to_*()
functions into reformatting (changing
properties) and transforming (changing dimensions) documentationedge_*()
to tie_*()
to offer more
(SNA) consistent vocabularynetwork.goldfish
objects
(and linked events and nodelists) to migraph-compatible objects (closed
#96)add_node_attributes()
to
add_node_attribute()
and add_edge_attributes()
to add_tie_attribute()
is_*()
are now considered graph-level ‘marks’node_is_isolate()
for marking isolatesnode_is_max()
, node_is_min()
,
tie_is_max()
, tie_is_min()
for converting
‘measures’ into ‘marks’graph_motif
(fixed #234)\dontrun
cluster_concor()
and
cluster_hierarchical()
are now exportedautographr()
no longer requires “highlight_measure” and
“identify_function” arguments as users can now convert ‘measures’ to
‘marks’ and use these for “node_color” or “edge_color”@format
for more
consistent documentationison_brandes2
dataset, a two-mode version of the
original one-mode datasetmpn_cow_trade
and mpn_cow_igo
datasets (thanks @JaelTan)mpn_elite_mex
node_reach()
for calculating reach centrality
(closed #196){concaveman}
, {ggdendro}
,
{oaqc}
are now Suggests; the user is prompted to install
them when required in autographr()
,
plot.member()
, and node_quad_census()
respectively{stringr}
and {tibble}
replaced with base
or other code and therefore no longer necessary@family
tags for improved cross-referencingprint()
, plot()
,
summary()
, have been added for them (see appropriate
sections below)create_
and generate_
functions now:
n
passed an existing networkcreate_tree()
,
generate_smallworld()
,
generate_scalefree()
create_
functions can now take a membership vector
or split into equal partitions by default
create_components()
no longer accepts a number of
components, instead relying on the membership vectorcreate_core()
for creating core-periphery
graphsgenerate_random()
now inherits attributes from any
networkto_
functions useful for working with
networks of different types
to_redirected()
for adding or swapping direction
to networks (closed #219)to_blocks()
for reducing a network down by a
membership vector; blockmodel()
and
reduce_graph()
are now deprecatedto_multilevel.igraph()
now only works on two-mode
networks; returns the original network if passed a one-mode networkis_
functions
is_signed.data.frame()
and
is_signed.matrix()
now rely on new helper
is.wholenumber()
rather than misleading
is.integer()
is_directed.igraph()
and
is_directed.matrix()
now return FALSE for two-mode
networksis_connected()
now returns result for strong components
if directed and weak components if undirectedas_igraph.data.frame()
now infers third column as
weightedge_multiple()
, edge_loop()
,
edge_reciprocal()
moved from measuresedge_bridges()
"edge_measure"
S3 class has been added, along
with print()
and plot()
methodssummary.node_measure()
method for printing a
summary by a membership vector; summarise_statistics()
is
now deprecated"graph_measure"
class results
graph_components()
now calculates strong components for
directed networks else weak componentsprint.graph_measure()
now correctly labels two-mode
results where a vector is givengraph_smallworld()
graph_core()
for calculating correlation of an
observed network to a core-periphery network of the same dimensions
(closed #39)graph_factions()
for calculating correlation of
an observed network to a component network of the same dimensions
(closed #40)graph_modularity()
for calculating modularity of
an observed network, including modularity for two-mode networks (closed
#144)node_constraint()
node_bridges()
, node_redundancy()
,
node_effsize()
, node_efficiency()
,
node_hierarchy()
node_betweenness()
no longer needs
nobigint
argument; just uses default from
{igraph}
"node_motif"
S3 class for the output of
node_*_census()
functions
print.node_motif()
for tibble-printing of census
resultssummary.node_motif()
to summarise censuses by a
membership vector, replacing group_tie_census()
and
group_triad_census()
, which are now deprecated"graph_motif"
S3 class for the output of
graph_*_census()
functionsnode_path_census()
for returning the shortest
distances from each node to every other node (closed #222)node_tie_census()
now creates unique column names"node_member"
S3 class for vectors of nodes’
cluster memberships
plot.node_member()
replaces ggtree()
node_equivalence()
for identifying nodes’
membership in classes equivalent with respect to some arbitrary motif
census
"hierarchical"
and "concor"
now options
for cluster
within node_equivalence()
;
blockmodel_concor()
is now deprecated (closed #123)"elbow"
now an option for k
selection
within node_equivalence()
;
ggidentify_clusters()
is now deprecated"silhouette"
and "strict"
options
for k
selection (closed #197)k
to be defineddistance
passed to
stats::dist
that defines the distance metric (closed
#36)range
constrains the number of
k
evaluated by "elbow"
and
"silhouette"
to improve parsimony and avoid long elapsed
timesnode_automorphic_equivalence()
for identifying
nodes’ membership in automorphically-equivalent classes (closed
#187)node_structural_equivalence()
replaces
cluster_structural_equivalence()
node_regular_equivalence()
replaces
cluster_regular_equivalence()
node_kernaghinlin()
for identifying nodes’
membership in communities based on the Kernaghin-Lin algorithm (thank
you, @jaeltan, closed
#198)node_coreness()
for nodes’ k-core score
(closed #200)node_strong_components()
and
node_weak_components()
for more direct calls;
node_components()
now calculates strong components for
directed networks else weak components"graph_test"
S3 class replaces
"cug_test"
and "qap_test"
plot.graph_test()
replaces plot.cug_test()
and plot.qap_test()
print.graph_test()
methodplot.matrix()
now plots adjacency/incidence matrices
with sorting and horizontal/vertical lines if a membership vector is
provided, effectively replacing plot.block_model()
autographr()
can highlight nodes that max (by default)
some measure (thank you, @BBieri, closed #224)layout_tbl_graph_stressgrid()
as an extra
optionggatyear()
is deprecatedison_algebra
’s edge attributes now named “friends”,
“social”, and “tasks”{roxytest}
m
argument into p
for
generate_random()
, p
can now be passed an
integer to indicate the number of ties the network should haveto_edges()
to be ~26 times faster on
averageto_edges()
to_subgraph()
now instead of
dplyr::filter()
or strain()
times
argument instead of
maxiter
"measure"
class "node_measure"
and
added "graph_measure"
class with print methodnormalized
is now the second argumentdirected
and weights
arguments have been
removed and are now imputed, if this is undesired please use
to_*()
firstnode_degree()
now calculates strength centrality if
network is weightednode_eigenvector()
and graph_eigenvector()
both work with two-mode networksedge_degree()
and
edge_eigenvector()
, which both just apply the corresponding
nodal measure to the edge graphedge_mutual()
renamed to
edge_reciprocal()
graph_assortativity()
mpn_elite_mex
ison_brandes
is_multiplex.igraph()
and
is_multiplex.tbl_graph()
now checks for multiple edge
attributesstrain()
as wrapper for {dplyr}
’s
filter()
, renamed to avoid conflicts with
{stats}
ison_algebra
now unlabelled{readxl}
is now suggested, but required if
importing from an Excel sheet{patchwork}
replaces {gridExtra}
to make
for more concise multiplot visualisations{dplyr}
also serves to export {magrittr}
’s
pipe{RColorBrewer}
has been dropped and the
Dark2
discrete set of colors is now internaldirected
and direction
arguments in some functions; whereas directed
is always
logical (TRUE/FALSE), direction
expects a character string,
e.g. “in”, “out”, or “undirected”generate_permutation()
now has an additional logical
argument, with_attr
, that indicates whether any attributes
from the original data should be passed to the permuted objectcreate_*()
functions now accept existing objects as
their first argument and will create networks with the same
dimensionsread_pajek()
now imports nodal attributes alongside the
main edgesread_ucinet()
now enjoys clearer documentationas_*()
functions now retain weights where present;
if you want an unweighted result, use is_unweighted()
afterwards
as_edgelist.network()
now better handles edge
weightsas_matrix.igraph()
now better handles edge signsis_twomode()
, is_directed()
,
is_weighted()
, is_labelled()
,
is_signed()
, is_multiplex()
,
is_complex()
, and is_graph()
as_edgelist()
, and
to_unweighted()
, and improved the data.frame method for
as_matrix()
to_named()
and
to_unsigned()
to_edges()
for creating adjacency matrices using
a network’s edges as nodesproject_rows()
and project_cols()
functions to to_mode1()
and to_mode2()
, which
is both more consistent with other functions naming conventions and more
generic by avoiding the matrix-based row/column distinctionnode_mode()
, which returns a vector of the mode
assignments of the nodes in a networkedge_signs()
, which returns a vector of the sign
assignments of the edges in a networkautographr()
works and how {ggraph}
extends
thisautographr()
now incorporates ggidentify()
functionality (closed #150){patchwork}
is now used to assemble multiple plots
togetherggatyear()
measure
class and directed most
node_*()
functions to create objects of this class
ggdistrib()
and offers “hist”
and “dens” methods for histograms and density plots respectivelyedge_betweenness()
wraps {igraph}
’s
function of the same nameedge_closeness()
measures the closeness centrality of
nodes in an edge adjacencynode_cuts()
identifies articulation points (nodes) in a
networkedge_bridges()
identifies edges that serve as bridges
in a networkgraph_cohesion()
measures how many nodes would need to
be removed to increase the number of components (closed #192)graph_adhesion()
measures how many edges would need to
be removed to increase the number of componentsgraph_length()
measures the average path lengthgraph_diameter()
measures the longest path lengthnode_smallworld()
and added
graph_smallworld()
, which works with both one- and two-mode
networks (fixed #214)node_quad_census()
network_reg()
’s formula-based system
network_reg()
can now handle binary and multiple
categorical variables (factors and characters, closed #211);network_reg()
can now manage interactions specified in
the common syntax; var1 * var2
expands to
var1 + var2 + var1:var2
(closed #163)dist()
and sim()
effects have been added
(closed #207)network_reg()
now employs logistic regression to
estimate a binary outcome and linear regression to estimate a continuous
outcome (closed #184)network_reg()
now uses Dekker et al’s semi-partialling
procedure by default for multivariate specifications (closed #206),
defaulting to y-permutations in the case of a single predictor
(closed #208)network_reg()
, relying on
{furrr}
for potential parallelisation and
{progressr}
for progress reports (closed #185, #186)test_random()
and
test_permutation()
, relying on {furrr}
for
potential parallelisation and {progressr}
for progress
reports; note that nSim
argument now times
(closed #199){broom}
S3 methods for netlm
and
netlogit
class objects (closed #183)
tidy()
extracts coefficients and related valuesglance()
extracts model-level values such as
R^2
netlm
and netlogit
class objects (closed #216), which plots the empirical distribution for
each test statistic, indicates percentiles relating to common critical
values, and superimposes the observed coefficientscug_test
and
qap_test
class objects, which plots the empirical
distribution, highlighting tails beyond some critical value (closed
#213), and superimposing the observed coefficient and, possibly, 0{sna}
print.block_model()
replaces
print.blockmodel()
plot.block_model()
replaces
plot.blockmodel()
ison_southern_women
instead of
southern_women
ison_brandes
instead of brandes
ison_networkers
instead of ison_eies
ison_algebra
instead of ison_m182
ison_adolescents
instead of
ison_coleman
mpn_elite_mex
is extended with data from Pajek and with
help from Frank Heberison_networkers
becomes named with information from
{tnet}
mpn_*
and
ison_*
datasets, including references/sourcescluster_structural_equivalence()
for isolates
{patchwork}
to suggested packages
in DESCRIPTIONadd_
functions
mutate_edges()
add_node_attributes()
is_
methods: is_multiplex()
,
is_uniplex()
, is_acyclic()
edge_
functions to identify edges by properties:
edge_mutual()
, edge_multiple()
,
edge_loop()
read_nodelist()
and read_edgelist()
as_network()
method to convert
correctly form an {igraph}
to a {network}
object.ggraphgrid()
documentationread_edgelist()
and
read_nodelist()
to readxl to avoid Java dependencywrite_edgelist()
and
write_nodelist()
to avoid Java dependency
as_network()
,
as_igraph()
, and is_directed()
read_
and write_
functions and
updated documentation
read_edgelist()
for importing
edgelists from Excel and csv filesread_pajek()
for importing .net
and .paj fileswrite_edgelist()
, write_nodelist
,
write_pajek()
, and write_ucinet()
for
exporting into various file formats (Excel, csv, Pajek, and UCINET)is_graph()
to check if an object is a graph or
notas_network()
to retain attributesas_
and to_
functions
as_
functions to convert from dataframes
instead of tibblesas_igraph()
functionto_undirected()
function to work with
network objectsto_main_component()
function so that it
retains vertex attributes in network objectsedge_attribute()
to grab a named edge attribute
from a graph/networkto_unweighted()
to prevent conversion of
network object into igraph object when deleting weightssummarise_statistics()
network_reg()
exampleautographr()
ison_eies
dataset for use in practical 7
vignetteas_matrix()
method for networks now works with
two-mode and weighted networksas_igraph()
method for matrices now checks for
weights independently of coercionas_igraph()
method for networks now works with
two-mode and weighted networksas_network()
method for matrices now works with
two-mode and weighted networksas_network()
method for edgelists, igraph, and
tidygraphs now works with weighted networksto_unnamed()
method for edge liststo_simplex()
method for matricesto_main_component()
method for networksto_multilevel()
method for matricesmutate_edges()
now coalesces rows of edgesgraph_blau_index()
generate_permutation()
and thus
test_permutation()
netlm()
to network_reg()
to avoid
frustrating conflicts
network_reg()
now accepts migraph-consistent
objectsnetwork_reg()
now accepts formula terms such as
ego()
, alter()
, and same()
generate_permutation()
which takes an object and
returns an object with the edges permuted, but retaining all nodal
attributesgenerate_random()
also work with an existing
object as input, in which it will return a random graph with the same
dimensions and densitymutate_edges()
for adding new edges as attributes
to existing edges in an objectgraph_blau_index()
graph_ei_index()
test_random()
(defunct test_cug()
)autographr()
arguments take variable names in quotation marksnode_names()
for quickly accessing node labelsnode_attribute()
for quickly accessing a certain nodal
attributeedge_weights()
for quickly accessing edge weightsgraph_nodes()
for quickly accessing a count of nodes in
the graph, note that for two-mode networks this will be a vector of
length 2graph_edges()
for quickly accessing a count of edges in
the graphgraph_dimensions()
is currently a copy of
graph_nodes()
add_node_attributes()
for adding particular nodal
attributesadd_edge_attributes()
for adding edges from another
graphcopy_edge_attributes()
for copying all nodal attributes
from another graphgraph_blau_index()
for summarising diversity of an
attribute in a network or groupgraph_ei_index()
for summarising diversity of an
attribute over a network’s tiesnode_quad_census()
, especially
useful for two-mode blockmodellinggraph_mixed_census()
test_random()
carries out a conditional uniform graph
(CUG) testtest_permutation()
carries out a quadratic assignment
procedure (QAP) testaes()
from
{ggplot2}
node_shape
option to
autographr()
as_edgelist()
methods for
converting other objects into edgelists
to_unnamed()
on ‘network’ objects now operates on
them directlyto_
documentation significantlyto_onemode()
that was tripping
blockmodel()
on networks that are already one-modeis_connected()
to test whether network is
connected, method =
argument can be specified as
weak
or strong
create_tree()
and create_lattice()
,
and made create_star()
a bit faster for one-mode
networksgenerate_smallworld()
and
generate_scalefree()
, though only for one-mode networks
currently=2
graph_dyad_census()
for more graph profile
optionsblockmodel_concor()
when an object was
of class ‘igraph’ but not ‘tbl_graph’blockmodel()
was treating two-mode
networks"elbow"
and
"strict"
methods for k-identification
ggidentify_clusters()
for
speed
ggdistrib()
for easy plotting of degree and other
node score distributionsggsave()
, xlab()
and
ylab()
from {ggplot2}
for easier plot
annotationas_matrix()
where availablegraph_equivalency()
into the same for two-mode
networks and graph_congruency()
for three-mode (two
two-mode) networksgraph_reciprocity()
methodgraph_components()
and
node_components()
node_tie_census()
output so
that it’s consistent with node_triad_census()
and future
node_census functionscluster_triad_census()
to
group_triad_census()
group_tie_census()
autographr()
for plotting
convex/concave hullsggraphgrid()
a set of layout
functions:
layout_tbl_graph_frgrid()
or
autographr(object, "frgrid")
for snapping
Fruchterman-Reingold to a gridlayout_tbl_graph_kkgrid()
or
autographr(object, "kkgrid")
for snapping Kamada-Kawai to a
gridlayout_tbl_graph_gogrid()
or
autographr(object, "gogrid")
for snapping graph
optimisation to a gridggraphgrid()
has been deprecatedison_m182
documentationas_igraph()
to_uniplex()
was not returning a
weighted graphblockmodel()
was not retaining node
names in all parts of the object structureplot_releases()
to another packageis_signed()
to logically test whether the network
is a signed networkto_unsigned()
for extracting networks of either
“positive” or “negative” ties from a signed networktbl_graph
methods for all other to_
functionsactivate()
from
{tidygraph}
autographr()
plot_releases()
from this packagegraph_balance()
to be much faster, following
David Schoch’s {signnet}
package (see that package for
further extensions)ison_marvel_relationships
to be a double
(-1
/1
) to be compatible with the new
graph_balance()
and {signnet}
{igraph}
from data frames and updated
read scriptto_main_component()
to extract the main component
of a networkto_onemode()
for moving to multimodal igraph
objectsto_uniplex()
method to delete edge types and
their edges from multiplex networksto_simplex()
method to delete loops from a
networkto_named()
method for randomly naming unlabeled
networksison_mm
, ison_mb
,
ison_bm
, and ison_bb
projection illustration
dataison_karateka
community detection illustration
dataison_marvel_teams
and
ison_marvel_relationships
datasetsison_m182
dataset of friends, social and task
ties between 16 anonymous studentsadolescent_society
dataset to
ison_coleman
for consistencygraph_eigenvector()
for one mode networksgraph_balance()
for measuring structural
balancenode_tie_census()
,
node_triad_census()
, cluster_triad_census()
,
and graph_triad_census()
graph_clustering()
into the cohesion
measures graph_density()
, graph_reciprocity()
,
graph_transitivity()
, and
graph_equivalence()
node_smallworld()
to use separated cohesion
measuresblockmodel()
which masks its {sna}
namesake but has the advantages of working with two-mode networks and
retaining node names where available
cluster_structural_equivalence()
and
cluster_regular_equivalence()
as bases for
blockmodellingreduce_graph()
for creating a network from a
blockmodelautographr()
for plotting graphs with sensible
defaults
ggraphlabel()
since core functionality now
provided by autographrggidentify()
to identify the node
with the highest value of a specified node-level measureggatyear()
for subsetting and plotting edgelists
at yeargglineage()
to return a graph colored according
to lineage
ggtree()
for neatly visualising hierarchical
clustersggidentify_clusters()
for identifying which
number of clusters is most appropriate following the elbow methodggraph::theme_graph()
present in a
few different visualisation functionsbrandes
dataset for teaching centrality
measuresadolescent_society
dataset for teaching
friendship paradoxread_edgelist()
for importing Excel-created
edgelists directlyggraphlabel()
for one-function (1F) plotting
label-based network graphsggevolution()
for 1F-plotting begin/end graph
comparisonsggraphgrid()
for 1F snap-to-grid graph layouts
based on Fruchterman-Reingold or Kamada-Kawaiggidentify()
for 1F identifying nodes with
maximum scores based on some arbitrary functionto_undirected()
for symmetrising networks of all
typesto_
functions S3 methodsClosed #100 by converting as_
coercion functions to
S3 methods
as_matrix()
weightingas_tidygraph()
gglineage()
for graphing a
citation network through timeggevolution()
for graphing two
timepoints of the same network side by sideggraphgrid()
for locking a graph
to a gridplot.igraph()
defaultsnode_
functionsFixed bug in as_matrix()
with frame matrix by
dropping (rarely necessary) functionality
as_
functionsFixed bugs in plot_releases()
with more graceful
handling of http errors
{R6}
,
{ggraph}
)netlm()
testbinarise()
to to_unweighted()
to_unnamed()
for unlabelling networksbinarise()
for unweighting networksas_tidygraph()
when passed a tbl_graph
directlyplot_releases()
for more general useplot.igraph()
with layouts and one-mode
graphsUpdated README
Added CITATION
details
Separated coercion (previously conversion) and manipulation
Added some more inter-class coercion tests
Fixed bug in how as_network()
sometimes coerced
two-mode networks into much larger dimension matrices
Added more is_
tests for class-independent property
tests
is_weighted()
is_directed()
is_labelled()
Added @csteglich ’s read_ucinet()
and write_ucinet()
functions
read_ucinet()
offers a file-picker when file path
unknownread_ucinet()
now imports to an igraph-class object by
default, with an argument to allow other alternativeswrite_ucinet()
works with all migraph-compatible
objectsUpdated mpn_bristol
documentation
Added create_star()
function
directed =
argumentcreate_
documentationRenamed sample_affiliation()
to
generate_random()
generate_random()
to be able to generate random
one- or two-mode networksprint.blockmodel()
2021-04-13
usethis::use_mit_license("James Hollway")
. MIT
License file now contains only the standard two lines.\dontrun
from examples. netlm()
now runs in <5 seconds.2021-04-11
as_network()
to coerce objects
into network class2021-03-03
jhollway/
to
snlab-ch/
organisationElaborated documentation for the remainder of the datasets
graph_degree()
where data was hard-coded
inClosed #18 by adding blockmodel_concor()
for
employing the CONCOR algorithm to blockmodel both one-mode and two-mode
networks
print.blockmodel()
method in the {sna}
package
that also prints blockmodel results for two-mode networks
consistently{ggplot2}
for pretty plotting and that better
inherits names from the underlying object2021-02-06
{migraph}
depend on R versions 4.0
or aboveas_matrix()
function to coerce objects into an
adjacency or incidence matrix classas_igraph()
function to coerce objects into an
{igraph}
graph classas_tidygraph()
function to coerce objects into an
{tidygraph}
tbl_graph classis_twomode()
function to check
whether network is two-mode on all object typesRenamed several datasets and elaborated their documentation
mpn_mexicanpower
was renamed to
mpn_elite_mex
mpn_powerelite
was renamed to
mpn_elite_usa_advice
mpn_opensecrets
was renamed to
mpn_elite_usa_money
Reconstructed several creation functions to take universal
(one-mode/two-mode) input: specifying n = 5
creates a
one-mode network, while specifying n = c(5, 5)
creates a
two-mode network
create_empty()
create_complete()
create_ring()
to create rings
of varying breadthcreate_components()
(renamed
from create_silos()
) to create networks with varying
numbers of componentssample_affiliation()
for random two-mode
networkscreate_match()
and
create_nest()
Renamed centrality_
functions with
node_
prefix and ensured they all also wrapped one-mode
measures
centrality_degree()
renamed to
node_degree()
centrality_closeness()
renamed to
node_closeness()
centrality_betweenness()
renamed to
node_betweenness()
node_eigenvector()
Re-added node_constraint()
for calculating Burt’s
constraint measure for one- and two-mode networks
Re-added node_smallworld()
for calculating
Watts-Strogatz measure of small-worldness for two-mode networks
Closed #32 by re-adding centralization functions for one- and two-mode networks
graph_degree()
for degree centralizationgraph_closeness()
for closeness centralizationgraph_betweenness()
for betweenness centralizationRe-added graph_clustering()
for calculating (see
Knoke et al 2021):
Re-added netlm()
for performing linear regression
for multimodal network data
netlm()
to accept a
formula-based inputprint.summary.netlm()
for
netlm()
regressionsplot.igraph()
with
sensible defaults for two-mode networks2021-01-11
{igraph}
and
{tidygraph}
functions for internal useconvert_
and project_
documentationAdded centrality measures that take (and if necessary return) matrix, igraph, or tidygraph objects, and offer a correct normalization for two-mode networks
centrality_degree()
centrality_closeness()
centrality_betweenness()
2021-01-08
Package name change from roctopus to {migraph}
Now builds Linux binary too
project_rows()
and project_cols()
to
make it easier to project two-mode networks in different formats
(matrix, igraph, tidygraph) into projected versions in the same
formatas_incidence_matrix()
2020-11-06
Data creation updated for {tidygraph}
defaults
create_lattice()
to create_chain()
to avoid conflicts with tidygraph::create_lattice()
create_poles()
to
create_silos()
create_random()
to play_twomode()
to avoid conflicts with tidygraph::play_bipartite()
create_
and
play_
functions as tbl_graph
(default),
igraph
, and base matrixcreate_
and play_
function namesPackaged data updated for {tidygraph}
defaults
mpn_
2020-08-18
twomode_netlm()
to netlm2()
netlm2()
netlm2()
create_random()
opensecrets
datapowerelite
data2020-07-21
create_()
functionscontext()
declarationcreate_nest()
now exports matrix object2020-07-20
row_project()
and col_project()
functions to make it easier to remember project directions2020-07-19
mexicanpower
datasetsenate112
datasetsevs
datasets to matricesdf_to_mat()
function for converting regular
adjacency and incidence data frames into matrices2020-07-17
ryanair
dataset from Christopoulos 20062020-07-03
evs
datasets from Knoke et al 20202020-06-30
bristol
dataset from Knoke et al 20202018-12-20
twomode_modularity()
to calculate modularity in
two-mode networksplot_multilevel()
that rotates a force-directed
igraph
plot in three dimensions to reveal multilevel
structureplot_globalnet()
to map a multilevel network on
to a javascript, rotatable global2018-08-25
twomode_smallworld()
to calculate
observed/expected clustering, observed/expected path-length, and the
observed/expected clustering ratiotwomode_2x2()
to identify dominance and coherence
values for networks over timetwomode_coherence()
to allow for introduction
of second-mode attributestwomode_fragmentation()
to
twomode_components()
plot_2x2()
to plot values through a two-by-two
matrix2018-08-14
roctopus
twomode_fragmentation()
to calculate number of
components in two-mode networks and identify their membershiptwomode_dominance()
to allow an nodal attribute
to be passed to the function to weight the centralization measuretwomode_coherence()
to calculate Jaccard
similarityAdded plot_twomode()
, which wraps
plot(igraph::graph_from_incidence_matrix())
with some
useful defaults
2018-07-30
README.md
file with instructions on how to
install packageLICENSE
file and pointed to bug/issue
trackerNEWS.md
file to track changes to the
packagetwomode_clustering()
to calculate percentage of
three-paths closed by four-pathstwomode_lattice()
to create two-mode
latticestwomode_centralization_degree()
to calculate
degree centralization in two-mode networks, for rows, columns, or
bothtwomode_centralization_between()
to calculate
betweenness centralization in two-mode networkstwomode_constraint()
to calculate network
constraint in two-mode networksarrange.vars()
to rearrange variables by
position