficient.
object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base $\}$ R
- edgelist, a data frame from \{base\} R or tibble from \{tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Functions

- cluster_hierarchical: Returns a hierarchical clustering object created by stats: :hclust()
- cluster_concor: Returns a hierarchical clustering object created from a convergence of correlations procedure (CONCOR)

References

Breiger, Ronald L., Scott A. Boorman, and Phipps Arabie. 1975. "An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multidimensional Scaling". Journal of Mathematical Psychology, 12: 328-83. doi:10.1016/00222496(75)900280.

```
cohesion Measures of network cohesion or connectedness
```


Description

These functions return values or vectors relating to how connected a network is and where the nodes or edges that would increase fragmentation are.

Usage

graph_density(object)
graph_components(object)
graph_cohesion(object)
graph_adhesion(object)
graph_diameter (object)
graph_length(object)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Functions

- graph_density: summarises the ratio of ties to the number of possible ties.
- graph_components: Returns number of (strong) components in the network. To get the 'weak' components of a directed graph, please use to_undirected() first.
- graph_cohesion: Returns the minimum number of nodes to remove from the network needed to increase the number of components.
- graph_adhesion: Returns the minimum number of edges needed to remove from the network to increase the number of components.
- graph_diameter: Returns the maximum path length in the network.
- graph_length: Returns the average path length in the network.

References

White, Douglas R and Frank Harary. 2001. "The Cohesiveness of Blocks In Social Networks: Node Connectivity and Conditional Density." Sociological Methodology 31(1): 305-59.

See Also

Other measures: centralisation, centrality, closure, diversity, features, holes

Examples

```
graph_density(mpn_elite_mex)
graph_density(mpn_elite_usa_advice)
graph_cohesion(ison_marvel_relationships)
graph_cohesion(to_main_component(ison_marvel_relationships))
graph_adhesion(ison_marvel_relationships)
graph_adhesion(to_main_component(ison_marvel_relationships))
graph_diameter(ison_marvel_relationships)
graph_diameter(to_main_component(ison_marvel_relationships))
graph_length(ison_marvel_relationships)
graph_length(to_main_component(ison_marvel_relationships))
```

```
community
```

Community graph partitioning algorithms

Description

Community graph partitioning algorithms

Usage

node_kernighanlin(object)

Arguments

object
An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{$ tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Functions

- node_kernighanlin: A greedy, iterative, deterministic graph partitioning algorithm that results in a graph with two equally-sized communities

References

Kernighan, Brian W., and Shen Lin. 1970. "An efficient heuristic procedure for partitioning graphs." The Bell System Technical Journal 49(2): 291-307. doi:10.1002/j.15387305.1970.tb01770.x

See Also

Other membership: components(), equivalence

Examples

node_kernighanlin(ison_adolescents)
node_kernighanlin(ison_southern_women)

components Component partitioning algorithms

Description

These functions create a vector of nodes' memberships in components or degrees of coreness.
In graph theory, components, sometimes called connected components, are induced subgraphs from partitioning the nodes into disjoint sets. All nodes that are members of the same partition as i are reachable from i.

For directed networks, strongly connected components consist of subgraphs where there are paths in each direction between member nodes. Weakly connected components consist of subgraphs where there is a path in either direction between member nodes.

Coreness captures the maximal subgraphs in which each vertex has at least degree k, where k is also the order of the subgraph. As described in igraph: :coreness, a node's coreness is k if it belongs to the k-core but not to the $(k+1)$-core.

Usage

node_components(object)
node_weak_components(object)
node_strong_components(object)
node_coreness(object)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{$ tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Functions

- node_components: Returns nodes' component membership using edge direction where available.
- node_weak_components: Returns nodes' component membership ignoring edge direction.
- node_strong_components: Returns nodes’ component membership based on edge direction.
- node_coreness: Returns k-cores

See Also

Other membership: community, equivalence

Examples

node_components(mpn_bristol)
node_coreness(ison_adolescents)
create Make networks with defined structures

Description

These functions create networks with particular structural properties. They can create either onemode or two-mode networks. To create a one-mode network, pass the main argument n a single integer, indicating the number of nodes in the network. To create a two-mode network, pass n a vector of two integers, where the first integer indicates the number of nodes in the first mode, and the second integer indicates the number of nodes in the second mode. As an alternative, an existing network can be provided to n and the number of modes and nodes will be inferred.

By default, all networks are created as undirected. This can be overruled with the argument directed = TRUE. This will return a directed network in which the arcs are out-facing or equivalent. This direction can be swapped using to_redirected(). In two-mode networks, this is ignored.

```
Usage
    create_empty(n)
    create_complete(n, directed = FALSE)
    create_ring(n, width = 1, directed = FALSE, ...)
    create_star(n, directed = FALSE)
    create_tree(n, directed = FALSE, width = 2)
    create_lattice(n, directed = FALSE)
    create_components(n, membership = NULL)
    create_core(n, membership = NULL)
```


Arguments

$\mathrm{n} \quad$ Given:

- A single integer, e.g. $n=10$, a one-mode network will be created.
- A vector of two integers, e.g. $\mathrm{n}=\mathrm{c}(5,10)$, a two-mode network will be created.
- A migraph-compatible object, a network of the same dimensions will be created.
directed Logical whether the graph should be directed. By default directed = FALSE. If the opposite direction is desired, use to_redirected().
width Integer specifying the width or breadth of the ring or branches.
... Additional arguments passed on to \{igraph \}.
membership A vector of partition membership as integers. If left as NULL (the default), nodes in each mode will be assigned to two, equally sized partitions.

Value

By default an igraph object is returned, but this can be coerced into other types of objects using as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

Functions

- create_empty: Creates an empty graph of the given dimensions.
- create_complete: Creates a filled graph of the given dimensions, with every possible tie realised.
- create_ring: Creates a ring or chord graph of the given dimensions that loops around is of a certain width or thickness.
- create_star: Creates a graph of the given dimensions that has a maximally central node
- create_tree: Creates a graph of the given dimensions with successive branches.
- create_lattice: Creates a graph of the given dimensions with ties to all neighbouring nodes
- create_components: Creates a graph in which the nodes are clustered into separate components.
- create_core: Creates a graph with a certain proportion of nodes being core nodes, densely tied to each other and peripheral nodes, and the rest peripheral, tied only to the core.

See Also

as
Other makes: generate, read

Examples

```
autographr(create_empty(10)) + autographr(create_complete(10))
autographr(create_empty(c(8,6))) + autographr(create_complete(c(8,6)))
autographr(create_ring(8, width = 2)) +
autographr(create_ring(c(8,6), width = 2))
autographr(create_star(12)) +
autographr(create_star(12, directed = TRUE)) +
autographr(create_star(c(12,1)))
autographr(create_tree(c(7,8), directed = TRUE)) +
autographr(create_tree(15, directed = TRUE), "tree") +
autographr(create_tree(15, directed = TRUE, width = 3), "tree")
autographr(create_lattice(5), layout = "kk") +
autographr(create_lattice(c(5,5))) +
autographr(create_lattice(c(5,5,5)))
autographr(create_components(10, membership = c(1,1,1,2,2,2,3,3,3,3)))
autographr(create_components(c(10, 12)))
autographr(create_core(6)) +
autographr(create_core(6, membership = c(1,1,1,1,2,2))) +
autographr(create_core(c(6,6)))
```

```
diversity Measures of network diversity
```


Description

These functions offer ways to summarise the heterogeneity of an attribute across a network, within groups of a network, or the distribution of ties across this attribute.

Usage

graph_blau_index(object, attribute, clusters = NULL)
graph_ei_index(object, attribute)
graph_assortativity(object)

Arguments

object
An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
attribute The name of a vertex attribute to measure the diversity of.
clusters A nodal cluster membership vector or name of a vertex attribute.

Functions

- graph_blau_index: Calculates the heterogeneity of ties across a network or within clusters by node attributes
- graph_ei_index: Calculates the embeddedness of a node within the group of nodes of the same attribute
- graph_assortativity: Calculates the degree assortativity in a graph

See Also

Other measures: centralisation, centrality, closure, cohesion(), features, holes

Examples

```
marvel_friends <- to_unsigned(ison_marvel_relationships, "positive")
graph_blau_index(marvel_friends, "Gender")
graph_blau_index(marvel_friends, "Attractive")
graph_blau_index(marvel_friends, "Gender", "Rich")
graph_ei_index(marvel_friends, "Gender")
graph_ei_index(marvel_friends, "Attractive")
graph_assortativity(mpn_elite_mex)
```


equivalence Equivalence clustering algorithms

Description

These functions combine an appropriate _census() function together with methods for calculating the hierarchical clusters provided by a certain distance calculation.

A plot() method exists for investigating the dendrogram of the hierarchical cluster and showing the returned cluster assignment.

Usage

```
node_equivalence(
        object,
        census,
        k = c("silhouette", "elbow", "strict"),
        cluster = c("hierarchical", "concor"),
    distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
        range = 8L
)
node_structural_equivalence(
        object,
        k = c("silhouette", "elbow", "strict"),
        cluster = c("hierarchical", "concor"),
        distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
        range = 8L
    )
    node_regular_equivalence(
        object,
        k = c("silhouette", "elbow", "strict"),
        cluster = c("hierarchical", "concor"),
    distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
        range = 8L
    )
    node_automorphic_equivalence(
        object,
        k = c("silhouette", "elbow", "strict"),
        cluster = c("hierarchical", "concor"),
    distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
        range = 8L
)
```


Arguments

object
An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
census A matrix returned by a node_*_census() function.
k Typically a character string indicating which method should be used to select the number of clusters to return. By default "silhouette", other options include "elbow" and "strict". "strict" returns classes with members only when strictly equivalent. "silhouette" and "elbow" select classes based on the distance between clusters or between nodes within a cluster. Fewer, identifiable letters, e.g. "e" for elbow, is sufficient. Alternatively, if k is passed an integer, e.g. $k=3$, then all selection routines are skipped in favour of this number of clusters.
cluster Character string indicating whether clusters should be clustered hierarchically ("hierarchical") or through convergence of correlations ("concor"). Fewer, identifiable letters, e.g. "c" for CONCOR, is sufficient.
distance \quad Character string indicating which distance metric to pass on to stats: dist. By default "euclidean", but other options include "maximum", "manhattan", "canberra", "binary", and "minkowski". Fewer, identifiable letters, e.g. "e" for Euclidean, is sufficient.
range Integer indicating the maximum number of (k) clusters to evaluate. Ignored when $\mathrm{k}=$ "strict" or a discrete number is given for k .

Functions

- node_equivalence: Returns nodes' membership in according to their equivalence with respective to some census/class
- node_structural_equivalence: Returns nodes' membership in structurally equivalent classes
- node_regular_equivalence: Returns nodes’ membership in regularly equivalent classes
- node_automorphic_equivalence: Returns nodes' membership in automorphically equivalent classes

Source

https://github.com/aslez/concoR

References

Thorndike, Robert L. 1953. "Who Belongs in the Family?". Psychometrika, 18(4): 267-76. doi:10.1007/BF02289263.
Rousseeuw, Peter J. 1987. "Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis." Journal of Computational and Applied Mathematics, 20: 53-65. doi:10.1016/ 03770427(87)901257.

See Also

Other membership: community, components()

Examples

```
(nse <- node_structural_equivalence(mpn_elite_usa_advice))
plot(nse)
(nre <- node_regular_equivalence(mpn_elite_usa_advice,
    cluster = "concor"))
plot(nre)
(nae <- node_automorphic_equivalence(mpn_elite_usa_advice,
    k = "elbow"))
plot(nae)
```

 features Measures of network topological features

Description

Measures of network topological features

Usage

graph_core(object, membership = NULL)
graph_factions(object, membership = NULL)
graph_modularity(object, membership = NULL, resolution = 1)
graph_smallworld(object, times = 100)
graph_balance(object)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

membership	A vector of partition membership.
resolution	A proportion indicating the resolution scale. By default 1.
times	Integer of number of simulations.

Functions

- graph_core: Returns correlation between a given network and a core-periphery model with the same dimensions.
- graph_factions: Returns correlation between a given network and a component model with the same dimensions.
- graph_modularity: Returns modularity of one- or two-mode networks based on nodes' membership in pre-defined clusters.
- graph_smallworld: Returns small-world metrics for one- and two-mode networks. Smallworld networks can be highly clustered and yet have short path lengths.
- graph_balance: Returns the structural balance index on the proportion of balanced triangles, ranging between 0 if all triangles are imbalanced and 1 if all triangles are balanced.

Source

\{signnet $\}$ by David Schoch

References

Borgatti, Stephen P., and Martin G. Everett. 2000. "Models of Core/Periphery Structures." Social Networks 21(4):375-95. https://doi.org/10.1016/S0378-8733(99)00019-2
Murata, Tsuyoshi. 2010. Modularity for Bipartite Networks. In: Memon, N., Xu, J., Hicks, D., Chen, H. (eds) Data Mining for Social Network Data. Annals of Information Systems, V1ol 12. Springer, Boston, MA. doi:10.1007/9781441962874_7
Watts, Duncan J., and Steven H. Strogatz. 1998. "Collective Dynamics of 'Small-World’ Networks." Nature 393(6684):440-42. doi:10.1038/30918.

See Also

graph_transitivity() and graph_equivalency() for how clustering is calculated Other measures: centralisation, centrality, closure, cohesion(), diversity, holes

Examples

```
graph_core(ison_adolescents)
graph_core(ison_southern_women)
graph_factions(ison_adolescents)
graph_factions(ison_southern_women)
graph_modularity(ison_adolescents,
    node_kernighanlin(ison_adolescents))
graph_modularity(ison_southern_women,
    node_kernighanlin(ison_southern_women))
graph_smallworld(ison_brandes)
graph_smallworld(ison_southern_women)
graph_balance(ison_marvel_relationships)
```

generate Make networks with a stochastic element

Description

These functions are similar to the create_* functions, but include some element of randomisation. They are particularly useful for creating a distribution of networks for exploring or testing network properties.

Usage

generate_random(n, p = 0.5, directed = FALSE, with_attr = TRUE)
generate_smallworld(n, $p=0.05$, width $=2$, directed $=$ FALSE)
generate_scalefree($n, p=1$, directed $=$ FALSE)
generate_permutation(object, with_attr = TRUE)

Arguments

n
Given:

- A single integer, e.g. $n=10$, a one-mode network will be created.
- A vector of two integers, e.g. $n=c(5,10)$, a two-mode network will be created.
- A migraph-compatible object, a network of the same dimensions will be created.
p Proportion of possible ties in the network that are realised or, if integer greater than 1, the number of ties in the network.
directed Whether to generate network as directed. By default FALSE.
with_attr Logical whether any attributes of the object should be retained. By default TRUE.
width Integer specifying the width or breadth of the ring or branches.
object An object of a migraph-consistent class:
- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Value

By default an igraph object is returned, but this can be coerced into other types of objects using as_matrix(), as_tidygraph(), or as_network().

Functions

- generate_random: Generates a random network with a particular probability.
- generate_smallworld: Generates a small-world structure following the lattice rewiring model.
- generate_scalefree: Generates a scale-free structure following the preferential attachment model.
- generate_permutation: Generates a permutation of the original network using a FisherYates shuffle on both the rows and columns (for a one-mode network) or on each of the rows and columns (for a two-mode network).

References

Erdős, Paul, and Alfréd Rényi. (1959). "On Random Graphs I" Publicationes Mathematicae. 6: 290-297.
Watts, Duncan J., and Steven H. Strogatz. 1998. "Collective Dynamics of 'Small-World' Networks." Nature 393(6684):440-42. doi:10.1038/30918.

Barabási, Albert-László, and Réka Albert. 1999. "Emergence of Scaling in Random Networks." Science 286(5439):509-12. doi:10.1126/science.286.5439.509.

See Also

as
Other makes: create, read

Examples

```
autographr(generate_random(12, 0.4)) +
autographr(generate_random(c(6, 6), 0.4))
autographr(generate_smallworld(12, 0.025)) +
autographr(generate_smallworld(12, 0.25)) +
autographr(generate_smallworld(c(6,6), 0.025))
autographr(generate_scalefree(12, 0.25)) +
autographr(generate_scalefree(12, 1.25))
autographr(generate_scalefree(c(12,6), 0.25)) /
autographr(generate_scalefree(c(12,6), 1.25))
autographr(mpn_elite_usa_advice) +
autographr(generate_permutation(mpn_elite_usa_advice))
```


Description

This function offers a method to plot a network at two or more timepoints for quick and easy comparison. The function is currently limited to two networks and only the layout given by the first or last network, but further extensions expected.

Usage

```
ggevolution(..., layout = "kk", based_on = c("first", "last", "both"))
```


Arguments

\ldots.	two or more networks
layout	an igraph layout. Default is Kamada-Kawai ("kk")
based_on	whether the layout of the joint plots should be based on the "first" or the "last" network.

Examples

```
mpn_elite_mex <- mpn_elite_mex %>% to_subgraph(in_mpn == 1)
mpn_elite_mex2 <- generate_permutation(mpn_elite_mex)
ggevolution(mpn_elite_mex, mpn_elite_mex2)
ggevolution(mpn_elite_mex, mpn_elite_mex2, based_on = "last")
ggevolution(mpn_elite_mex, mpn_elite_mex2, based_on = "both")
```

gglineage

Plot lineage graph

Description

Lineage implies a direct descent from an ancestor; ancestry or pedigree. That is, how observation derives and is connected to previous observations. The function plots a lineage graph of citations, amendments, and more, for example.

Usage

```
gglineage(object, labels = TRUE)
```


Arguments

object A migraph-consistent network/graph.
labels Whether to plot node labels or not. Default: TRUE.

Examples

```
cites <- dplyr::tibble(qID1 = c("BNLHPB_2016P:BNLHPB_1970A",
"PARIS_2015A","INOOTO_2015A", "RUS-USA[UUF]_2015A",
"RUS-USA[UUF]_2015A", "RUS-USA[UUF]_2015A", "RUS-USA[UUF]_2015A",
"INECHA_20150", "ST04DC_2014P", "ST04DC_2014P"),
qID2 = c("BNLHPB_1977P:BNLHPB_1970A", "UNFCCC_1992A", "INOOTO_2005A",
"RUS-USA[MFR]_1988A", "PS07UF_2009A", "UNCLOS_1982A", "UNCLOS_1982A",
"ERECHA_19910", "AI07EM_1998A", "CNEWNH_1979A"))
gglineage(cites)
```

```
    grab Grab various node or edge attributes from a network
```


Description

These functions operate to help extract certain attributes from given network data. They are also useful as helpers within other functions.
graph_*() functions always relate to the overall graph or network, usually returning a scalar. node_*() and tie_*() always return vectors the same length as the number of nodes or edges in the network, respectively.

Usage

node_names(object)
node_mode(object)
node_attribute(object, attribute)
tie_attribute(object, attribute)
tie_weights(object)
tie_signs(object)
graph_nodes(object)
graph_ties(object)
graph_dims(object)
graph_node_attributes(object)
graph_tie_attributes(object)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{$ tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
attribute Character string naming an attribute in the object.

Functions

- node_names: Extracts the names of the nodes in a network.
- node_mode: Extracts the mode of the nodes in a network.
- node_attribute: Extracts an attribute's values for the nodes in a network.
- tie_attribute: Extracts an attribute's values for the edges in a network.
- tie_weights: Extracts the weights of the edges in a network.
- tie_signs: Extracts the signs of the edges in a network.
- graph_nodes: Returns the total number of nodes (of any mode) in a network.
- graph_ties: Returns the number of edges in a network.
- graph_dims: Returns the dimensions of a network in a vector as long as the number of modes in the network.
- graph_node_attributes: Returns a vector of nodal attributes in a network
- graph_tie_attributes: Returns a vector of edge attributes in a network

See Also

Other manipulations: add, as(), reformat, transform()

Examples

```
node_names(mpn_elite_usa_advice)
node_mode(mpn_elite_usa_advice)
node_attribute(mpn_elite_mex, "full_name")
tie_attribute(ison_algebra, "task_tie")
tie_weights(to_mode1(ison_southern_women))
tie_signs(ison_marvel_relationships)
graph_nodes(ison_southern_women)
graph_ties(ison_southern_women)
graph_dims(ison_southern_women)
graph_dims(to_mode1(ison_southern_women))
graph_node_attributes(mpn_elite_mex)
graph_tie_attributes(mpn_elite_mex)
```

```
graph_census Censuses of graphs' motifs
```


Description

Censuses of graphs' motifs

Usage

graph_dyad_census(object)
graph_triad_census(object)
graph_mixed_census(object, object2)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { A migraph-consistent object. } \\
\text { object2 } & \text { A second, two-mode migraph-consistent object. }
\end{array}
$$

Functions

- graph_dyad_census: Returns a census of dyad motifs in a network
- graph_triad_census: Returns a census of triad motifs in a network
- graph_mixed_census: Returns a census of triad motifs that span a one-mode and a two-mode network

Source

Alejandro Espinosa 'netmem'

References

Davis, James A., and Samuel Leinhardt. 1967. "The Structure of Positive Interpersonal Relations in Small Groups." 55.

Hollway, James, Alessandro Lomi, Francesca Pallotti, and Christoph Stadtfeld. 2017. "Multilevel Social Spaces: The Network Dynamics of Organizational Fields." Network Science 5(2): 187-212. doi:10.1017/nws.2017.8

See Also

Other motifs: node_census

Examples

```
graph_dyad_census(ison_adolescents)
graph_triad_census(ison_adolescents)
marvel_friends <- to_unsigned(ison_marvel_relationships, "positive")
(mixed_cen <- graph_mixed_census(marvel_friends, ison_marvel_teams))
```

holes Measures of structural holes

Description

These function provide different measures of the degree to which nodes fill structural holes, as outlined in Burt (1992). Burt's theory holds that while those nodes embedded in dense clusters of close connections are likely exposed to the same or similar ideas and information, those who fill structural holes between two otherwise disconnected groups can gain some comparative advantage from that position.

Usage

node_bridges(object)
node_redundancy (object)
node_effsize(object)
node_efficiency (object)
node_constraint(object)
node_hierarchy(object)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Details

A number of different ways of measuring these structural holes are available. Note that we use Borgatti's reformulation for unweighted networks in node_redundancy () and node_effsize(). Redundancy is thus $\frac{2 t}{n}$, where t is the sum of ties and n the sum of nodes in each node's neighbourhood, and effective size is calculated as $n-\frac{2 t}{n}$.

Functions

- node_bridges: Returns the sum of bridges to which each node is adjacent.
- node_redundancy: Returns a measure of the redundancy of each nodes' contacts.
- node_effsize: Returns nodes’ effective size
- node_efficiency: Returns nodes’ efficiency
- node_constraint: Returns nodes' constraint scores for one-mode networks according to Burt (1992) and for two-mode networks according to Hollway et al (2020).
- node_hierarchy: Returns nodes’ exposure to hierarchy, where only one or two contacts are the source of closure

References

Burt, Ronald S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University Press.
Borgatti, Steven. 1997. "Structural Holes: Unpacking Burt's Redundancy Measures" Connections 20(1):35-38.

Hollway, James, Jean-Frédéric Morin, and Joost Pauwelyn. 2020. "Structural conditions for novelty: the introduction of new environmental clauses to the trade regime complex." International Environmental Agreements: Politics, Law and Economics 20 (1): 61-83. doi:10.1007/s10784019094645.

See Also

Other measures: centralisation, centrality, closure, cohesion(), diversity, features

Examples

node_bridges(ison_adolescents)
node_bridges(ison_southern_women)
node_redundancy(ison_adolescents)
node_redundancy(ison_southern_women)
node_effsize(ison_adolescents)
node_effsize(ison_southern_women)
node_efficiency(ison_adolescents)
node_efficiency(ison_southern_women)
node_constraint(ison_southern_women)
node_hierarchy(ison_adolescents)
node_hierarchy(ison_southern_women)

Marking networks based on their properties

Description

These functions implement logical tests for various network properties.

Usage

is_migraph(object)
is_graph(object)
is_edgelist(object)
is_twomode(object)
is_weighted(object)
is_directed(object)
is_labelled(object)
is_signed(object)

```
is_connected(object)
is_complex(object)
is_multiplex(object)
is_uniplex(object)
is_acyclic(object)
```


Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{\mathrm{tibble}\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Value

TRUE if the condition is met, or FALSE otherwise.

Functions

- is_migraph: Tests whether network is migraph-compatible
- is_graph: Tests whether network contains graph-level information
- is_edgelist: Tests whether data frame is an edgelist
- is_twomode: Tests whether network is a two-mode network
- is_weighted: Tests whether network is weighted
- is_directed: Tests whether network is directed
- is_labelled: Tests whether network includes names for the nodes
- is_signed: Tests whether network is signed positive/negative
- is_connected: Tests whether network is weakly connected if the network is undirected or strongly connected if directed. To test weak connection on a directed network, please see to_undirected().
- is_complex: Tests whether network contains any loops
- is_multiplex: Tests whether network is multiplex, either from multiple rows with the same sender and receiver, or multiple columns to the edgelist.
- is_uniplex: Tests whether network is simple (both uniplex and simplex)
- is_acyclic: Tests whether network is a directed acyclic graph

See Also

Other marks: mark_nodes, mark_ties

Examples

```
is_twomode(ison_southern_women)
is_weighted(ison_southern_women)
is_directed(ison_algebra)
is_labelled(ison_southern_women)
is_signed(ison_southern_women)
is_connected(ison_southern_women)
is_complex(ison_southern_women)
is_uniplex(ison_algebra)
is_acyclic(ison_algebra)
```

 ison_adolescents One-mode subset of the adolescent society (Coleman 1961)

Description

One-mode subset of the adolescent society (Coleman 1961)

Usage

data(ison_adolescents)

Format

```
## # A tbl_graph: 8 nodes and 10 edges
## #
## # An undirected simple graph with 1 component
## #
## # Node Data: 8 x 1 (active)
## name
## <chr>
## 1 Betty
## 2 Sue
## 3 Alice
## 4 Jane
## 5 Dale
## 6 Pam
## # . . . with 2 more rows
## #
## # Edge Data: 10 x 2
## from to
## <int> <int>
## 1 1 2
## 2 2 3
## 3 3 4
## # . . . with 7 more rows
```


References

Coleman, James S. 1961. The Adolescent Society. New York: Free Press.
Feld, Scott. 1991. "Why your friends have more friends than you do" American Journal of Sociology 96(6): 1464-1477. doi:10.1086/229693.

```
ison_algebra
Multiplex graph object of friends, social, and task ties (McFarland 2001)
```


Description

Multiplex graph object of friends, social, and task ties (McFarland 2001)

Usage

data(ison_algebra)

Format

```
## # A tbl_graph: 16 nodes and 144 edges
## #
## # A directed simple graph with 1 component
## #
## # Node Data: 16 x 1 (active)
## name
## <chr>
## 1 Melinda
## 2 Abby
## 3 Darryl
## 4 Veronica
## 5 Rylan
## 6 Lindsey
## # . . . with 10 more rows
## #
## # Edge Data: 144 × 5
## from to friends social tasks
## <int> <int> <dbl> <dbl> <dbl>
## 1
## 2 1 1 0 0 0
## 3 1-1 0
## # . . . with }141\mathrm{ more rows
```


Details

Multiplex graph object of friends, social, and task ties between 16 \#' anonymous students. M182 was an honors algebra class where researchers collected friendship, social, and task ties between 16 students. The edge attribute friends contains friendship ties, where $2=$ best friends, $1=$ friend, and 0 is not a friend. social consists of social interactions per hour, and tasks consists of task interactions per hour.

Source

See also data(studentnets.M182, package = "NetData") Larger comprehensive data set publicly available, contact Daniel A. McFarland for details.

References

McFarland, Daniel A. (2001) "Student Resistance." American Journal of Sociology 107(3): 612-78. doi:10.1086/338779.

```
ison_brandes One-mode and two-mode centrality demonstration networks
```


Description

This network should solely be used for demonstration purposes as it does not describe a real network.

Usage

```
data(ison_brandes)
```

data(ison_brandes2)

Format

```
## # A tbl_graph: 11 nodes and 12 edges
## #
## # An undirected simple graph with 1 component
## #
## # Node Data: 11 x 0 (active)
## # . . . with 5 more rows
## #
## # Edge Data: 12 x 2
## from to
## <int> <int>
## 1 1 3
## 2 2 3
## 3 3 4
## # . . . with 9 more rows
```

```
## # A tbl_graph: 11 nodes and 12 edges
## #
## # A bipartite simple graph with 1 component
## #
## # Node Data: 11 x 1 (active)
## type
## <lgl>
## 1 FALSE
## 2 FALSE
## 3 TRUE
## 4 FALSE
## 5 TRUE
## 6 TRUE
## # . . . with 5 more rows
## #
## # Edge Data: 12 x 2
## from to
## <int> <int>
## 1 1 1 3
## 2 2 3
## 3 3 4
## # . . . with 9 more rows
```

ison_karateka One-mode karateka network (Zachary 1977)

Description

The network was observed in a university Karate club in 1977. The network describes association patterns among 34 members and maps out allegiance patterns between members and either $\mathrm{Mr} . \mathrm{Hi}$, the instructor, or the John A. the club president after an argument about hiking the price for lessons. The allegiance of each node is listed in the obc argument which takes the value 1 if the individual sided with Mr. Hi after the fight and 2 if the individual sided with John A.

```
Usage
    data(ison_karateka)
```


Format

```
## IGRAPH a87bb9f UN-- 34 78 --
## + attr: name (v/c), obc (v/n)
## + edges from a87bb9f (vertex names):
## [1] Mr Hi-- Mr Hi--
## [10] Mr Hi-- -- --
## [19] -- -- -- -- -- -- -- -- 
## [28] -- -- -- -- _- -- -- -- -- 
```

```
## [37] 
```


References

Zachary, Wayne W. 1977. "An Information Flow Model for Conflict and Fission in Small Groups." Journal of Anthropological Research 33(4):452-73. doi:10.1086/jar.33.4.3629752.
ison_marvel Multilevel two-mode affiliation, signed one-mode networks of Marvel comic book characters (Yüksel 2017)

Description

Multilevel two-mode affiliation, signed one-mode networks of Marvel comic book characters (Yüksel 2017)

Usage

data(ison_marvel_teams)
data(ison_marvel_relationships)

Format

Two-mode igraph of 53 Marvel comic book characters and 141 team-ups, with 683 team affiliations between them
One-mode igraph of 53 Marvel comic book characters and 558 signed ($1=$ friends, $-1=$ enemies) undirected ties

Details

This package includes two datasets related to the Marvel comic book universe. The first, ison_marvel_teams, is a two-mode affiliation network of 53 Marvel comic book characters and their affiliations to 141 different teams. This network includes only information about nodes' names and nodeset, but additional nodal data can be taken from the other Marvel dataset here.
The second network, ison_marvel_relationships, is a one-mode signed network of friendships and enmities between the 53 Marvel comic book characters. Friendships are indicated by a positive sign in the edge sign attribute, whereas enmities are indicated by a negative sign in this edge attribute. Additional nodal variables have been coded and included by Dr Umut Yüksel:

- Gender: binary character, 43 "Male" and 10 "Female"
- PowerOrigin: binary character, 2 "Alien", 1 "Cyborg", 5 "God/Eternal", 22 "Human", 1 "Infection", 16 "Mutant", 5 "Radiation", 1 "Robot"
- Appearances: integer, in how many comic book issues they appeared in
- Attractive: binary integer, 411 (yes) and 120 (no)
- Rich: binary integer, 111 (yes) and 420 (no)
- Intellect: binary integer, 391 (yes) and 140 (no)
- Omnilingual: binary integer, 81 (yes) and 450 (no)
- UnarmedCombat: binary integer, 511 (yes) and 20 (no)
- ArmedCombat: binary integer, 251 (yes) and 280 (no)

Source

Umut Yüksel, 31 March 2017
ison_networkers One-mode EIES dataset (Freeman and Freeman 1979)

Description

A directed, simple, named, weighted graph with 32 nodes and 440 edges. Nodes are academics and edges illustrate the communication patterns on an Electronic Information Exchange System among them. Node attributes include the number of citations (Citations) and the discipline of the researchers (Discipline). Edge weights illustrate the number of emails sent from one academic to another over the studied time period.

Usage

```
data(ison_networkers)
```


Format

```
## # A tbl_graph: }32\mathrm{ nodes and 440 edges
## #
## # A directed simple graph with 1 component
## #
## # Node Data: 32 x 3 (active)
## name Discipline Citations
## <chr> <chr> <dbl>
## 1 LIN FREEMAN Sociology 19
## 2 DOUG WHITE Anthropology 3
## 3 EV ROGERS Other 170
## 4 RICHARD ALBA Sociology 23
## 5 PHIPPS ARABIE Other 16
## 6 CAROL BARNER-BARRY Other 6
## # . . . with 26 more rows
## #
## # Edge Data: 440 x 3
## from to weight
## <int> <int> <dbl>
## 1 1 1 2 488
```

\#\#	2	1	3	28
$\# \#$	3	1	4	65
\#\# \# . . .	with	437	more rows	

Source

networkdata package

References

Freeman, Sue C. and Linton C. Freeman. 1979. The networkers network: A study of the impact of a new communications medium on sociometric structure. Social Science Research Reports No 46. Irvine CA, University of California.
Wasserman Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge.
ison_projection Two-mode projection examples (Hollway 2021)

Description

Two-mode projection examples (Hollway 2021)

Usage

data(ison_mm)
data(ison_bm)
data(ison_mb)
data(ison_bb)

Format

Directed two-mode \{igraph\} object with 6 nodes and 6 edges
Directed two-mode \{igraph\} object with 8 nodes and 9 edges
Directed two-mode \{igraph\} object with 8 nodes and 9 edges
Directed two-mode \{igraph\} object with 10 nodes and 12 edges

Details

These datasets should only be used for demonstration purposes as they do not describe a real world network. All examples contain named nodes.

Description

Two-mode network dataset collected by Davis, Gardner and Gardner (1941) about the attendance pattern of women at informal social events during a 9 month period. Events and women are named.

Usage

```
    data(ison_southern_women)
```


Format

References

Davis, Allison, Burleigh B. Gardner, and Mary R. Gardner. 1941. Deep South. Chicago: University of Chicago Press.
layouts Layouts for snapping layouts to a grid

Description

The function uses approximate pattern matching to redistribute coarse layouts on square grid points, while preserving the topological relationships among the nodes (see Inoue et al. 2012).

Usage

layout_tbl_graph_frgrid(object, circular = FALSE, times = 1000)
layout_tbl_graph_kkgrid(object, circular = FALSE, times = 1000)
layout_tbl_graph_gogrid(object, circular = FALSE, times = 1000)
layout_tbl_graph_stressgrid(object, circular = FALSE, times = 1000)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
circular Should the layout be transformed into a radial representation. Only possible for some layouts. Defaults to FALSE
times Maximum number of iterations, where appropriate

References

Inoue, Kentaro, Shinichi Shimozono, Hideaki Yoshida, and Hiroyuki Kurata. 2012. "Application of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical Network Maps" edited by J. Bourdon. PLoS ONE 7(6):e37739. doi:10.1371/journal.pone.0037739.

See Also

Other mapping: autographr()
mark_nodes Marking nodes based on their properties

Description

These functions return logical vectors the length of the nodes in a network identifying which hold certain properties.
node_is_cutpoint() and node_is_isolate() are useful for identifying nodes that are in particular positions in the network. More can be added here.
node_is_max () and node_is_min() are more generally useful for converting the results from some node measure into a mark-class object. They can be particularly useful for highlighting which node or nodes are key because they minimise or, more often, maximise some measure.

Usage

node_is_cutpoint(object)
node_is_isolate(object)
node_is_max(node_measure)
node_is_min(node_measure)

Arguments

object
An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
node_measure An object created by a node_ measure.

Functions

- node_is_cutpoint: Returns logical of which nodes cut or act as articulation points in a network, increasing the number of connected components in a graph when removed.
- node_is_isolate: Returns logical of which nodes are isolates, with neither incoming nor outgoing ties.
- node_is_max: Returns logical of which nodes hold the maximum of some measure
- node_is_min: Returns logical of which nodes hold the minimum of some measure

See Also

Other marks: is(), mark_ties

Examples

```
node_is_cutpoint(ison_brandes)
node_is_isolate(ison_brandes)
node_is_max(node_degree(ison_brandes))
node_is_min(node_degree(ison_brandes))
```

```
mark_ties Marking ties based on their properties
```


Description

These functions return logical vectors the length of the ties in a network, identifying which hold some property. They are most useful in highlighting parts of the network that are particularly wellor poorly-connected.

Usage

tie_is_multiple(object)
tie_is_loop(object)
tie_is_reciprocated(object)
tie_is_bridge(object)
tie_is_max(tie_measure)
tie_is_min(tie_measure)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{$ tibble $\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
tie_measure An object created by a tie_ measure.

Functions

- tie_is_multiple: Returns logical of which ties are multiples
- tie_is_loop: Returns logical of which ties are loops
- tie_is_reciprocated: Returns logical of which ties are mutual/reciprocated
- tie_is_bridge: Returns logical of which ties cut or act as articulation points in a network.
- tie_is_max: Returns logical of which ties hold the maximum of some measure
- tie_is_min: Returns logical of which ties hold the minimum of some measure

See Also

Other marks: is(), mark_nodes

Examples

```
tie_is_multiple(ison_marvel_relationships)
tie_is_loop(ison_marvel_relationships)
tie_is_reciprocated(ison_algebra)
tie_is_bridge(ison_brandes)
tie_is_max(tie_betweenness(ison_brandes))
tie_is_min(tie_betweenness(ison_brandes))
```

mpn_bristol | Multimodal (3) Bristol protest events, 1990-2002 (Diani and Bison |
| :--- |
| 2004) |

Description

A multimodal network with three levels representing ties between individuals, civic organisations in Bristol, and major protest and civic events that occurred between 1990 and 2000. The data contains individuals' affiliations to civic organizations in Bristol, the participation of these individuals in major protest and civic events between 1990-2002, and the involvement of the civic organizations in these events.

Usage

data(mpn_bristol)

Format

```
## # A tbl_graph: 264 nodes and 1496 edges
## #
## # A bipartite simple graph with 3 components
## #
## # Node Data: 264 > 3 (active)
## name type lvl
## <chr> <lgl> <dbl>
## 1 101 FALSE 1
## 2 102 FALSE 1
## 3 103 FALSE 1
## 4 104 FALSE 1
## 5 105 FALSE 1
## 6 106 FALSE 1
## # . . . with 258 more rows
## #
## # Edge Data: 1,496 × 2
## from to
## <int> <int>
## 1 36 151
## 2 40 151
## 3 73 151
## # . . . with 1,493 more rows
```


Details

The data is presented as a tbl_graph object with 264 nodes and 1496 edges. While represented as a two-mode network, it contains three levels:

1. 150 Individuals, anonymised with numeric ID
2. 97 Bristol civic organizations
3. 17 Major protest and civic events in Bristol, 1990-2002

The network represents ties between level 1 (individuals) and level 2 (organisations), level 1 (individuals) and level 3 (events), as well as level 2 (organisations) and level 3 (events). The network is simple, undirected, and named. For a complete list of civic organisations and protest/civic events included in the data, please see Appendix 6.1 in Multimodal Political Networks (Knoke et al., 2021).

Source

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.

References

Diani, Mario, and Ivano Bison. 2004. "Organizations, Coalitions, and Movements." Theory and Society 33(3-4):281-309. doi:10.1023/B:RYSO.0000038610.00045.07.

mpn_cow	One-mode interstate trade relations and two-mode state membership
in $\operatorname{IGOs}(\mathrm{COW})$	

Description

One-mode interstate trade relations and two-mode state membership in IGOs (COW)

Usage

data(mpn_cow_trade)
data(mpn_cow_igo)

Format

```
## # A tbl_graph: 116 nodes and 11489 edges
## #
## # A directed simple graph with 1 component
## #
## # Node Data: 116 x 1 (active)
## name
## <chr>
## 1 United States of America
```

```
## 2 Canada
## 3 Cuba
## 4 Dominican Republic
## 5 Jamaica
## 6 Trinidad and Tobago
## # . . . with 110 more rows
## #
## # Edge Data: 11,489 > 3
## from to weight
## <int> <int> <dbl>
## 1 1 2 180387
## 2 1 3 587.
## 3 1 4 5511.
## # . . . with 11,486 more rows
## # A tbl_graph: 156 nodes and 862 edges
## #
## # A bipartite simple graph with 1 component
## #
## # Node Data: 156 > 2 (active)
## type name
## <lgl> <chr>
## 1 FALSE Afghanistan
## 2 FALSE Albania
## 3 FALSE Algeria
## 4 FALSE Angola
## 5 FALSE Argentina
## 6 FALSE Australia
## # . . . with 150 more rows
## #
## # Edge Data: 862 x 2
## from to
## <int> <int>
## 1 1 121
## 2 1 132
## 3 1 139
## # . . . with }859\mathrm{ more rows
```


Details

mpn_cow_trade is a one-mode matrix representing the trade relations between 116 states. The data is derived from the Correlates of War Project (COW) Trade Dataset (v3.0), which contains the annual dyadic and national trade figures for states (listed in COW) between 1870 to 2009. This network is based only on the dyadic trade figures in 2009 for the 116 states listed in Appendix 7.1 in Multimodal Political Networks (Knoke et al., 2021). The value in each cell of the matrix represents the value of exports from the 116 row states to the 116 column states.

Two-mode matrix representing the membership of 116 states to 40 intergovernmental organizations (IGOs). The data is derived from the Correlates of War Project (COW) Intergovernmental Organizations Dataset (v3.0), which contains information about intergovernmental organizations from

1815-2014, such as founding year and membership. This network contains only a subset of the states and IGOs listed in COW, with 116 states listed in Appendix 7.1 in Multimodal Political Networks and 40 IGOs from Table 7.1 in Multimodal Political Networks that also overlap with the COW dataset (Knoke et al., 2021).

Source

The Correlates of War Project. 2012. Trade.
Barbieri, Katherine and Omar Keshk. 2012. Correlates of War Project Trade Data Set Codebook, Version 3.0.

The Correlates of War Project. 2019. Intergovernmental Organization v3.

References

Barbieri, Katherine, Omar M. G. Keshk, and Brian Pollins. 2009. "TRADING DATA: Evaluating our Assumptions and Coding Rules." Conflict Management and Peace Science 26(5): 471-491. doi:10.1177/0738894209343887.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.
Pevehouse, Jon C.W., Timothy Nordstron, Roseanne W McManus, Anne Spencer Jamison. 2020. "Tracking Organizations in the World: The Correlates of War IGO Version 3.0 datasets". Journal of Peace Research 57(3): 492-503. doi:10.1177/0022343319881175.

```
mpn_elite_mex One-mode Mexican power elite database (Knoke 1990)
```


Description

This data contains the full network of 35 members of the Mexican power elite. The undirected lines connecting pairs of men represent any formal, informal, or organizational relation between a dyad; for example, "common belonging (school, sports, business, political participation), or a common interest (political power)" (Mendieta et al. 1997: 37). Additional nodal attributes include their full name, place of birth, state, and region ($1=$ North, $2=$ Centre, $3=$ South, original coding added by Frank Heber), as well as their year of entry into politics and whether they are civilian (0) or affiliated with the military (1). An additional variable "in_mpn" can be used to subset this network to a network of 11 core members of the 1990s Mexican power elite (Knoke 2017), three of which were successively elected presidents of Mexico: José López Portillo (1976-82), Miguel de la Madrid (1982-88), and Carlos Salinas de Gortari (1988-94, who was also the son of another core member, Raúl Salinas Lozano).

Usage

```
    data(mpn_elite_mex)
```


Format

```
## # A tbl_graph: 35 nodes and 117 edges
## #
## # An undirected simple graph with 1 component
## #
## # Node Data: 35 x 8 (active)
## name full_name entry_year military in_mpn PlaceOfBirth state region
## <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> <dbl>
## 1 Trevino Trevino, Jac. . . 1910 1 0 Guerrero Coahu. . . 1
## 2 Madero Madero, Fran. . . 1911 0 0 Parras de la . . . Coahu. . . 1
## 3 Carranza Carranza, Ve. . . 1913 1 0 Cuatro Cieneg. . . Coahu. . . 1
## 4 Aguilar Aguilar, Can... 1918 1 0 Cordoba Verac... }
## 5 Obregon Obregon, Alv... 1920 1 0 Siquisiva, Na... Sonora 1
## 6 Calles Calles, Plut... 1924 1 0 Guaymas Sonora 1
## # . . . with 29 more rows
## #
## # Edge Data: 117 x 2
## from to
## <int> <int>
## 1 2 3
## 2 2 5
## 3 2 6
## # . . . with 114 more rows
```


Source

Knoke, David. 1990. Political Networks.
Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.

mpn_elite_usa | Two-mode and three-mode American power elite database (Domhoff |
| :--- |
| 2016) |

Description

mpn_elite_usa_advice is a 2-mode network of persons serving as directors or trustees of think tanks. Think tanks are "public-policy research analysis and engagement organizations that generate policy-oriented research, analysis, and advice on domestic and international issues, thereby enabling policymakers and the public to make informed decisions about public policy" (McGann 2016: 6). The Power Elite Database (Domhoff 2016) includes information on the directors of 33 prominent think tanks in 2012. Here we include only 14 directors who held three or more seats among 20 think tanks.
mpn_elite_usa_money is based on 26 elites who sat on the boards of directors for at least two of six economic policy making organizations (Domhoff 2016), and also made campaign contributions to one or more of six candidates running in the primary election contests for the 2008 Presidential
nominations of the Republican Party (Rudy Giuliani, John McCain, Mitt Romney) or the Democratic Party (Hillary Clinton, Christopher Dodd, Barack Obama).

Usage

```
data(mpn_elite_usa_advice)
data(mpn_elite_usa_money)
```


Format

```
## # A tbl_graph: 34 nodes and 46 edges
## #
## # A bipartite simple graph with 1 component
## #
## # Node Data: 34 x 2 (active)
## type name
## <lgl> <chr>
## 1 FALSE Albright
## 2 FALSE Argyros
## 3 FALSE Armitage
## 4 FALSE Curry
## 5 FALSE Fukuyama
## 6 FALSE Gray
## # . . . with 28 more rows
## #
## # Edge Data: 46 x 2
## from to
## <int> <int>
## 1 1 17
## 2 1 19
## 3 1 21
## # . . . with 43 more rows
## # A tbl_graph: 38 nodes and 103 edges
## #
## # A bipartite simple graph with 1 component
## #
## # Node Data: 38 x 2 (active)
## type name
## <lgl> <chr>
## 1 FALSE Adkerson
## 2 FALSE Akins
## 3 FALSE Banga
## 4 FALSE Boyce
## 5 FALSE Britt
## 6 FALSE Cannon
## # . . . with 32 more rows
## #
```

```
## # Edge Data: 103 x 2
## from to
## <int> <int>
## 1 1 27
## 2 1 28
## 3 1 34
## # . . . with 100 more rows
```


References

Domhoff, G William. 2016. "Who Rules America? Power Elite Database."
The Center for Responsive Politics. 2019. "OpenSecrets."
Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.

```
mpn_evs
```

Two-mode European Values Survey, 1990 and 2008 (EVS 2020)

Description

6 two-mode matrices containing individuals' memberships to 14 different types of associations in three countries (Italy, Germany, and the UK) in 1990 and 2008. The Italy data has 658 respondents in 1990 and 540 in 2008. The Germany data has 1369 respondents in 1990 and 503 in 2008. The UK data has 738 respondents in 1990 and 664 in 2008.

```
Usage
    data(mpn_IT_1990)
    data(mpn_IT_1990)
    data(mpn_IT_2008)
    data(mpn_DE_1990)
    data(mpn_DE_2008)
    data(mpn_UK_1990)
    data(mpn_UK_2008)
```


Format

tbl_graph object based on an association matrix with 14 columns:
Welfare 1 if individual associated
Religious 1 if individual associated

Education.culture 1 if individual associated
Unions 1 if individual associated
Parties 1 if individual associated
Local.political.groups 1 if individual associated
Human.rights 1 if individual associated
Environmental.animal 1 if individual associated
Professional 1 if individual associated
Youth 1 if individual associated
Sports 1 if individual associated
Women 1 if individual associated
Peace 1 if individual associated
Health 1 if individual associated
An object of class tbl_graph (inherits from igraph) of length 672.
An object of class tbl_graph (inherits from igraph) of length 554.
An object of class tbl_graph (inherits from igraph) of length 1383.
An object of class tbl_graph (inherits from igraph) of length 517.
An object of class tbl_graph (inherits from igraph) of length 752.
An object of class tbl_graph (inherits from igraph) of length 678.

Source

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.

References

EVS (2020). European Values Study Longitudinal Data File 1981-2008 (EVS 1981-2008). GESIS Data Archive, Cologne. ZA4804 Data file Version 3.1.0, doi:10.4232/1.13486.
mpn_ryanair One-mode EU policy influence network, June 2004 (Christopoulos 2006)

Description

Network of anonymised actors reacting to the Ryanair/Charleroi decision of the EU Commission in February 2004. The relationships mapped comprise an account of public records of interaction supplemented with the cognitive network of key informants. Examination of relevant communiques, public statements and a number of off-the-record interviews provides confidence that the network mapped closely approximated interactions between 29 January and 12 February 2004. The time point mapped is at the height of influence and interest intermediation played by actors in the AER, a comparatively obscure body representing the interests of a number of European regional bodies at the EU institutions.

Usage

```
data(mpn_ryanair)
```


Format

```
## # A tbl_graph: 20 nodes and 177 edges
## #
## # A directed simple graph with 1 component
## #
## # Node Data: 20 x 1 (active)
## name
## <chr>
## 1 1 AER
## 2 2 AER
## 3 5 AER/COR
## 4 7 RYANAIR
## 5 8 DG TRANSPORT
## 6 9 COR
## # . . . with 14 more rows
## #
## # Edge Data: 177 x 3
## from to weight
## <int> <int> <dbl>
## 1 1 1 2 1
## 2 1 1 3 1
## 3 1 1 4 1
## # . . . with 174 more rows
```


Source

Christopoulos, Dimitrios C. 2006. "Relational Attributes of Political Entrepreneurs: a Network Perspective." Journal of European Public Policy 13(5): 757-78. doi:10.1080/13501760600808964.
Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.

Description

These datasets list the U.S. Senators who served in the 112th Congress, which met from January 3, 2011 to January 3, 2013. Although the Senate has 100 seats, 103 persons served during this period due to two resignations and a death. However, the third replacement occurred only two days before the end and cast no votes on the bills investigated here. Hence, the number of Senators analyzed is 102.

CQ Almanac identified 25 key bills on which the Senate voted during the 112th Congress, and which Democratic and Republican Senators voting "yea" and "nay" on each proposal.
Lastly, we obtained data on campaign contributions made by 92 PACs from the Open Secrets Website. We recorded all contributions made during the 2008, 2010, and 2012 election campaigns to the 102 persons who were Senators in the 112th Congress. The vast majority of PAC contributions to a candidate during a campaign was for $\$ 10,000$ (the legal maximum is $\$ 5,000$ each for a primary and the general election). We aggregated the contributions across all three electoral cycles, then dichotomized the sums into no contribution (0) and any contribution (1).

Usage

```
data(mpn_DemSxP)
data(mpn_RepSxP)
data(mpn_OverSxP)
```


Format

```
## # A tbl_graph: }114\mathrm{ nodes and 2791 edges
## #
## # A directed acyclic simple graph with 1 component
## #
## # Node Data: 114 x 2 (active)
## type name
## <lgl> <chr>
## 1 FALSE Baucus
## 2 FALSE Begich
## 3 FALSE Bennet
## 4 FALSE Blumenthal
## 5 FALSE Boxer
## 6 FALSE BrownSh
## # . . . with 108 more rows
## #
## # Edge Data: 2,791 x 3
## from to weight
## <int> <int> <dbl>
## 1 1 1 52 1
## 2 1 1 53 1
## 3 1 1 54 1
## # . . . with 2,788 more rows
## # A tbl_graph: }134\mathrm{ nodes and 3675 edges
## #
## # A directed acyclic simple graph with 1 component
## #
## # Node Data: 134 x 2 (active)
## type name
## <lgl> <chr>
```

```
## 1 FALSE Alexander
## 2 FALSE Ayotte
## 3 FALSE Barrasso
## 4 FALSE Baucus
## 5 FALSE Blunt
## 6 FALSE Boozman
## # . . . with 128 more rows
## #
## # Edge Data: 3,675 x 3
## from to weight
## <int> <int> <dbl>
## 1 1 1 64 1
## 2 1 66 1
## 3 1 67 1
## # . . . with 3,672 more rows
## # A tbl_graph: 52 nodes and 614 edges
## #
## # A directed acyclic simple graph with 1 component
## #
## # Node Data: 52 x 2 (active)
## type name
## <lgl> <chr>
## 1 FALSE Baucus
## 2 FALSE Cardin
## 3 FALSE Carper
## 4 FALSE Casey
## 5 FALSE Collins
## 6 FALSE Feinstein
## # . . . with 46 more rows
## #
## # Edge Data: 614 x 3
## from to weight
## <int> <int> <dbl>
## 1 1 1 21 1
## 2 1 1 22 1
## 3 1 1 23 1
## # . . . with 611 more rows
```


References

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Political Networks. Cambridge University Press. Cambridge University Press.

[^0]
Description

These functions include ways to take a census of the positions of nodes in a network. These include a triad census based on the triad profile of nodes, but also a tie census based on the particular tie partners of nodes. Included also are group census functions for summarising the profiles of clusters of nodes in a network.

Usage

node_tie_census(object)
node_triad_census(object)
node_quad_census(object)
node_path_census(object)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble \}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

Details

The quad census uses the \{oaqc $\}$ package to do the heavy lifting of counting the number of each orbits. See vignette('oaqc'). However, our function relabels some of the motifs to avoid conflicts and improve some consistency with other census-labelling practices. The letter-number pairing of these labels indicate the number and configuration of ties. For now, we offer a rough translation:

migraph	Ortmann and Brandes
E4	co-K4
I40, I41	co-diamond
H4	co-C4
L42, L41, L40	co-paw
D42, D40	co-claw
U42, U41	P4
Y43, Y41	claw
P43, P42, P41	paw
04	C4
Z42, Z43	diamond
X4	K4

Functions

- node_tie_census: Returns a census of the ties in a network. For directed networks, out-ties and in-ties are bound together.
- node_triad_census: Returns a census of the triad configurations nodes are embedded in.
- node_quad_census: Returns a census of nodes' positions in motifs of four nodes.
- node_path_census: Returns the shortest path lengths of each node to every other node in the network.

References

Davis, James A., and Samuel Leinhardt. 1967. "The Structure of Positive Interpersonal Relations in Small Groups." 55.
Ortmann, Mark, and Ulrik Brandes. 2017. "Efficient Orbit-Aware Triad and Quad Census in Directed and Undirected Graphs." Applied Network Science 2(1):13. doi:10.1007/s4110901700272.
Dijkstra, Edsger W. 1959. "A note on two problems in connexion with graphs". Numerische Mathematik 1, 269-71. doi:10.1007/BF01386390.
Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted networks: Generalizing degree and shortest paths". Social Networks 32(3): 245-51. doi:10.1016/ j.socnet.2010.03.006.

See Also

Other motifs: graph_census

Examples

```
task_eg <- to_named(to_uniplex(ison_algebra, "task_tie"))
(tie_cen <- node_tie_census(task_eg))
(triad_cen <- node_triad_census(task_eg))
node_path_census(ison_adolescents)
node_path_census(ison_southern_women)
```

read
Make networks from/to external formats

Description

Researchers regularly need to work with a variety of external data formats. The following functions offer ways to import from some common external file formats into objects that \{migraph\} and other graph/network packages in R can work with.
Note that these functions are not as actively maintained as others in the package, so please let us know if any are not currently working for you or if there are missing import routines by raising an issue on Github.

Usage

```
    read_edgelist(file = file.choose(), sv = c("comma", "semi-colon"), ...)
    write_edgelist(object, filename, name, ...)
    read_nodelist(file = file.choose(), sv = c("comma", "semi-colon"), ...)
    write_nodelist(object, filename, name, ...)
    read_pajek(file = file.choose(), ...)
    write_pajek(object, filename, ...)
    read_ucinet(file = file.choose())
    write_ucinet(object, filename, name)
```


Arguments

file A character string with the system path to the file to import. If left unspecified, an OS-specific file picker is opened to help users select it. Note that in read_ucinet () the file path should be to the header file (.\#\#h), if it exists and that it is currently not possible to import multiple networks from a single UCINET file. Please convert these one by one.
sv Allows users to specify whether their csv file is "comma" (English) or "semi-colon" (European) separated.
... Additional parameters passed to the read/write function.
object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
filename UCINET filename (without \#\# extension). By default the files will have the same name as the object and be saved to the working directory.
name name of matrix to be known in UCINET. By default the name will be the same as the object.

Details

There are a number of repositories for network data that hold various datasets in different formats. See for example:

- UCINET data
- Pajek data

See also:

- networkdata
- GML datasets
- UCIrvine Network Data Repository
- KONECT project
- SNAP Stanford Large Network Dataset Collection

Please let us know if you identify any further repositories of social or political networks and we would be happy to add them here.

The _ucinet functions only work with relatively recent UCINET file formats, e.g. type 6406 files. To import earlier UCINET file types, you will need to update them first. To import multiple matrices packed into a single UCINET file, you will need to unpack them and convert them one by one.

Value

The read_edgelist() and read_nodelist() functions will import into edgelist (tibble) format which can then be coerced or combined into different graph objects from there.

The read_pajek() and read_ucinet () functions will import into a tidygraph format, since they already contain both edge and attribute data. Note that all graphs can be easily coerced into other formats with \{migraph\}'s as_ methods.

The write_functions export to different file formats, depending on the function.
A pair of UCINET files in V6404 file format (.\#\#h, .\#\#d)

Functions

- read_edgelist: Reading edgelists from Excel/csv files
- write_edgelist: Writing edgelists to csv files
- read_nodelist: Reading nodelists from Excel/csv files
- write_nodelist: Writing nodelists to csv files
- read_pajek: Reading pajek (.net/.paj) files
- write_pajek: Writing pajek .net files
- read_ucinet: Reading UCINET files
- write_ucinet: Writing UCINET files

Source

read_ucinet() and write_ucinet() kindly supplied by Christian Steglich, constructed on 18 June 2015.

See Also

as
Other makes: create, generate

Examples

```
## Not run:
# import Roethlisberger & Dickson's horseplay game data set:
horseplay <- read_ucinet("WIRING-RDGAM.##h")
## End(Not run)
## Not run:
# export it again to UCINET under a different name:
write_ucinet(horseplay, "R&D-horseplay")
## End(Not run)
```

 reformat Tools for reformatting networks, graphs, and matrices

Description

These functions offer tools for reformatting migraph-consistent objects (matrices, igraph, tidygraph, or network objects). Unlike the as_*() group of functions, these functions always return the same object type as they are given, only transforming these objects' properties.

Usage

to_uniplex(object, edge)
to_undirected(object)
to_redirected(object)
to_unweighted(object, threshold = 1)
to_unsigned(object, keep = c("positive", "negative"))
to_unnamed (object)
to_named(object, names $=$ NULL)
to_simplex (object)
to_onemode(object)
to_multilevel(object)

Arguments

object
An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from $\{\mathrm{tibble}\}$
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
edge \quad Character string naming an edge attribute to retain from a graph.
threshold For a matrix, the threshold to binarise/dichotomise at.
keep In the case of a signed network, whether to retain the "positive" or "negative" ties.
names \quad Character vector of the node names. NULL by default.

Details

Since some modifications are easier to implement for some objects than others, here are the currently implemented modifications:

to_	edgelists	matrices	igraph	tidygraph	network
\quad unweighted	X	X	X	X	X
\quad undirected		X	X	X	X
redirected	X	X	X	X	
unsigned	X	X	X	X	
uniplex			X	X	
unnamed	X	X	X	X	X
named	X	X	X	X	X
simplex		X	X	X	
onemode			X	X	
multilevel		X	X	X	

Value

All to_ functions return an object of the same class as that provided. So passing it an igraph object will return an igraph object and passing it a network object will return a network object, with certain modifications as outlined for each function.

Functions

- to_uniplex: Returns an object that includes only a single type of tie
- to_undirected: Returns an object that has any edge direction removed, so that any pair of nodes with at least one directed edge will be connected by an undirected edge in the new network. This is equivalent to the "collapse" mode in \{igraph\}.
- to_redirected: Returns an object that has any edge direction transposed, or flipped, so that senders become receivers and receivers become senders. This essentially has no effect on undirected networks or reciprocated ties.
- to_unweighted: Returns an object that has all edge weights removed
- to_unsigned: Returns a network with either just the "positive" ties or just the "negative" ties
- to_unnamed: Returns an object with all vertex names removed
- to_named: Returns an object that has random vertex names added
- to_simplex: Returns an object that has all loops or self-ties removed
- to_onemode: Returns an object that has any type/mode attributes removed, but otherwise includes all the same nodes and ties. Note that this is not the same as to_mode1() or to_mode2(), which return only some of the nodes and new ties established by coincidence.
- to_multilevel: Returns a network that is not divided into two mode types but embeds two or more modes into a multimodal network structure.

See Also

Other manipulations: add, as(), grab, transform()

Examples

```
autographr(ison_algebra)
a <- to_uniplex(ison_algebra, "friends")
autographr(a)
a <- to_main_component(a)
autographr(a)
a <- to_undirected(a)
autographr(a)
a <- to_unweighted(a)
autographr(a)
```

regression Linear and logistic regression for network data

Description

This function provides an implementation of the multiple regression quadratic assignment procedure (MRQAP) for both one-mode and two-mode network linear models. It offers several advantages:

- it works with combined graph/network objects such as igraph and network objects by constructing the various dependent and independent matrices for the user.
- it uses a more intuitive formula-based system for specifying the model, with several ways to specify how nodal attributes should be handled.
- it can handle categorical variables (factors/characters) and interactions intuitively.
- it relies on \{furrr\} for parallelising and \{progressr\} for reporting progress to the user, which can be useful when many simulations are required.
- results are \{broom\}-compatible, with tidy() and glance() reports to facilitate comparison with results from different models. Note that a t - or z-value is always used as the test statistic, and properties of the dependent network - modes, directedness, loops, etc - will always be respected in permutations and analysis.

```
Usage
    network_reg(
    formula,
    object,
    method = c("qap", "qapy"),
    times = 1000,
    strategy = "sequential",
    verbose = FALSE
)
```


Arguments

formula A formula describing the relationship being tested. Several additional terms are available to assist users investigate the effects they are interested in. These include:

- ego() constructs a matrix where the cells reflect the value of a named nodal attribute for an edge's sending node
- alter() constructs a matrix where the cells reflect the value of a named nodal attribute for an edge's receiving node
- same() constructs a matrix where a 1 reflects if two nodes' attribute values are the same
- dist() constructs a matrix where the cells reflect the absolute difference between the attribute's values for the sending and receiving nodes
- $\operatorname{sim}()$ constructs a matrix where the cells reflect the proportional similarity between the attribute's values for the sending and receiving nodes
- dyadic covariates (other networks) can just be named
object An object of a migraph-consistent class:
- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
method A method for establishing the null hypothesis. Note that "qap" uses Dekker et al's (2007) double semi-partialling technique, whereas "qapy" permutes only the $\$ y \$$ variable. "qap" is the default.
times Integer indicating number of simulations used for quantile estimation. (Relevant to the null hypothesis test only - the analysis itself is unaffected by this parameter.) Note that, as for all Monte Carlo procedures, convergence is slower for more extreme quantiles. By default, times $=1000$. $1,000-10,000$ repetitions recommended for publication-ready results.
strategy If \{furrr\} is installed, then multiple cores can be used to accelerate the function. By default "sequential", but if multiple cores available, then "multisession" or "multicore" may be useful. Generally this is useful only when times > 1000. See \{furrr\} for more.
verbose Whether the function should report on its progress. By default FALSE. See \{progressr\} for more.

References

Krackhardt, David. 1988. "Predicting with Networks: Nonparametric Multiple Regression Analysis of Dyadic Data." Social Networks 10(4):359-81. doi:10.1016/03788733(88)900044.
Dekker, David, David Krackhard, and Tom A. B. Snijders. 2007. "Sensitivity of MRQAP tests to collinearity and autocorrelation conditions." Psychometrika 72(4): 563-581. doi:10.1007/s1133600790161.

See Also

vignette("p7linearmodel")
Other models: tests

Examples

```
networkers <- ison_networkers %>% to_subgraph(Discipline == "Sociology")
model1 <- network_reg(weight ~ alter(Citations) + sim(Citations),
                networkers, times = 20)
# Should be run many more `times` for publication-ready results
tidy(model1)
glance(model1)
plot(model1)
```

tests

Conditional uniform graph and permutation tests

Description

These functions conduct conditional uniform graph (CUG) or permutation (QAP) tests of any graphlevel statistic.

Usage

```
test_random(
    object,
    FUN,
    ...,
    times = 1000,
    strategy = "sequential",
    verbose = FALSE
)
test_permutation(
    object,
    FUN,
    ...,
    times = 1000,
    strategy = "sequential",
```

```
    verbose = FALSE
)
```


Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base\} R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package

FUN A graph-level statistic function to test.
... Additional arguments to be passed on to FUN, e.g. the name of the attribute.
times Integer indicating number of simulations used for quantile estimation. (Relevant to the null hypothesis test only - the analysis itself is unaffected by this parameter.) Note that, as for all Monte Carlo procedures, convergence is slower for more extreme quantiles. By default, times=1000. 1,000-10,000 repetitions recommended for publication-ready results.
strategy If \{furrr\} is installed, then multiple cores can be used to accelerate the function. By default "sequential", but if multiple cores available, then "multisession" or "multicore" may be useful. Generally this is useful only when times > 1000. See \{furrr\} for more.
verbose Whether the function should report on its progress. By default FALSE. See \{progressr\} for more.

Functions

- test_random: Returns test results for some measure on an object against a distribution of measures on random networks of the same dimensions
- test_permutation: Returns test results for some measure on an object against a distribution of measures on permutations of the original network

See Also

Other models: regression

Examples

```
marvel_friends <- to_unsigned(ison_marvel_relationships)
marvel_friends <- to_main_component(marvel_friends) %>%
    to_subgraph(PowerOrigin == "Human")
(cugtest <- test_random(marvel_friends, graph_ei_index, attribute = "Attractive",
    times = 200))
plot(cugtest)
(qaptest <- test_permutation(marvel_friends,
    graph_ei_index, attribute = "Attractive",
    times = 200))
plot(qaptest)
```


Description

These functions offer tools for transforming migraph-consistent objects (matrices, igraph, tidygraph, or network objects). Transforming means that the returned object may have different dimensions than the original object.

Usage

to_mode1 (object)
to_mode2(object)
to_main_component (object)
to_subgraph(object, ...)
to_ties(object)
to_blocks(object, membership, FUN = mean)

Arguments

object An object of a migraph-consistent class:

- matrix (adjacency or incidence) from \{base $\}$ R
- edgelist, a data frame from \{base\} R or tibble from \{tibble\}
- igraph, from the \{igraph\} package
- network, from the \{network\} package
- tbl_graph, from the \{tidygraph\} package
... Arguments passed on to dplyr::filter
membership A vector of partition memberships
FUN A function for summarising block content. By default mean. Other recommended options include median, sum, min or max.

Details

Since some modifications are easier to implement for some objects than others, here are the currently implemented modifications:

to_	edgelists	matrices	igraph	tidygraph
network				
mode1	X	X	X	
mode2	X	X	X	
main_component			X	X
X				

subgraph	X	X	X	X	X
ties	X	X	X	X	X
blocks	X	X	X	X	X

Note that to_subgraph() returns a 'tidygraph' object, to_ties() returns an 'igraph' object, and to_blocks() returns a 'matrix' object.

Functions

- to_mode1: Results in a weighted one-mode object that retains the row nodes from a two-mode object, and weights the ties between them on the basis of their joint ties to nodes in the second mode (columns)
- to_mode2: Results in a weighted one-mode object that retains the column nodes from a twomode object, and weights the ties between them on the basis of their joint ties to nodes in the first mode (rows).
- to_main_component: Returns an object that includes only the main component without any smaller components or isolates
- to_subgraph: Returns a network subgraph filtered on the basis of some node-related logical statement.
- to_ties: Returns a matrix (named if possible) where the edges are the nodes
- to_blocks: Returns a reduced graph from a given partition membership vector

See Also

Other manipulations: add, as(), grab, reformat

Examples

```
autographr(ison_southern_women) /
(autographr(to_mode1(ison_southern_women)) |
autographr(to_mode2(ison_southern_women)))
autographr(ison_adolescents) +
autographr(to_ties(ison_adolescents))
(adolblock <- to_blocks(ison_adolescents,
    node_regular_equivalence(ison_adolescents, k = 3)))
autographr(adolblock)
```


Index

```
* datasets
    ison_adolescents,33
    ison_algebra, 34
    ison_brandes,35
    ison_karateka,36
    ison_marvel, 37
    ison_networkers,38
    ison_projection, 39
    ison_southern_women,40
    mpn_bristol,44
    mpn_cow, 45
    mpn_elite_mex,47
    mpn_elite_usa,48
    mpn_evs,50
    mpn_ryanair, 51
    mpn_senate112, 52
* makes
    create, 16
    generate, 24
    read, 56
* manipulations
    add, }
    as,4
    grab, 27
    reformat,59
    transform, 65
* mapping
    autographr,6
        layouts,40
* marks
        is,31
        mark_nodes,41
        mark_ties,43
* measures
        centralisation,7
        centrality,8
        closure, 11
        cohesion, 13
        diversity,18
```

features, 22
holes, 29

* membership
community, 14
components, 15
equivalence, 20
* models
regression, 61
tests, 63
* motifs
graph_census, 28
node_census, 54
add, 3, 5, 28, 61, 66
add_node_attribute (add), 3
add_tie_attribute (add), 3
as, $4,4,18,25,28,58,61,66$
as_edgelist(as), 4
as_igraph (as), 4
as_matrix (as), 4
as_network (as), 4
as_tidygraph (as), 4
autographr, 6, 41
centralisation, 7, 10, 12, 14, 19, 23, 31
centrality, $8,8,12,14,19,23,31$
closure, $8,10,11,14,19,23,31$
cluster, 12
cluster_concor (cluster), 12
cluster_hierarchical (cluster), 12
cohesion, $8,10,12,13,19,23,31$
community, 14, 16, 22
components, 15, 15, 22
copy_node_attributes (add), 3
create, $16,25,58$
create_complete (create), 16
create_components (create), 16
create_core (create), 16
create_empty (create), 16
create_lattice (create), 16
create_ring (create), 16
create_star (create), 16
create_tree (create), 16
diversity, $8,10,12,14,18,23,31$
equivalence, $15,16,20$
features, $8,10,12,14,19,22,31$
generate, $18,24,58$
generate_permutation (generate), 24
generate_random (generate), 24
generate_scalefree (generate), 24
generate_smallworld (generate), 24
ggevolution, 25
gglineage, 26
grab, 4, 5, 27, 61, 66
graph_adhesion (cohesion), 13
graph_assortativity (diversity), 18
graph_balance (features), 22
graph_betweenness (centralisation), 7
graph_blau_index (diversity), 18
graph_census, 28, 56
graph_closeness (centralisation), 7
graph_cohesion (cohesion), 13
graph_components (cohesion), 13
graph_congruency (closure), 11
graph_core (features), 22
graph_degree (centralisation), 7
graph_density (cohesion), 13
graph_diameter (cohesion), 13
graph_dims (grab), 27
graph_dyad_census (graph_census), 28
graph_ei_index (diversity), 18
graph_eigenvector (centralisation), 7
graph_equivalency (closure), 11
graph_equivalency(), 23
graph_factions (features), 22
graph_length (cohesion), 13
graph_mixed_census (graph_census), 28
graph_modularity (features), 22
graph_node_attributes (grab), 27
graph_nodes (grab), 27
graph_reciprocity (closure), 11
graph_smallworld (features), 22
graph_tie_attributes (grab), 27
graph_ties (grab), 27
graph_transitivity (closure), 11
graph_transitivity(), 23
graph_triad_census (graph_census), 28
holes, $8,10,12,14,19,23,29$
is, $31,42,43$
is_acyclic (is), 31
is_complex (is), 31
is_connected (is), 31
is_directed (is), 31
is_edgelist (is), 31
is_graph (is), 31
is_labelled (is), 31
is_migraph (is), 31
is_multiplex (is), 31
is_signed (is), 31
is_twomode (is), 31
is_uniplex (is), 31
is_weighted (is), 31
ison_adolescents, 33
ison_algebra, 34
ison_bb (ison_projection), 39
ison_bm (ison_projection), 39
ison_brandes, 35
ison_brandes2 (ison_brandes), 35
ison_karateka, 36
ison_marvel, 37
ison_marvel_relationships
(ison_marvel), 37
ison_marvel_teams (ison_marvel), 37
ison_mb (ison_projection), 39
ison_mm (ison_projection), 39
ison_networkers, 38
ison_projection, 39
ison_southern_women, 40
join_ties (add), 3
layout_tbl_graph_frgrid (layouts), 40
layout_tbl_graph_gogrid (layouts), 40
layout_tbl_graph_kkgrid (layouts), 40
layout_tbl_graph_stressgrid (layouts), 40
layouts, 7, 40
mark_nodes, 32, 41, 43
mark_ties, 32, 42, 43
mpn_bristol, 44
mpn_cow, 45
mpn_cow_igo (mpn_cow), 45
mpn_cow_trade (mpn_cow), 45
mpn_DE_1990 (mpn_evs), 50
mpn_DE_2008 (mpn_evs), 50
mpn_DemSxP (mpn_senate112), 52
mpn_elite_mex, 47
mpn_elite_usa, 48
mpn_elite_usa_advice (mpn_elite_usa), 48
mpn_elite_usa_money (mpn_elite_usa), 48
mpn_evs, 50
mpn_IT_1990(mpn_evs), 50
mpn_IT_2008 (mpn_evs), 50
mpn_OverSxP (mpn_senate112), 52
mpn_RepSxP (mpn_senate112), 52
mpn_ryanair, 51
mpn_senate112, 52
mpn_UK_1990 (mpn_evs), 50
mpn_UK_2008(mpn_evs), 50
network_reg (regression), 61
node_attribute (grab), 27
node_automorphic_equivalence (equivalence), 20
node_betweenness (centrality), 8
node_bridges (holes), 29
node_census, 29, 54
node_closeness (centrality), 8
node_components (components), 15
node_constraint (holes), 29
node_coreness (components), 15
node_degree (centrality), 8
node_efficiency (holes), 29
node_effsize (holes), 29
node_eigenvector (centrality), 8
node_equivalence (equivalence), 20
node_hierarchy (holes), 29
node_is_cutpoint (mark_nodes), 41
node_is_isolate (mark_nodes), 41
node_is_max (mark_nodes), 41
node_is_min (mark_nodes), 41
node_kernighanlin (community), 14
node_mode (grab), 27
node_names (grab), 27
node_path_census (node_census), 54
node_quad_census (node_census), 54
node_reach (centrality), 8
node_redundancy (holes), 29
node_regular_equivalence (equivalence), 20
node_strong_components (components), 15
node_structural_equivalence
(equivalence), 20
node_tie_census (node_census), 54
node_triad_census (node_census), 54
node_weak_components (components), 15
read, $18,25,56$
read_edgelist (read), 56
read_nodelist (read), 56
read_pajek (read), 56
read_ucinet (read), 56
reformat, 4, 5, 28, 59, 66
regression, 61, 64
test_permutation (tests), 63
test_random (tests), 63
tests, 63, 63
tie_attribute (grab), 27
tie_betweenness (centrality), 8
tie_closeness (centrality), 8
tie_degree (centrality), 8
tie_eigenvector (centrality), 8
tie_is_bridge (mark_ties), 43
tie_is_loop (mark_ties), 43
tie_is_max (mark_ties), 43
tie_is_min (mark_ties), 43
tie_is_multiple (mark_ties), 43
tie_is_reciprocated (mark_ties), 43
tie_signs (grab), 27
tie_weights (grab), 27
to_blocks (transform), 65
to_main_component (transform), 65
to_mode1 (transform), 65
to_mode2 (transform), 65
to_multilevel (reformat), 59
to_named (reformat), 59
to_onemode (reformat), 59
to_redirected (reformat), 59
to_simplex (reformat), 59
to_subgraph (transform), 65
to_ties (transform), 65
to_undirected (reformat), 59
to_undirected(), 8, 10
to_uniplex (reformat), 59
to_unnamed (reformat), 59
to_unsigned (reformat), 59
to_unweighted (reformat), 59
to_unweighted(), 10
transform, 4, 5, 28, 61, 65
write_edgelist (read), 56
write_nodelist (read), 56
write_pajek (read), 56
write_ucinet (read), 56

[^0]: node_census
 Censuses of nodes' motifs

