
Package ‘minMSE’
November 26, 2021

Type Package

Title Implementation of the minMSE Treatment Assignment Method for One
or Multiple Treatment Groups

Version 0.5.1

Author Sebastian O. Schneider, Giulia Baldini

Maintainer Sebastian O. Schneider <sschneider@coll.mpg.de>

Description Performs treatment assignment for (field) experiments considering available, possi-
bly multivariate and continuous, information (covariates, observable characteris-
tics), that is: forms balanced treatment groups, according to the minMSE-method as pro-
posed by Schneider and Schlather (2017) <DOI:10419/161931>.

URL https://www.sebastianoschneider.com

License GNU General Public License

Encoding UTF-8

Imports MASS, Rcpp

RoxygenNote 7.1.0

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-11-26 22:50:08 UTC

R topics documented:
assign_minMSE_treatment . 2
assign_treatment . 5
count_occurrences . 8
evaluate_solution . 9
evaluate_solution.optim . 10
evaluate_solution_matrix . 11
evaluate_solution_vector . 12
output_file . 13
plotting_file . 13

1

https://doi.org/10419/161931
https://www.sebastianoschneider.com

2 assign_minMSE_treatment

sample_with_prev_treatment . 14
scale_vars . 15
swap_treatment . 15
swap_treatment.optim . 16
swap_treatment_prev . 17
vector_gcd . 18

Index 20

assign_minMSE_treatment

minMSE Treatment Assignment for One or Multiple Treatment Groups
– Wrapper

Description

Calling assign_treatment, this user-friendly wrapper function computes a given number of treat-
ment assignment vectors that will contain at most a certain percentage of duplicates, specified in
percentage_equal_treatments. This is useful if non-parametric inference (randomization inference,
sometimes called Fisher’s exact test or permutation test) is desired (which is often advised), for
analysis of significance of the treatment effect. The main function, assign_treatment, computes
the treatment assignment vector according to available data (observable characteristics, covariate
vectors) given about the units (individuals or clusters, such as schools, hospitals, ...)

Usage

assign_minMSE_treatment(data,
prev_treatment = NULL,
n_treatments = 1,
n_per_group = NULL,
mse_weights = NULL,
iterations = 50,
change = 3,
cooling = 1,
t0 = 10,
tmax = 10,
built_in = 0,
desired_test_vectors = 100,
percentage_equal_treatments = 1,
plot = 0,
trace_output = 1,
filename = NULL)

Arguments

data a dataframe or a matrix containing the covariate vectors for each attribute. The
values might be missing or on different scales as the software deals with missing
values and scaling automatically.

assign_minMSE_treatment 3

prev_treatment takes a numerical vector of partial treatment assignment as argument, and as-
signs the missing units (where the value is NA) to a treatment group while mini-
mizing the objective function. Non-missing values are copied to the new vector,
i.e., treatment group assignment of these observations is unaffected, but taken
into consideration for achieving balanced treatment groups.

n_treatments specifies the number of treatment groups desired (in addition to the control
group); minimum and default value is n_treatments = 1.

n_per_group specifies a vector containing uneven sizes for the treatment groups. Default
value is NULL, which yields even sized groups. The sum of the elements in the
vector should be equal to the total number of observations.

mse_weights a vector containing the mse_weights for each treatment, or a matrix containing
the mse_weights for treatments and outcomes and scaling factors.

iterations specifies the number of iterations the algorithm performs; the default value is
iterations = 50. Depending on the number of units and the number of covariates
to consider for group assignment, a high value could result in a long run-time.

change sets the number of units to exchange treatment in each iteration; the default value
is change = 3. In case of big datasets (e.g. with more than 100 units), one might
consider increasing the default value.

cooling specifies the cooling scheme for the simulated annealing algorithm to use. cool-
ing = 1, which is the default scheme, sets the temperature to

t0/log(floor((k − 1)/tmax) ∗ tmax+ exp(1)),

whereas cooling = 2 sets the temperature to the faster decreasing sequence

t0/(floor((k − 1)/tmax) ∗ tmax+ 1).

In praxis, cooling schemes are mostly of one of these forms. One might want to
change the cooling scheme if the plot indicates a too slow decrease of objective
values. For a theoretical discussion of cooling schemes Belisle (see 1992, p.
890).

t0 sets the starting temperature for the simulated annealing algorithm, see Belisle
(1992) for theoretical convergence considerations. In praxis, a lower starting
temperature t0 decreases the acceptance rate of a worse solution more rapidly.
Specifying a negative number allows values proportional to the objective func-
tion, i.e. t0 = -5 sets the starting temperature to 1/5 of the objective function for
the starting point, and thus - for the first tmax iterations of the algorithm - the
difference of the old and the proposed solution is scaled by 1/5. When changing
the default value, it should be considered that also worse solutions have to be
accepted in order for the algorithm to escape a local minimum, so it should be
chosen high enough. The default value is t0 = 10.

tmax specifies the number of function evaluations at each temperature: For instance,
tmax = 10 makes the algorithm evaluate 10 treatment assignments that are found
based on the current solution, before the temperature is decreased and thus the
probability of accepting a worse solution is decreased. The default value is tmax
= 10.

4 assign_minMSE_treatment

built_in if built_in = 1 the R built-in function optim with method ’SANN’ (Simulated
ANNealing) will be used to optimize the function. Otherwise, if built_in = 0, our
implementation of the simulated annealing will be used. The function built_in =
0 uses our first cooling function and this cannot be changed. To used the second
cooling function, set built_in = 0. All the other parameters, such as iterations,
change, t0, tmax are taken into account.

desired_test_vectors

specifies the number of treatment assignment vectors that will be produced to
perform Fischer’s exact test (sometimes also called permutation test) for assess-
ment of significance of the treatment effect (this, of course, will be done after
treatment has been conducted and measurement of the outcome of interest has
occurred). The number of possible treatment vectors will not exceed this num-
ber. The default value is desired_test_vectors = 100. For small datasets, one
might consider increasing it without affecting performance. Note that this will
affect your significance level: If desired_test_vectors = 100 and all of them are
unique (see ‘percentage_equal_treatments‘ below), you can achieve a signifi-
cance level of at most p < 0.01%.If desired_test_vectors = 1, then the program
returns a single vector that can be used for treatment assignment. Note that
Fischer’s exact test might still be possible and that alternative treatment vectors
might also be produced after treatment has been conducted; yet, it is not sure
how many *different* vectors can be produced with a given number of itera-
tions. It is, therefore, good practice to produce the desired number of vectors
with treatment assignment. For testing purposes, however, one might want to
produce just one vector.

percentage_equal_treatments

the percentage of non-unique treatment vectors that we allow. The default value
is percentage_equal_treatments = 1. Note that this will affect your significance
level: If desired_test_vectors = 100 and percentage_equal_treatments = 1, you
can achieve a significance level of at most p < 0.01%.

plot can be used to draw a plot showing the value of the objective function for the a
percentage of the iterations by setting plot = 1. The default setting is plot = 0,
which suppresses the plot.

trace_output trace_output = 1 prints helpful output such as the current iteration. To avoid the
program output to be too cumbersome, a more detailed output is saved in a txt
file called program_output.txt.

filename takes a string that represents the name of the csv file where the possible treatment
assignments will be stored. If filename = NULL, then the file will not be saved.

Value

The program returns a dataframe containing all the unique treatments generated by the program.
It also outputs the maximum number of iterations that were reached before finding a non-unique
vector.

Note

With the default setting of plotting and using the trace output, the program writes to different files.
To avoid this, set plot = 0 and trace_output = 0. For the built-in function optim, the trace output is

assign_treatment 5

necessary for printing, because we pipe the output of the program to file to obtain the intermediate
values of the optimization function.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

References

Schneider and Schlather (2017), Belisle (1992)

See Also

ginv, optim, assign_treatment

Examples

input <- data.frame(c(10, 20, 30, 40, 130, 40, 120, 5, 10, 80),
c(2, 6, 2, 8, 1, 10, 9, 8, 7, 5),
c(1, 0, 2, 1, 0, 1, 0, 2, 1, 0))

colnames(input) <- c("IQ", "grade_maths", "both_parents")

assign_minMSE_treatment(input,
prev_treatment = c(0, NA, NA, NA, 1, NA, NA, NA, NA, NA),
n_treatments = 2,
mse_weights = c(1, 2),
iterations = 100,
trace_output = 1,
built_in = 0,
desired_test_vectors = 100,
plot = 0,
filename = NULL)

assign_treatment Min MSE Treatment Assignment

Description

Computes the treatment assignment vector according to available data (observable characteristics,
covariate vectors) given about the units (individuals or clusters, such as schools, hospitals, ...).
Consider using the user-friendly wrapper function assign_minMSE_treatment.

Usage

assign_treatment(current_data,
prev_treatment = NULL,
evaluation_function = evaluate_solution,
swap_treatment_function = swap_treatment,

https://www.econstor.eu/handle/10419/161931
https://www.jstor.org/stable/3214721

6 assign_treatment

n_treatments = 1,
n_per_group = NULL,
mse_weights = NULL,
iterations = 50,
change = 3,
cooling = 1,
t0 = 10,
tmax = 10,
built_in = 0,
plot = 0,
create_plot_file = 1)

Arguments

current_data a matrix containing the covariate vectors for each attribute. If the values are
missing or on different scales, please use assign_minMSE_treatment, which au-
tomatically scales the data.

prev_treatment takes a numerical vector of partial treatment assignment as argument, and as-
signs the missing units (where the value is NA) to a treatment group while mini-
mizing the objective function. Non-missing values are copied to the new vector,
i.e., treatment group assignment of these observations is unaffected, but taken
into consideration for achieving balanced treatment groups.

evaluation_function

the function used to evaluate the MSE treatment. Default is evaluate_solution,
which does not take into account outcome or treatment weights. Other options
are evaluate_solution_vector and evaluate_solution_matrix.

swap_treatment_function

the function used to create new treatments. Default is swap_treatment. Other
options are swap_treatment_prev which, given a previous treatment, creates a
new treatment assignment that takes the previous one into account.

n_treatments specifies the number of treatment groups desired (in addition to the control
group); minimum and default value is n_treatments = 1.

n_per_group specifies a vector containing uneven sizes for the treatment groups. Default
value is NULL, which yields even sized groups. The sum of the elements in the
vector should be equal to the total number of observations.

mse_weights a vector containing the mse_weights for each treatment, or a matrix containing
the mse_weights for treatments and outcomes and scaling factors.

iterations specifies the number of iterations the algorithm performs; the default value is
iterations = 50. Depending on the number of units and the number of covariates
to consider for group assignment, a high value could result in a long run-time.

change sets the number of units to exchange treatment in each iteration; the default value
is change = 3. In case of big datasets (e.g., with more than 100 units), one might
consider increasing the default value.

cooling specifies the cooling scheme for the simulated annealing algorithm to use. cool-
ing = 1, which is the default scheme, sets the temperature to

t0/log(floor((k − 1)/tmax) ∗ tmax+ exp(1)),

assign_treatment 7

whereas cooling = 2 sets the temperature to the faster decreasing sequence

t0/(floor((k − 1)/tmax) ∗ tmax+ 1).

In praxis, cooling schemes are mostly of one of these forms. One might want to
change the cooling scheme if the plot indicates a too slow decrease of objective
values. For a theoretical discussion of cooling schemes, see Belisle (see 1992,
p. 890).

t0 sets the starting temperature for the simulated annealing algorithm, see Belisle
(1992) for theoretical convergence considerations. In praxis, a lower starting
temperature t0 decreases the acceptance rate of a worse solution more rapidly.
Specifying a negative number allows values proportional to the objective func-
tion, i.e. t0 = -5 sets the starting temperature to 1/5 of the objective function for
the starting point, and thus - for the first tmax iterations of the algorithm - the
difference of the old and the proposed solution is scaled by 1/5. When changing
the default value, it should be considered that also worse solutions have to be
accepted in order for the algorithm to escape a local minimum, so it should be
chosen high enough. The default value is t0 = 10.

tmax specifies the number of function evaluations at each temperature: For instance,
tmax = 10 makes the algorithm evaluate 10 treatment assignments that are found
based on the current solution, before the temperature is decreased and thus the
probability of accepting a worse solution is decreased. The default value is tmax
= 10.

built_in if built_in = 1 the R built-in function optim with method ’SANN’ (Simulated
ANNealing) will be used to optimize the function. Otherwise, if built_in = 0, our
implementation of the simulated annealing will be used. The function built_in =
0 uses our first cooling function and this cannot be changed. To use the second
cooling function, set built_in = 0. All the other parameters, such as iterations,
change, t0, tmax are taken into account.

plot can be used to draw a plot showing the value of the objective function for the a
percentage of the iterations by setting plot = 1. The default setting is plot = 0,
which suppresses the plot.

create_plot_file

Used to overwrite the plot file, in case there already exists one. It should only be
1 (true) when this method is called without the wrapper assign_minMSE_treatment.
This method alone is not capable of plotting, but it will create an auxiliary file
that contains the information for plotting. To include plotting, use assign_minMSE_treatment
with desired_test_vectors = 1.

Value

Returns the current assignment and the mean squared error value for that assignment.

Note

With the default setting of plotting and using the trace output, the program writes to different files.
To avoid this, set plot = 0 and trace_output = 0. For the built-in function optim, the trace output is
necessary for printing, because we pipe the output of the program to a file to obtain the intermediate
values of the optimization function.

8 count_occurrences

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

References

Schneider and Schlather (2017), Belisle (1992)

See Also

ginv, optim

Examples

input <- matrix(1:30, nrow = 10, ncol = 3)

assign_treatment(input,
evaluation_function = evaluate_solution_vector,
swap_treatment_function = swap_treatment_prev,
prev_treatment = c(0, NA, NA, NA, 1, NA, NA, NA, NA, NA),
n_treatments = 2,
mse_weights = c(1, 2),
iterations = 100,
built_in = 0,
plot = 0)

count_occurrences Count of Equal Treatment Vectors

Description

Checks if the treatment vector given as argument already exists in the dataframe, i.e., has been
produced by one or more earlier iteration(s).

Usage

count_occurrences(df_treatments, curr_treatment)

Arguments

df_treatments dataframe containing all the discovered treatment vectors.

curr_treatment treatment vector to be investigated.

Value

Returns the number of treatment assignment vectors which are equal to the one being investigated.

https://www.econstor.eu/handle/10419/161931
https://www.jstor.org/stable/3214721

evaluate_solution 9

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

Examples

df_treatments <- data.frame(c(0, 2, 0, 1, 1, 0, 2, 1, 1, 0),
c(0, 2, 0, 1, 2, 0, 1, 2, 1, 0),
c(0, 2, 1, 1, 2, 0, 0, 2, 0, 0))

colnames(df_treatments) <- c("treatment_iter_1", "treatment_iter_2", "treatment_iter_3")

count_occurrences(df_treatments,
c(0, 2, 1, 1, 2, 0, 0, 2, 0, 0))

evaluate_solution Evaluate MSE Equation

Description

The function computes the mean squared error for a given treatment assignment. More precisely:
it computes the mean squared error of the treatment effect estimator resulting from the treatment
groups as specified by the argument, the treatment assignment vector. The function uses matrix
multiplication and the Moore-Penrose generalized inverse.

Usage

evaluate_solution(treatment, data, mse_weights = NULL)

Arguments

treatment a treatment assignment. The treatment and the data must have the same number
of observations (rows).

data a matrix containing the covariate vectors for each attribute.

mse_weights not used, needed for compatibility.

Value

Returns the mean squared error value for the current treatment assignment.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

References

Schneider and Schlather (2017),

https://www.econstor.eu/handle/10419/161931

10 evaluate_solution.optim

See Also

ginv

Examples

input <- matrix(1:30, nrow = 10, ncol = 3)

evaluate_solution(treatment = c(0, 1, 1, 1, 1, 0, 0, 0, 0, 0),
input)

evaluate_solution.optim

Evaluate MSE Equation (using optim)

Description

This function calls evaluate_solution, but since optim requires fn and gr to have the same parame-
ters, it has two additional ones.

Usage

evaluate_solution.optim(par,
data,
evaluation_function = evaluate_solution,
swap_treatment_function = NULL,
mse_weights = NULL,
change = NULL,
prev_index_list = NULL)

Arguments

par a treatment assignment. The treatment and the data must have the same number
of observations (rows).

data a matrix containing the covariate vectors for each attribute.
evaluation_function

the function used to evaluate the MSE treatment. Default is evaluate_solution,
which does not take into account outcome or treatment weights. Other options
are evaluate_solution_vector and evaluate_solution_matrix.

swap_treatment_function

the parameter is only needed for optim, it does not play any role.

mse_weights a vector containing the mse_weights for each treatment, or a matrix containing
the mse_weights for treatments and outcomes and scaling factors.

change the parameter is only needed for optim, it does not play any role.
prev_index_list

the parameter is only needed for optim, it does not play any role.

evaluate_solution_matrix 11

Value

Returns the mean square error value for the current treatment assignment.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

References

Schneider and Schlather (2017),

See Also

ginv, optim

Examples

input <- matrix(1:30, nrow = 10, ncol = 3)

evaluate_solution.optim(par = c(0, 1, 1, 1, 1, 0, 0, 0, 0, 0),
input)

evaluate_solution_matrix

Evaluate MSE Equation

Description

The function computes the mean squared error for a given treatment assignment. More precisely:
it computes the mean squared error of the treatment effect estimator resulting from the treatment
groups as specified by the argument, the treatment assignment vector. The function uses matrix
multiplication and the Moore-Penrose generalized inverse.

Usage

evaluate_solution_matrix(treatment, data, mse_weights)

Arguments

treatment a treatment assignment. The treatment and the data must have the same number
of observations (rows).

data a matrix containing the covariate vectors for each attribute.

mse_weights a matrix containing the mse_weights for treatments and outcomes and scaling
factors.

https://www.econstor.eu/handle/10419/161931

12 evaluate_solution_vector

Value

Returns the mean squared error value for the current treatment assignment.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

References

Schneider and Schlather (2017),

See Also

ginv

Examples

input <- matrix(1:30, nrow = 10, ncol = 3)

evaluate_solution_matrix(treatment = c(0, 1, 1, 1, 1, 0, 0, 0, 0, 0),
input,
mse_weights = matrix(1:20, nrow = 10, ncol = 2))

evaluate_solution_vector

Evaluate MSE Equation

Description

The function computes the mean squared error for a given treatment assignment. More precisely:
it computes the mean squared error of the treatment effect estimator resulting from the treatment
groups as specified by the argument, the treatment assignment vector. The function uses matrix
multiplication and the Moore-Penrose generalized inverse.

Usage

evaluate_solution_vector(treatment, data, mse_weights)

Arguments

treatment a treatment assignment. The treatment and the data must have the same number
of observations (rows).

data a matrix containing the covariate vectors for each attribute.

mse_weights a vector containing the mse_weights for each treatment.

https://www.econstor.eu/handle/10419/161931

output_file 13

Value

Returns the mean squared error value for the current treatment assignment.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

References

Schneider and Schlather (2017),

See Also

ginv

Examples

input <- matrix(1:30, nrow = 10, ncol = 3)

evaluate_solution_vector(treatment = c(0, 1, 1, 1, 1, 0, 0, 0, 0, 0),
input,
mse_weights = c(1, 2))

output_file TXT File That Contains Additional Output Information

Description

File .txt that contains additional output information.

plotting_file CSV File for Saving the Data to Plot

Description

CSV file for saving the data to plot.

https://www.econstor.eu/handle/10419/161931

14 sample_with_prev_treatment

sample_with_prev_treatment

Sample Under Consideration of an Already Treated Subset of Units

Description

Given a previous treatment assignment vector for a subset of all observations that treatment assig-
ment is desired for, the function computes a treatment assignment vector for which the previously
assigned units are not changed. At a later step, the previously assigned units are also taken into con-
sideration for computation of the score value, the min MSE function, to achieve balanced treatment
groups.

Usage

sample_with_prev_treatment(prev_treatment, n_treatments, n_per_group)

Arguments

prev_treatment takes a numerical vector of partial treatment assignment as argument, and – for
a start – assigns the missing units (where the value is NA) to a random treatment
group, while maintaining the same proportions in the groups.

n_treatments specifies the number of treatment groups desired (in addition to the control
group). They might be more than the ones already defined in prev_treatment.

n_per_group specifies the distribution of participants per experimental group. It is either
an integer, which produces even-sized groups, or a vector which has the same
length as the number of experimental groups.

Value

Returns a treatment assignment vector where the observations given by prev_treatment are unmod-
ified, and the others are assigned to a group.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

Examples

sample_with_prev_treatment(prev_treatment = c(0, NA, NA, NA, 1, NA, NA, NA, NA, NA),
n_treatments = 2,
n_per_group = c(2, 4, 4))

scale_vars 15

scale_vars Covariate Vectors Scaling

Description

Scales the data such that the empty fiels (NA) are the mean of the column and all variables are
scaled to have variance 1. In case a variable has cero variance, the variable internally is treated as if
it was 0, that way it is not taken into account for treatment assignment.

Usage

scale_vars(data)

Arguments

data a dataframe containing the covariate vectors for each attribute.

Value

Returns a dataframe where the empty fields are filled with the mean of the column, and for all
variables the variance is 1.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

Examples

input <- data.frame(c(10, 20, 30, 40, 130, 40, 120, 5, 10, 80),
c(2, 6, 2, 8, 1, 10, 9, 8, 7, 5),
c(1, 0, 2, 1, 0, 1, 0, 2, 1, 0))

colnames(input) <- c("IQ", "grade_maths", "both_parents")

scale_vars(input)

swap_treatment Swap Treatment

Description

Scrambles the elements of the vector and swaps a predefined number of elements. Afterwards, the
vector is ordered according to the original ordering and returned.

16 swap_treatment.optim

Usage

swap_treatment(current_treatment,
change,
prev_index_list = NULL)

Arguments

current_treatment

a treatment vector to be changed.

change number of elements that will be changed in the treatment vector.
prev_index_list

not used, needed for compatibility.

Value

Returns a new treatment vector.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

Examples

swap_treatment(current_treatment = c(0, 2, 0, 1, 1, 0, 2, 1, 1, 0),
change = 2)

swap_treatment.optim Swap Treatment (using optim)

Description

This function calls swap_treatment, but since optim requires fn and gr to have the same parameters,
it has an additional one.

Usage

swap_treatment.optim(current_treatment,
data = NULL,
evaluation_function = NULL,
swap_treatment_function = swap_treatment,
mse_weights = NULL,
change,
prev_index_list = NULL)

swap_treatment_prev 17

Arguments
current_treatment

a treatment vector to be changed.

data the parameter is only needed for optim, it does not play any role.
evaluation_function

the parameter is only needed for optim, it does not play any role.
swap_treatment_function

the function used to create new treatments. Default is swap_treatment. Other
options are swap_treatment_prev which, given a previous treatment, creates a
new treatment assignment that takes the previous one into account.

change number of elements that will be changed in the treatment vector.
prev_index_list

index list of the elements that can be changed. The current treatment vector may
belong to a previous, unchangeable assignment.

mse_weights the parameter is only needed for optim, it does not play any role.

Value

Returns a new treatment vector.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

See Also

optim

Examples

swap_treatment.optim(current_treatment = c(0, 2, 0, 1, 1, 0, 2, 1, 1, 0),
change = 2)

swap_treatment.optim(current_treatment = c(0, 2, 0, 1, 1, 0, 2, 1, 1, 0),
change = 2,
prev_index_list = c(1, 2, 3, 4))

swap_treatment_prev Swap Treatment

Description

Scrambles the elements of the vector and swaps a predefined number of elements. Afterwards, the
vector is ordered according to the original ordering and returned.

18 vector_gcd

Usage

swap_treatment_prev(current_treatment,
change,
prev_index_list)

Arguments
current_treatment

a treatment vector to be changed.

change number of elements that will be changed in the treatment vector.
prev_index_list

index list of the elements that can be changed. The current treatment vector may
belong to a previous, unchangeable assignment.

Value

Returns a new treatment vector.

Author(s)

Sebastian Schneider <sschneider@coll.mpg.de>; <sebastian@sebastianschneider.eu>, Giu-
lia Baldini <giulia.baldini@uni-bonn.de>

Examples

swap_treatment_prev(current_treatment = c(0, 2, 0, 1, 1, 0, 2, 1, 1, 0),
change = 2,
prev_index_list = c(1, 2, 3, 4))

vector_gcd Vector Greatest Common Divisor

Description

Computes the GCD of a vector.

Usage

vector_gcd(vec)

Arguments

vec a vector, for which we want to compute the GCD.

Value

The GCD of the elements in the given vector.

vector_gcd 19

Examples

input = c(3,6,9)
vector_gcd(input)

Index

∗ assignment
assign_minMSE_treatment, 2
assign_treatment, 5
count_occurrences, 8
evaluate_solution, 9
evaluate_solution.optim, 10
evaluate_solution_matrix, 11
evaluate_solution_vector, 12
sample_with_prev_treatment, 14
scale_vars, 15
swap_treatment, 15
swap_treatment.optim, 16
swap_treatment_prev, 17

∗ gcd
vector_gcd, 18

∗ mse
assign_minMSE_treatment, 2
assign_treatment, 5
count_occurrences, 8
evaluate_solution, 9
evaluate_solution.optim, 10
evaluate_solution_matrix, 11
evaluate_solution_vector, 12
sample_with_prev_treatment, 14
scale_vars, 15
swap_treatment, 15
swap_treatment.optim, 16
swap_treatment_prev, 17

∗ optim
assign_minMSE_treatment, 2
assign_treatment, 5
count_occurrences, 8
evaluate_solution, 9
evaluate_solution.optim, 10
evaluate_solution_matrix, 11
evaluate_solution_vector, 12
sample_with_prev_treatment, 14
scale_vars, 15
swap_treatment, 15

swap_treatment.optim, 16
swap_treatment_prev, 17

∗ treatment
assign_minMSE_treatment, 2
assign_treatment, 5
count_occurrences, 8
evaluate_solution, 9
evaluate_solution.optim, 10
evaluate_solution_matrix, 11
evaluate_solution_vector, 12
sample_with_prev_treatment, 14
scale_vars, 15
swap_treatment, 15
swap_treatment.optim, 16
swap_treatment_prev, 17

∗ vector
vector_gcd, 18

assign_minMSE_treatment, 2, 5–7
assign_treatment, 2, 5, 5

count_occurrences, 8

evaluate_solution, 6, 9, 10
evaluate_solution.optim, 10
evaluate_solution_matrix, 6, 10, 11
evaluate_solution_vector, 6, 10, 12

ginv, 5, 8, 10–13

optim, 4, 5, 7, 8, 10, 11, 16, 17
output_file, 13

plotting_file, 13

sample_with_prev_treatment, 14
scale_vars, 15
swap_treatment, 6, 15, 16, 17
swap_treatment.optim, 16
swap_treatment_prev, 6, 17, 17

vector_gcd, 18

20

	assign_minMSE_treatment
	assign_treatment
	count_occurrences
	evaluate_solution
	evaluate_solution.optim
	evaluate_solution_matrix
	evaluate_solution_vector
	output_file
	plotting_file
	sample_with_prev_treatment
	scale_vars
	swap_treatment
	swap_treatment.optim
	swap_treatment_prev
	vector_gcd
	Index

