
Package ‘mirtCAT’
August 11, 2022

Version 1.12.2

Type Package

Title Computerized Adaptive Testing with Multidimensional Item
Response Theory

Description Provides tools to generate an HTML interface for creating adaptive
and non-adaptive educational and psychological tests using the shiny
package (Chalmers (2016) <doi:10.18637/jss.v071.i05>).
Suitable for applying unidimensional and multidimensional
computerized adaptive tests (CAT) using item response theory methodology and for
creating simple questionnaires forms to collect response data directly in R.
Additionally, optimal test designs (e.g., ``shadow testing'') are supported
for tests which contain a large number of item selection constraints.
Finally, package contains tools useful for performing Monte Carlo simulations
for studying the behavior of computerized adaptive test banks.

Depends mirt (>= 1.37), shiny (>= 1.0.1)

Imports lattice, stats, Rcpp, methods, markdown, pbapply, lpSolve

Suggests shinythemes, parallel, knitr

Encoding UTF-8

ByteCompile yes

LazyLoad yes

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

License GPL (>= 3)

Repository CRAN

Maintainer Phil Chalmers <rphilip.chalmers@gmail.com>

URL https://github.com/philchalmers/mirtCAT,

https://github.com/philchalmers/mirtCAT/wiki,

https://groups.google.com/forum/#!forum/mirt-package

BugReports https://github.com/philchalmers/mirtCAT/issues?state=open

RoxygenNote 7.1.1

1

https://doi.org/10.18637/jss.v071.i05
https://github.com/philchalmers/mirtCAT
https://github.com/philchalmers/mirtCAT/wiki
https://groups.google.com/forum/#!forum/mirt-package
https://github.com/philchalmers/mirtCAT/issues?state=open

2 mirtCAT-package

NeedsCompilation yes

Author Phil Chalmers [aut, cre] (<https://orcid.org/0000-0001-5332-2810>),
Magnus Nordmo [ctb] (<https://orcid.org/0000-0002-1977-1038>)

Date/Publication 2022-08-11 10:10:10 UTC

R topics documented:
mirtCAT-package . 2
computeCriteria . 3
createSessionName . 4
createShinyGUI . 5
extract.mirtCAT . 6
findNextItem . 9
generate.mirt_object . 13
generate_pattern . 15
getPerson . 17
get_mirtCAT_env . 18
mirtCAT . 18
mirtCAT_preamble . 33
updateDesign . 34

Index 37

mirtCAT-package Computerized Adaptive Testing with Multidimensional Item Response
Theory

Description

Computerized Adaptive Testing with Multidimensional Item Response Theory

Details

Provides tools to generate an HTML interface for creating adaptive and non-adaptive educational
and psychological tests using the shiny package. Suitable for applying unidimensional and multi-
dimensional computerized adaptive tests using item response theory methodology and for creating
simple questionnaires forms to collect response data directly in R.

Users interested in the most recent version of this package can visit https://github.com/philchalmers/
mirtCAT and follow the instructions for installing the package from source (additional details
about installing from Github can be found at https://github.com/philchalmers/mirt). Ques-
tions regarding the package can be sent to the mirt-package Google Group, located at https:
//groups.google.com/forum/#!forum/mirt-package.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

https://orcid.org/0000-0001-5332-2810
https://orcid.org/0000-0002-1977-1038
https://github.com/philchalmers/mirtCAT
https://github.com/philchalmers/mirtCAT
https://github.com/philchalmers/mirt
https://groups.google.com/forum/#!forum/mirt-package
https://groups.google.com/forum/#!forum/mirt-package

computeCriteria 3

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

computeCriteria Compute the values given the criteria and internal objects

Description

A function that returns a named vector of evaluated criteria for each respective item in the test
bank. The names are associated with the item number in the bank. Note that criteria values are
returned such that the maximum value always represents the most optimal item (e.g., maximum
information). In cases where the minimum value is typically selected (e.g., minimum variance) all
values are multiplied by -1 to turn it into a maximization problem.

Usage

computeCriteria(
x,
criteria,
person = NULL,
test = NULL,
design = NULL,
subset = NULL,
info_mats = FALSE

)

Arguments

x an object of class ’mirtCAT_design’ returned from the mirtCAT function when
passing design_elements = TRUE

criteria item selection criteria (see mirtCAT’s criteria input)

person (required when x is missing) internal person object. To be used when customNextItem
function has been defined

test (required when x is missing) internal test object. To be used when customNextItem
function has been defined

design (required when x is missing) internal design object. To be used when customNextItem
function has been defined

subset an integer vector indicating which items should be included in the optimal search;
the default NULL includes all possible items. To allow only the first 10 items to
be selected from this can be modified to subset = 1:10. This is useful when ad-
ministering a multi-unidimensional CAT session where unidimensional blocks

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

4 createSessionName

should be clustered together for smoother presentation. Useful when using the
customNextItem function in mirtCAT

info_mats logical; if more than one trait is present in the test, should the respective informa-
tion matricies be returned instead of the scalar summary statistics (e.g., D-rule).
When TRUE will return a list of matricies associated with each respective item

Value

a vector of criteria values for each respective item

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirtCAT, updateDesign, extract.mirtCAT, findNextItem

Examples

Not run:
test defined in mirtCAT help file, first example
CATdesign <- mirtCAT(df, mod, design_elements = TRUE)

computeCriteria(CATdesign, criteria = 'MI')
computeCriteria(CATdesign, criteria = 'MEI')

End(Not run)

createSessionName Create a unique GUI session name from a string of characters

Description

This is used in mirtCAT to create a random session name so that shiny knows which environment
to select objects from when multiple CAT sessions have been initialized.

Usage

createSessionName(n = 30, datetime = TRUE)

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

createShinyGUI 5

Arguments

n number of upper/lower characters to sample

datetime logical; include the current date/time the function was called in the string as
well? This further helps with the uniqueness of the generated string

Value

a list containing the internal environmental components for mirtCAT

createShinyGUI Function returning an object used by shiny

Description

This function returns the GUI setup results by calling shinyApp. Primarily, this is only useful
when hosting the application publicly, such as through https://www.shinyapps.io/. The func-
tion mirtCAT_preamble must be run before this function is called. The object is executed by calling
runApp.

Usage

createShinyGUI(ui = NULL, host_server = TRUE)

Arguments

ui a shiny UI function used to define the interface. If NULL, the default one will be
used. See mirtCAT:::default_UI for the internal code

host_server logical; is createShinyGUI() being used on a remote server or executed lo-
cally? When TRUE any calls to stopApp are suppressed to allow for multiple
sessions to be executed. Note that FALSE gives the same behaviour as the GUI
in mirtCAT

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirtCAT, mirtCAT_preamble, getPerson

https://www.shinyapps.io/
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

6 extract.mirtCAT

Examples

Not run:

mirtCAT_preamble(df=df)
runApp(createShinyGUI(host_server = FALSE), port = 8000) # run locally

person <- getPerson()
summary(person)

runApp(createShinyGUI(), port = 8000) # for remote server hosting

End(Not run)

extract.mirtCAT Extract elements from the internal person, test, and design objects

Description

This function extracts elements, as well as builds a few convenient elements, from the three internal
person, design, or test objects that are accessible through a customNextItem function definition
(see mirtCAT for details).

Usage

extract.mirtCAT(x, what)

Arguments

x either the person, design, or test object defined through a customNextItem
definition

what a character vector extracting the desired element (see the Details section)

Details

Depending on which object is supplied, the following elements can be extracted.

The ’person’ argument

ID a scalar value indicating the ID of the participant (generally only needed in Monte Carlo simu-
lations)

responses an integer vector indicating how items that have been responded to. Each element
pertains to the associated item location (e.g., responses[100] is associated with the 100th
item), and is NA if the item has not been responded to

raw_responses of the same form as responses, pertaining to the observed responses in a charac-
ter vector

extract.mirtCAT 7

items_in_bank an integer vector indicating items which have not been administered yet and are
also valid candidates for administration

items_answered an integer vector indicating the order in which items have been responded to
thetas the current ability/latent trait estimates given the previously administered items
thetas_SE the current ability/latent trait standard error estimates given the previously administered

items
thetas_history history of the ability/latent trait estimates
thetas_SE_history history of the latent trait standard error estimates
item_time of the same form as items_answered, pertaining to the amount of time it took the

participant to response to the item
demographics a data.frame containing the (optional) prior survey information from the GUI inter-

face
clientData a list of useful information from shiny’s session$clientData

The ’design’ argument

items_not_scored an integer vector indicating items which should be included but not scored in
the test (these are experimental items)

min_items minimum number of items to administer
max_items maximum number of items to administer
max_time maximum amount of time alloted to the GUI
met_SEM logical vector indicating whether the SEM criteria has been met
met_delta_thetas logical vector indicating whether the delta_thetas criteria has been met
met_classify logical vector indicating whether the classify criteria has been met
exposure exposure control elements of the same form as responses
content content constraint information
content_prop content proportions
test_properties user-defined data.frame of test-based properties
person_properties user-defined data.frame of person-based properties

The ’test’ argument

mo extract the defined model from the mirt package. Afterward, users can use the extract.mirt
function to pull out a large number of internal elements for easy use

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

8 extract.mirtCAT

See Also

mirt, mirtCAT, extract.mirt, findNextItem

Examples

Not run:
#example test

set.seed(1234)
nitems <- 25
itemnames <- paste0('Item.', 1:nitems)
a <- matrix(rlnorm(nitems, .2, .3))
d <- matrix(rnorm(nitems))
dat <- simdata(a, d, 500, itemtype = 'dich')
colnames(dat) <- itemnames
mod <- mirt(dat, 1, verbose = FALSE, TOL = .01)

simple math items
questions <- answers <- character(nitems)
choices <- matrix(NA, nitems, 5)
spacing <- floor(d - min(d)) + 1 #easier items have more variation in the options

for(i in 1:nitems){
n1 <- sample(1:50, 1)
n2 <- sample(51:100, 1)
ans <- n1 + n2
questions[i] <- paste0(n1, ' + ', n2, ' = ?')
answers[i] <- as.character(ans)
ch <- ans + sample(c(-5:-1, 1:5) * spacing[i,], 5)
ch[sample(1:5, 1)] <- ans
choices[i,] <- as.character(ch)

}

df <- data.frame(Question=questions, Option=choices,
Type = 'radio', stringsAsFactors = FALSE)

df$Answer <- answers

pat <- generate_pattern(mod, Theta = 0, df)

#--
administer items in sequence
customNextItem <- function(person, design, test){

browser()
items_left_2_choose_from <- extract.mirtCAT(person, 'items_in_bank')
min(items_left_2_choose_from)

}

res <- mirtCAT(df, local_pattern=pat,
design = list(customNextItem=customNextItem))

summary(res)

#--

findNextItem 9

administer items in order, but stop after 10 items
customNextItem <- function(person, design, test){

items_left_2_choose_from <- extract.mirtCAT(person, 'items_in_bank')
items_answered <- extract.mirtCAT(person, 'items_answered')
total <- sum(!is.na(items_answered))
ret <- if(total < 10) min(items_left_2_choose_from)

else return(NA)
ret

}

res <- mirtCAT(df, local_pattern=pat,
design = list(customNextItem=customNextItem))

summary(res)

#--
using findNextItem() and stopping after 10 items

customNextItem <- function(person, design, test){
items_answered <- extract.mirtCAT(person, 'items_answered')
total <- sum(!is.na(items_answered))
ret <- NA
if(total < 10)

ret <- findNextItem(person=person, test=test, design=design, criteria = 'MI')
ret

}

res <- mirtCAT(df, mod, local_pattern=pat, start_item = 'MI',
design = list(customNextItem=customNextItem))

summary(res)

equivalent to the following
res2 <- mirtCAT(df, mod, local_pattern=pat, start_item = 'MI',

criteria = 'MI', design = list(max_items = 10))
summary(res2)

End(Not run)

findNextItem Find next CAT item

Description

A function that returns the next item in the computerized adaptive, optimal assembly, or shadow
test. For direction manipulation of the internal objects this function should be used in conjunction
with the updateDesign and customNextItem. Finally, the raw input forms can be used when a
customNextItem function has been defined in mirtCAT.

10 findNextItem

Usage

findNextItem(
x,
person = NULL,
test = NULL,
design = NULL,
criteria = NULL,
objective = NULL,
subset = NULL,
all_index = FALSE,
...

)

Arguments

x an object of class ’mirtCAT_design’ returned from the mirtCAT function when
passing design_elements = TRUE

person (required when x is missing) internal person object. To be used when customNextItem
function has been defined

test (required when x is missing) internal test object. To be used when customNextItem
function has been defined

design (required when x is missing) internal design object. To be used when customNextItem
function has been defined

criteria item selection criteria (see mirtCAT’s criteria input). If not specified the value
from extract.mirtCAT(design, 'criteria') will be used

objective a vector of values used as the optimization criteria to be passed to lp(objective.in).
This is typically the vector of criteria values returned from computeCriteria,
however supplying other criteria are possible (e.g., to minimize the number of
items administered simply pass a vector of -1’s)

subset an integer vector indicating which items should be included in the optimal search;
the default NULL includes all possible items. To allow only the first 10 items to
be selected from this can be modified to subset = 1:10. This is useful when ad-
ministering a multi-unidimensional CAT session where unidimensional blocks
should be clustered together for smoother presentation. Useful when using the
customNextItem function in mirtCAT

all_index logical; return all items instead of just the most optimal? When TRUE a vector
of items is returned instead of the most optimal, where the items are sorted
according to how well they fit the criteria (e.g., the first element is the most
optimal, followed by the second most optimal, and so on). Note that this does
not work for some selection criteria (e.g., ’seq’ or ’random’)

... additional arguments to be passed to lp

Details

When a numeric objective is supplied the next item in the computerized adaptive test is found
via an integer solver through searching for a maximum. The raw input forms can be used when a

findNextItem 11

customNextItem function has been defined in mirtCAT, and requires the definition of a constr_fun
(see the associated element in mirtCAT for details, as well as the examples below). Can be used to
for ’Optimal Test Assembly’, as well as ’Shadow Testing’ designs (van der Linden, 2005), by using
the lp function. When objective is not supplied the result follows the typical maximum criteria
of more standard adaptive tests.

Value

typically returns an integer value indicating the index of the next item to be selected or a value of
NA to indicate that the test should be terminated. However, see the arguments for further returned
object descriptions

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

van der Linden, W. J. (2005). Linear models for optimal test design. Springer.

See Also

mirtCAT, updateDesign, extract.mirtCAT

Examples

Not run:

test defined in mirtCAT help file, first example
equivalent to criteria = 'MI'
customNextItem <- function(design, person, test){

item <- findNextItem(person=person, design=design, test=test,
criteria = 'MI')

item
}

set.seed(1)
nitems <- 100
itemnames <- paste0('Item.', 1:nitems)
a <- matrix(rlnorm(nitems, .2, .3))
d <- matrix(rnorm(nitems))
dat <- simdata(a, d, 500, itemtype = 'dich')
colnames(dat) <- itemnames
mod <- mirt(dat, 1, verbose = FALSE)

simple math items

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

12 findNextItem

questions <- answers <- character(nitems)
choices <- matrix(NA, nitems, 5)
spacing <- floor(d - min(d)) + 1 #easier items have more variation in the options

for(i in 1:nitems){
n1 <- sample(1:50, 1)
n2 <- sample(51:100, 1)
ans <- n1 + n2
questions[i] <- paste0(n1, ' + ', n2, ' = ?')
answers[i] <- as.character(ans)
ch <- ans + sample(c(-5:-1, 1:5) * spacing[i,], 5)
ch[sample(1:5, 1)] <- ans
choices[i,] <- as.character(ch)

}

df <- data.frame(Question=questions, Option=choices,
Type = 'radio', stringsAsFactors = FALSE)

response <- generate_pattern(mod, 1)
result <- mirtCAT(mo=mod, local_pattern = response,

design = list(customNextItem=customNextItem))

direct manipulation of internal objects
CATdesign <- mirtCAT(df=df, mo=mod, criteria = 'MI', design_elements = TRUE)

returns number 1 in this case, since that's the starting item
findNextItem(CATdesign)

determine next item if item 1 and item 10 were answered correctly
CATdesign <- updateDesign(CATdesign, new_item = 1, new_response = 1)
extract.mirtCAT(CATdesign$person, 'thetas') # updated thetas
CATdesign <- updateDesign(CATdesign, new_item = 10, new_response = 1)
extract.mirtCAT(CATdesign$person, 'thetas') # updated thetas again
findNextItem(CATdesign)
findNextItem(CATdesign, all_index = TRUE) # all items rank in terms of most optimal

#---
Integer programming example (e.g., shadow testing)

find maximum information subject to constraints
sum(xi) <= 5 ### 5 or fewer items
x1 + x2 <= 1 ### items 1 and 2 can't be together
x4 == 0 ### item 4 not included
x5 + x6 == 1 ### item 5 or 6 must be included, but not both

constraint function
constr_fun <- function(design, person, test){

left hand side constrains
- 1 row per constraint, and ncol must equal number of items
mo <- extract.mirtCAT(test, 'mo')
nitems <- extract.mirt(mo, 'nitems')

generate.mirt_object 13

lhs <- matrix(0, 4, nitems)
lhs[1,] <- 1
lhs[2,c(1,2)] <- 1
lhs[3, 4] <- 1
lhs[4, c(5,6)] <- 1

relationship direction
dirs <- c("<=", "<=", '==', '==')

#right hand side
rhs <- c(5, 1, 0, 1)

#all together
constraints <- data.frame(lhs, dirs, rhs)
constraints

}

CATdesign <- mirtCAT(df=df, mo=mod, design_elements = TRUE,
design = list(constr_fun=constr_fun))

MI criteria value associated with each respective item
objective <- computeCriteria(CATdesign, criteria = 'MI')

most optimal item, given constraints
findNextItem(CATdesign, objective=objective)

all the items which solve the problem
findNextItem(CATdesign, objective=objective, all_index = TRUE)

within a customNextItem() definition the above code would look like
customNextItem <- function(design, person, test){
objective <- computeCriteria(person=person, design=design, test=test,
criteria = 'MI')
item <- findNextItem(person=person, design=design, test=test,
objective=objective)
item
}

End(Not run)

generate.mirt_object Generate a mirt object from population parameters

Description

This function generates a mirt object from known population parameters, which is then passed to
mirtCAT for running CAT applications.

14 generate.mirt_object

Usage

generate.mirt_object(
parameters,
itemtype,
latent_means = NULL,
latent_covariance = NULL,
key = NULL,
min_category = rep(0L, length(itemtype))

)

Arguments

parameters a matrix or data.frame of parameters corresponding to the model definitions
listed in mirt. Each row represents a unique item, while the column names
correspond to the respective parameter names. If a parameter is not relevant for
a particular item/row then use NA’s as placeholders

itemtype a character vector indicating the type of item with which the parameters re-
fer. See the itemtype argument in mirt. Note that this input is only used to
determine the relevant item class for the rows in parameters, therefore many
inputs are interchangeable (e.g., ’2PL’ generates the same internal model object
as ’3PL’). If only a single value is provided then all items types will be assumed
identical

latent_means (optional) a numeric vector used to define the population latent mean structure.
By default the mean structure is centered at a 0 vector

latent_covariance

(optional) a matrix used to define the population variance-covariance structure
between the latent traits. By default the relationship is assumed to be orthogonal
standard normal (i.e., an identity matrix)

key scoring key required for nested-logit models. See mirt for details
min_category the value representing the lowest category index. By default this is 0, therefore

the response suitable for the first category is 0, second is 1, and so on up to K -
1

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirt, mirtCAT, generate_pattern

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

generate_pattern 15

Examples

Not run:

build a unidimensional test with all 3PL items

nitems <- 50
a1 <- rlnorm(nitems, .2,.2)
d <- rnorm(nitems)
g <- rbeta(nitems, 20, 80)

pars <- data.frame(a1=a1, d=d, g=g)
head(pars)

obj <- generate.mirt_object(pars, '3PL')
coef(obj, simplify = TRUE)
plot(obj, type = 'trace')

build a two-dimensional test
all graded items with 5 response categories

nitems <- 30
as <- matrix(rlnorm(nitems*2, .2, .2), nitems)
diffs <- t(apply(matrix(runif(nitems*4, .3, 1), nitems), 1, cumsum))
diffs <- -(diffs - rowMeans(diffs))
ds <- diffs + rnorm(nitems)
pars2 <- data.frame(as, ds)
colnames(pars2) <- c('a1', 'a2', paste0('d', 1:4))
head(pars2)

obj <- generate.mirt_object(pars2, 'graded')
coef(obj, simplify = TRUE)

unidimensional mixed-item test

library(plyr)
pars3 <- rbind.fill(pars, pars2) #notice the NA's where parameters do not exist
obj <- generate.mirt_object(pars3, itemtype = c(rep('2PL', 50), rep('graded', 30)))
coef(obj)
itemplot(obj, 51)
itemplot(obj, 1, drop.zeros=TRUE)

End(Not run)

generate_pattern Generate a CAT patterns

Description

Generate a CAT pattern given various inputs. Returns a character vector or numeric matrix (de-
pending on whether a df input was supplied) with columns equal to the test size and rows equal

16 generate_pattern

to the number of rows in Theta. For simulation studies, supplying a Theta input with more than
1 row will generate a matrix of responses for running independent CAT session when passed to
mirtCAT(..., local_pattern). When the returned object is an integer vector then the Theta
values will be stored as an attribute 'Theta' to be automatically used in Monte Carlo simulations.

Usage

generate_pattern(mo, Theta, df = NULL)

Arguments

mo single group object defined by the mirt package

Theta a numeric vector indicating the latent theta values for a single person

df (optional) data.frame object containing questions, options, and scoring keys.
See mirtCAT for details

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirtCAT

Examples

Not run:

return real response vector given choices and (optional) answers
pat <- generate_pattern(mod, Theta = 0, df=df)
mirtCAT(df, mo=mod, local_pattern = pat)

generate single pattern observed in dataset used to define mod
pat2 <- generate_pattern(mod, Theta = 0)
mirtCAT(mo=mod, local_pattern = pat2)

generate multiple patterns to be analyzed independently
pat3 <- generate_pattern(mod, Theta = matrix(c(0, 2, -2), 3))
mirtCAT(mo=mod, local_pattern = pat3)

End(Not run)

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

getPerson 17

getPerson Retrieve person object after running createShinyGUI

Description

This function returns a suitable person object identical to the result returned by mirtCAT, and is
only required when the GUI is launched by the createShinyGUI method.

Usage

getPerson()

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirtCAT, mirtCAT_preamble, createShinyGUI

Examples

Not run:

mirtCAT_preamble(df=df)
runApp(createShinyGUI(), port = 8000)

person <- getPerson()
summary(person)

End(Not run)

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

18 mirtCAT

get_mirtCAT_env Get the internal working environment state during mirtCAT session

Description

This function is used to access the internal state of the mirtCAT GUI session. It is only useful when
designing a customized GUI using the shinyGUI$ui input to mirtCAT.

Usage

get_mirtCAT_env(sessionName)

Arguments

sessionName the name of the session defined in mirtCAT

Value

a list containing the internal environmental components for mirtCAT

mirtCAT Generate an adaptive or non-adaptive test HTML interface

Description

Provides tools to generate an HTML interface for creating adaptive and non-adaptive educational
and psychological tests using the shiny package. Suitable for applying unidimensional and multi-
dimensional computerized adaptive tests using item response theory methodology. Test scoring is
performed using the mirt package. However, if no scoring is required (i.e., a standard survey) then
defining a mirt object may be omitted.

Usage

mirtCAT(
df = NULL,
mo = NULL,
method = "MAP",
criteria = "seq",
start_item = 1,
local_pattern = NULL,
AnswerFuns = list(),
design_elements = FALSE,
cl = NULL,
progress = FALSE,
primeCluster = TRUE,
customTypes = list(),

mirtCAT 19

design = list(),
shinyGUI = list(),
preCAT = list(),
...

)

S3 method for class 'mirtCAT'
print(x, ...)

S3 method for class 'mirtCAT'
summary(object, sort = TRUE, ...)

S3 method for class 'mirtCAT'
plot(
x,
pick_theta = NULL,
true_thetas = TRUE,
SE = 1,
main = NULL,
par.strip.text = list(cex = 0.7),
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col

= "black")),
scales = list(x = list(rot = 90)),
...

)

Arguments

df a data.frame containing the character vector inputs required to generate GUI
questions through shiny. If factors are supplied instead of character vec-
tors then the inputs will be coerced using the as.character() function (set
stringsAsFactors = FALSE when defining a data.frame to avoid this). Each
row in the object corresponds to a unique item. The object supports the follow
column name combinations as inputs to specify the type of response format,
questions, options, answers, and stems:

Type Indicates the type of response input to use from the shiny package. The
supported types are: 'radio' for radio buttons (radioButtons), 'select'
for a pull-down box for selecting inputs (selectInput), 'rankselect' for
a set of pull-down boxes rank-ordering inputs (selectInput) associated
with each option supplied, 'text' and 'textArea' for requiring typed user
input (textInput and textAreaInput), 'checkbox' for allowing multiple
responses to be checked off (checkboxGroupInput), 'slider' for gener-
ating slider inputs (sliderInput), or 'none' for presenting only an item
stem with no selection options. Note that slider inputs require additional
arguments to be passed; see ... instructions below).
Additionally, if the above types are not sufficient for the desired output then
users can create their own response formats and inputs via the customTypes
list input (see below). E.g., if a function with the name 'MyTableQuestion'

20 mirtCAT

is supplied to customTypes then supplying this type to the df will use this
function for the respective item. Note that this is more advanced and re-
quires a working knowledge of shiny’s design, inputs, and specifications.
This is generally for advanced users to use on an as-per-needed basis.

Question A character vector containing all the questions or stems to be gener-
ated. By default these character vectors are passed to HTML, and therefore
allow for HTML tags to be included directly. For example, the following
example defines two stems, where the second uses an emphasis tag to pro-
vide italics.
Question = c('This is the first item stem.', 'This is the second
item stem.'))
Alternatively, if tag constructor function are preferred these need only be
wrapped within a final call to as.character to coerce the shiny.tag ex-
pressions into suitable character vectors of HTML code. For example, the
above could be expressed as
Question = c('This is the first item stem.', as.character(div('This
is the', em('second'), 'item stem.')))
Moreover, because this input must be a character vector, the use of sapply
in concert with as.character can apply this conversion to all elements
(often redundantly). Here’s an example of this format:

Question = sapply(list('This is the first item stem.',
div('This is the', em('second'), 'item stem.'),
div('This is the', strong('third'), br(), br(), 'item stem.'),
div('Fourth with some code:', code('obj <- 42'))),

as.character)

Option.# Names pertaining to the possible response options for each item,
where the # corresponds to the specific category. For instance, a test with 4
unique response options for each item would contain the columns (Option.1,
Option.2, Option.3, Option.4). If, however, some items have fewer cat-
egories than others then NA’s can be used for response options that do not
apply.

Answer or Answer.# (Optional) A character vector (or multiple character vec-
tors) indicating the scoring key for items that have correct answer(s). If
there is no correct answer for a question then a value of NA must be de-
clared.

Stem (Optional) a character vector of absolute or relative paths pointing external
markdown (.md) or HTML (.html) files to be used as item stems. NAs are
used if the item has no corresponding file.

Timer (Optional) a numeric vector indicating a time limit (in seconds) for each
respective item. If a response is not provided before this limit then the
question will automatically advance to the next selected item. The values
NA and Inf indicate no time limit for the respective items. Note that this
option can only be used when shinyGUI = list(forced_choice = FALSE)

Mastery (Optional) a logical vector indicating whether the item must be mas-
tered prior to continuing. Naturally, this requires that one or more Answers
are provided, or suitable functions for scoring are supplied

mirtCAT 21

HTMLOptions (Optional) a logical vector indicating whether the respective Option.#
terms should be wrapped within an HTML function and rendered for suitable
shiny inputs (e.g., radio buttons). This is a short-hand wrapper to the more
flexible choiceNames approach, which can be used to wrap option inputs
with alternative functions.

... In cases where 'slider' inputs are used instead only the Question input
is required along with (at minimum) a min, max, and step column. In
rows where the Type == 'slider' the column names will correspond to
the input arguments to sliderInput. Other input column options such as
step, round, pre, post, ticks, inline, placeholder, width, and size
are also supported for the respective input types.

mo single group object defined by the mirt::mirt() function. This is required if
the test is to be scored adaptively or non-adaptively, but not required for general
questionnaires. The object can be constructed by using the generate.mirt_object
function if population parameters are known or by including a calibrated model
estimated from the mirt function with real data.

method argument passed to mirt::fscores() for computing new scores in the CAT
stage, with the addition of a 'fixed' input to keep the latent trait estimates
fixed at the previous values. When method = 'ML', if there is no variability in the
given response pattern during the CAT (i.e., the participant is responding com-
pletely correctly or completely incorrectly) then the method will temporarily be
set to MAP until sufficient response variability is present. Default is ’MAP’

criteria adaptive criteria used, default is to administer each item sequentially using criteria
= 'seq'.
Possible inputs for unidimensional adaptive tests include: 'MI' for the max-
imum information, 'MEPV' for minimum expected posterior variance, 'MLWI'
for maximum likelihood weighted information, 'MPWI' for maximum posterior
weighted information, 'MEI' for maximum expected information, and 'IKLP'
as well as 'IKL' for the integration based Kullback-Leibler criteria with and
without the prior density weight, respectively, and their root-n items adminis-
tered weighted counter-parts, 'IKLn' and 'IKLPn'.
Possible inputs for multidimensional adaptive tests include: 'Drule' for the
maximum determinant of the information matrix, 'Trule' for the maximum
(potentially weighted) trace of the information matrix, 'Arule' for the mini-
mum (potentially weighted) trace of the asymptotic covariance matrix, 'Erule'
for the minimum value of the information matrix, and 'Wrule' for the weighted
information criteria. For each of these rules, the posterior weight for the la-
tent trait scores can also be included with the 'DPrule', 'TPrule', 'APrule',
'EPrule', and 'WPrule', respectively.
Applicable to both unidimensional and multidimensional tests are the 'KL' and
'KLn' for point-wise Kullback-Leibler divergence and point-wise Kullback-
Leibler with a decreasing delta value (delta*sqrt(n), where n is the number
of items previous answered), respectively. The delta criteria is defined in the
design object
Non-adaptive methods applicable even when no mo object is passed are: 'random'
to randomly select items, and 'seq' for selecting items sequentially.

22 mirtCAT

start_item two possible inputs to determine the starting item are available. Passing a num-
ber will indicate the specific item to be used as the start item; default is 1, which
selects the first item in the defined test/survey. If a character string is passed
then the item will be selected from one of the item selections criteria available
(see the criteria argument). For off-line runs where a local_pattern input is
used then a vector of numbers/characters may be supplied and will be associated
with each row response vector

local_pattern a character/numeric matrix of response patterns used to run the CAT applica-
tion without generating the GUI interface. This option requires complete re-
sponse pattern(s) to be supplied. local_pattern is required to be numeric if
no questions are supplied, and the responses must be within a valid range of
the defined mo object. Otherwise, it must contain character values of plausible
responses which corresponds to the answer key and/or options supplied in df. If
the object contains an attribute 'Theta' then these values will be stored within
the respective returned objects. See generate_pattern to generate response
patterns for Monte Carlo simulations

AnswerFuns a list with the length equal to the number of items in the item bank consisting of
user-defined functions. These functions are used to determine whether a given
response obtained from the GUI is ’correct’ or ’incorrect’ by returning a logical
scalar value, while NA’s must be used to indicate AnswerFuns should not be
used for a given item. Note that AnswerFuns is given priority over the answers
provided by df, therefore any answers provided by df will be entirely ignored.
For example, the following provides a customized response function for the first
item.

AnswerFuns <- as.list(rep(NA, nrow(df)))
AnswerFuns[[1]] <- function(input) input == '10' || to.lower(input) == 'ten'

design_elements

logical; return an object containing the test, person, and design elements? Pri-
marily this is to be used with the findNextItem function

cl an object definition to be passed to the parallel package (see ?parallel::parLapply
for details). If defined, and if nrow(local_pattern) > 1, then each row will be
run in parallel to help decrease estimation times in simulation work

progress logical; print a progress bar to the console with the pbapply package for given
response patterns? Useful for gauging how long Monte Carlo simulations will
take to finish

primeCluster logical; when a cl object is supplied, should the cluster be primed first before
running the simulations in parallel? Setting to TRUE will ensure that using the
cluster will be optimal every time a new cl is defined. Default is TRUE

customTypes an optional list input containing functions for Designing Original Graphical
Stimuli (DOGS). DOGS elements in the input list must contain a unique name,
and the item with which it is associated must be declared in the a df$Type input.
The functions defined must be of the form

myDOGS <- function(inputId, df_row) ...

and must return, at the very minimum, an associated shiny input object that
makes use of the inputId argument (e.g., radioButtons). Any valid shiny

mirtCAT 23

object can be returned, including lists of shiny objects. As well, the df_row
argument contains any extra information the users wishes to obtain from the
associated row in the df object.
The following is a simple example of DOGS for a true-false question and how
it is passed:

good_dogs <- function(inputId, df_row){
return(list(h2('This statement is false'),

radioButtons(inputId = inputId, label='',
choices = c('True', 'False'), selected = '')

))
}

df <- data.frame(Question = '', ..., Type = 'Doug')
results <- mirtCAT(df=df, customTypes = list(Doug = good_dogs))

design a list of design based control parameters for adaptive and non-adaptive tests.
These can be

min_SEM Default is rep(0.3, nfact); minimum standard error or measure-
ment to be reached for the latent traits (thetas) before the test is stopped.
If the test is multidimensional, either a single value or a vector of values
may be supplied to provide SEM criteria values for each dimension

delta_thetas Default is rep(0, nfact); stopping criteria based on the change
in latent trait values (e.g., a change from theta = 1.5 to theta = 1.54
would stop the CAT if delta_thetas = 0.05). The default disables this
stopping criteria

thetas.start a numeric vector of starting values for the theta parameters (de-
fault is rep(0, nfact)) or an matrix with N rows and nfact columns,
where N is equal to nrow(local_pattern)

min_items minimum number of items that must be answered before the test is
stopped. Default is 1

max_items maximum number of items that can be answered. Default is the
length of the item bank

max_time maximum time allowed for the generated GUI, measured in seconds.
For instance, if the test should stop after 10 minutes then the number 600
should be passed (10 * 60). Default is Inf, therefore no time limit

quadpts Number of quadrature points used per dimension for integration (if
required). Default is identical to scheme in fscores

theta_range upper and lower range for the theta integration grid. Used in
conjunction with quadpts to generate an equally spaced quadrature grid.
Default is c(-6,6)

allow_constrain_breaks logical; should the test be allowed to terminate in
the middle of administering the items in an (un)ordered testlet set specified
in constraints? Default is FALSE

weights weights used when criteria == 'Wrule', but also will be applied
for weighted trace functions in the T- and A-rules. The default weights the
latent dimensions equally. Default is rep(1, nfact), where nfact is the
number of test dimensions

24 mirtCAT

KL_delta interval range used when criteria = 'KL' or criteria = 'KLn'.
Default is 0.1

content an optional character vector indicating the type of content measured
by an item. Must be supplied in conjunction with content_prop

content_prop an optional named numeric vector indicating the distribution of
item content proportions. A content vector must also be supplied to indi-
cate the item content membership. For instance, if content contains three
possible item content domains ’Addition’, ’Subtraction’, and ’Multiplica-
tion’, and the test should contain approximately half multiplication and a
quarter of both addition and subtraction, then a suitable input would be
content_prop = c('Addition'=0.25, 'Subtraction'=0.25, 'Multiplication'=.5)
Note that content_prop must sum to 1 in order to represent valid popula-
tion proportions.

classify a numeric vector indicating cut-off values for classification above or
below some prior threshold. Default does not use the classification scheme

classify_CI a numeric vector indicating the confident intervals used to clas-
sify individuals being above or below values in classify. Values must be
between 0 and 1 (e.g., 0.95 gives 95% confidence interval)

exposure a numeric vector specifying the amount of exposure control to apply
for each successive item (length must equal the number of items). Note
that this includes the first item as well when a selection criteria is specified,
therefore if a specific first item should be used then the first element to
exposure should be 1. The default uses no exposure control.
If the item exposure is greater than 1 then the n most optimal criteria will be
randomly sampled from. For instance, if exposure[5] == 3, and criteria
= 'MI', then when the fifth item is to be selected from the remaining pool of
items the top 3 candidate items demonstrating the largest information crite-
ria will be sampled from. Naturally, the first and last elements of exposure
are ignored since exposure control will be meaningless.
If all elements in exposure are between 0 and 1 then the Sympson-Hetter
exposure control method will be implemented. In this method, an item is
administered only if it passes a probability simulation experiment; other-
wise, it is removed from the item pool. Values closer to 1 are more likely
to appear in the test, while value closer to 0 are more likely to be randomly
discarded.

constraints A named list declaring various item selection constraints for which
particular item, where each list element is a vector of item numbers. Unless
otherwise stated, multiple elements can be declared (e.g., list(ordered =
c(1:5), ordered = c(7:9)) is perfectly acceptable). These include:

not_scored declaring items that can be selected but will not be used in the
scoring of the CAT. This is primarily useful when including experimen-
tal items for future CATs. Only one vector of not_scored elements can
be supplied

excluded items which should not actually appear in the session (useful
when re-testing participants who have already seen some of the items).
Only one vector of excluded elements can be supplied

independent declaring which items should never appear in the same CAT

mirtCAT 25

session. Use this if, for example, item 1 and item 10 have very similar
questions types and therefore should not appear within the same session

ordered if one item is selected during the CAT, administer this particular
group of items in order according to the specified sequence

unordered same as ordered, except the items in the group will be selected
at random until the group is complete

customUpdateThetas a more advanced function of the form customUpdateThetas
<- function(design, person, test) to update the ability/latent trait es-
timates throughout the CAT (or more generally, scoring) session. The
design, person, and test are the same as in customNextItem. The latent
trait terms are updated directly in the person object, which is a ReferenceClasses
type, and therefore direct assignment to the object will modify the inter-
nal elements. Hence, to avoid manual modification users can pass the la-
tent trait estimates and their respective standard errors to the associated
person$Update_thetas(theta, theta_SE) function. Note that the fscores()
function can be useful here to capitalize on the estimation algorithms im-
plemented in mirt.
For example, a minimal working function would look like the following
(note the use of rbind() to append the history terms in the person object):

myfun <- function(design, person, test){
mo <- extract.mirtCAT(test, 'mo')
responses <- extract.mirtCAT(person, 'responses')
tmp <- fscores(mo, response.pattern = responses)
person$Update_thetas(tmp[,'F1'],

tmp[,'SE_F1', drop=FALSE])
invisible()

}

customNextItem a more advanced function of the form customNextItem <-
function(design, person, test) to use a customized item selection method.
This requires more complex programming and understanding of mirtCATs
internal elements, and it’s recommended to initially use a browser to under-
stand the state of the input arguments. When defined, all but the not_scored
input to the optional constraints list will be ignored.
Use this if you wish to program your item selection techniques explicitly,
though this can be combined the internal findNextItem function with anal-
ogous inputs. Function must return a single integer value indicating the next
item to administer or an NA value to indicate that the test should be termi-
nated. See extract.mirtCAT for details on how to extract and manipulate
various internal elements from the required functional arguments

constr_fun (WARNING: supplying this function will disable a number of the
heuristic item selection constraints in the constraints list as a conse-
quence; namely, all list options except for "not_scored").
This argument contains an optional user-defined function of the form function(design,
person, test) that returns a data.frame containing the left hand side,
relationship, and right hand side of the constraints for lp. Each row cor-
responds to a constraint, while the number of columns should be equal to
the number of items plus 2. Note that the column names of the returned

26 mirtCAT

data.frame object do not matter.
For example, say that for a given test the user wants to add the constraint
that exactly 10 items should be administered to all participants, and that
items 1 and 2 should not be included in the same test. The input would then
be defined as
const_fun <- function(design, person, test){

nitems <- extract.mirt(test@mo, 'nitems')
lhs <- matrix(0, 2, nitems)
lhs[1,] <- 1
lhs[2, c(1,2)] <- 1

data.frame(item=lhs, relation=c("==", "<="), value=c(10, 1))
}

The definition above corresponds to the constraints 1 * x1 + 1 * x2 + ... +
1 * xn = 10 and 1 * x1 + 1 * x2 + 0 * x3 + ... + 0 * xn <= 1 , where the x
terms represent binary indicators for each respective item which the opti-
mizer is searching through. Given some objective vector supplied to findNextItem,
the most optimal 10 items will be selected which satisfy these two con-
straints, meaning that 1) exactly 10 items will be administered, and 2) if
either item 1 or 2 were selected these two items would never appear in the
same test form (though neither is forced to appear in any given test). See
findNextItem for further details and examples

test_properties a user-defined data.frame object to be used with a supplied
customNextItem function. This should be used to define particular prop-
erties inherent to the test items (e.g., whether they are experimental, have a
particular weighting scheme, should only be used for one particular group
of individuals, and so on). The number of rows must be equal to the number
of items in the item bank, and each row corresponds to the respective item.
This input appears within the internal design object in a test_properties
slot.

person_properties a user-defined data.frame object to be used with a sup-
plied customNextItem function. This should be used to define particular
properties inherent to the individuals participants (e.g., known grouping
variable, age, whether they’ve taken the test before (and which items they
took), and so on). In off-line simulations, the number of rows must be
equal to the number of participants. This input appears within the internal
design object in a person_properties slot; for Monte Carlo simulations,
rows should be manually indexed using the person$ID slot.

shinyGUI a list of GUI based parameters to be over-written. These can be

title A character string for the test title. Default is 'mirtCAT'
authors A character string for the author names. Default is 'Author of survey'.

If the input is an empty string ('') then the author information will be omit-
ted in the GUI

instructions A two part character vector indicating how to use the GUI. De-
fault is:

c("To progress through the interface, click on the action button below.",
"Next")

mirtCAT 27

The second part of the character vector provides the name for the action
button.

itemtimer A character string to display the item-timer clock. Default is 'Item
timer: '

incorrect A character string to display in case of a failed response. Default is
'The answer provided was incorrect. Please select an alternative.'

failpass A character string to display in case of a failed password input. De-
fault is 'Incorrect Login Name/Password. Please try again (you have
%s attempts remaining).'

timemsg A three part character vector indicating words for hour, minute, sec-
ond & and. Default is c('hour ','minutes ','seconds ', 'and ')

firstpage The first page of the shiny GUI. Default prints the title and infor-
mation message.

list(h1('Welcome to the mirtCAT interface'),
sprintf('The following interface was created using the mirtCAT package v
To cite the package use citation(\'mirtCAT\') in R.',

packageVersion("mirtCAT")))

If an empty list is passed, this page will be skipped.
begin_message Text to display on the page prior to beginning the CAT. Default

is "Click the action button to begin." for scored tests whereby a mo
object has been include, while the default is "" for non-scored tests (which
disables the page).

demographics A person information page used in the GUI for collecting de-
mographic information, generated using tools from the shiny package. For
example, the following code asks the participants about their Gender:

list(selectInput(inputId = 'gender',
label = 'Please select your gender.',
choices = c('', 'Male', 'Female', 'Other'),
selected = ''))

By default, the demographics page is not included.
demographics_inputIDs a character vector required if a custom demograph-

ics input is used. Default is demographics_inputIDs = 'gender', corre-
sponding to the demographics default

stem_default_format shiny function used for the stems of the items. Default
uses the HTML wrapper, allowing for HTML tags to be included directly in
the character vector definitions. To change this to something different, like
h5 for example, pass stem_default_format = shiny::h5 to the shinyGUI
list

temp_file a character vector indicating where a temporary .rds file containing
the response information should be saved while the GUI is running. The ob-
ject will be saved after each item is successfully completed. This is used to
save response information to the hard drive in case there are power outages
or unexpected computer restarts.

28 mirtCAT

If NULL, no temp file will be created. Upon completion of the test, the temp
file will be deleted. If a file already exists, however, then this will be used
to resume the GUI at the last location where the session was interrupted

lastpage A function printing the last message, indicating that the test has been
completed (i.e., criteria has been met). The function requires exactly one
argument (called person), where the input argument is the person object
that has been updated throughout the test. The default function is

function(person){
return(list(h5("You have successfully completed the interface.

It is now safe to leave the application.")))
}

css a character string defining CSS elements to modify the GUI presentation el-
ements. The input string is passed to the argument tags$style(HTML(shinyGUI$css))
prior to constructing the user interface

theme a character definition for the shinytheme package to globally change the
GUI theme

forced_choice logical; require a response to each item? Default is TRUE. This
should only be set to FALSE for surveys (not CATs)

choiceNames a list containing the choiceNames input for each respective item
when the input is ’radio’ or ’checkbox’ (see radioButtons). This is used to
modify the output of the controllers using suitable HTML code. If a row in
df should not have a customized names then supplying the value NULL in the
associated list element will use the standard inputs instead. Alternatively,
if specified the names of the elements to this list can be used to match the
rownames of the df object to avoid the use of NULL placeholders

choiceValues associated values to be used along with choiceNames (see above)
time_before_answer a numeric value representing the number of seconds that

must have elapsed when forced_choice = FALSE before a response can be
provided or skipped. This is used to control accidental skips over items
when responses are not forced. Default is 1, indicating one full second

password a data.frame object indicating the user name (optional) and pass-
word required prior to beginning the CAT. Possible options are
No User Information a single row data.frame. Each column supplied in

this case will be associated with a suitable password for all individu-
als. Naturally, if only 1 column is defined then there is only 1 global
password for all users

User Information Pairing a multi-row data.frame where the first col-
umn represents the user name and all other columns as the same as the
first option. E.g., if two users (’name1’ and ’name2’) are given the same
password ’1234’ then password = data.frame(User = c('user1', 'user2'),
Password = rep('1234', 2))

response_msg string to print when valid responses are required but the users
does not provide a valid input. Default is "Please provide a suitable
response"

ui a shiny UI function used to define the interface. If NULL, the default one will
be used. See mirtCAT:::default_UI for the internal code definition

mirtCAT 29

preCAT a list object which can be used to specify a pre-CAT block in which different
test properties may be applied prior to beginning the CAT session. If the list is
empty, no preCAT block will be used. All of the following elements are required
to use the preCAT input:

min_items minimum number of items to administer before the CAT session
begins. Default is 0

max_items max number of items to administer before the CAT session begins.
An input greater than 0 is required to run the preCAT stage

criteria selection criteria (see above). Default is ’random’
method estimation criteria (see above). It is generally recommended to select a

method which can deal with all-or-none response patterns, such as ’EAP’,
’MAP’, or ’WLE’. Default is ’MAP’

response_variance logical; terminate the preCAT stage when there is vari-
ability in the response pattern (i.e., when maximum-likelihood estimation
contains a potential optimum)? Default is FALSE

... additional arguments to be passed to mirt, fscores, runApp, or lattice

x object of class 'mirtCAT'

object object of class 'mirtCAT'

sort logical; sort the response patterns based on the order they were administered?
If FALSE, the raw response patterns containing NAs will be returned for items
that were not administered

pick_theta a number indicating which theta to plot (only applicable for multidimensional
tests). The default is to facet each theta on one plot, but to plot only the first
factor pass pick_theta = 1

true_thetas logical; include a horizontal line indicating where the population-level theta val-
ues are? Only applicable to Monte Carlo simulations because this value would
not be known otherwise

SE size of the standard errors to plot. The default is 1, and therefore plots the stan-
dard error. To obtain the 95% interval use SE = 1.96 (from the z-distribution)

main title of the plot. Will default to 'CAT Standard Errors' or 'CAT ##% Confidence
Intervals' depending on the SE input

par.strip.text plotting argument passed to lattice

par.settings plotting argument passed to lattice

scales plotting argument passed to lattice

Details

All tests will stop once the 'min_SEM' criteria has been reached or classification above or below
the specified cutoffs can be made. If all questions should be answered, users should specify an
extremely small 'min_SEM' or, equivalently, a large 'min_items' criteria to the design list input.

Value

Returns a list object of class 'Person' containing the following elements:

30 mirtCAT

raw_responses A character vector indicating the raws responses to the respective items, where
NA indicates the item was not answered

scored_responses An integer vector of scored responses if the item_answers input was used for
each respective item

items_answered An integer vector indicating the order in which the items were answered

thetas A numeric vector indicating the final theta estimates

SE_thetas A numeric vector indicating the standard errors of the final theta estimates

thetas_history A matrix indicating the progression of updating the theta values during the test

thetas_SE_history A matrix indicating the standard errors for theta after each successive item
was answered

item_time A numeric vector indicating how long the respondent took to answer each question (in
seconds)

demographics A data.frame object containing the information collected on the first page of the
shiny GUI. This is used to store the demographic information for each participant

classification A character vector indicating whether the traits could be classified as ’above’ or
’below’ the desired cutoffs

HTML help files, exercises, and examples

To access examples, vignettes, and exercise files that have been generated with knitr please visit
https://github.com/philchalmers/mirtCAT/wiki.

Modifying the design object directly through customNextItem() (advanced)

In addition to providing a completely defined item-selection map via the customNextItem() func-
tion, users may also wish to control some of the more fine-grained elements of the design object
to adjust the general control parameters of the CAT (e.g., modifying the maximum number of items
to administer, stopping the CAT if something peculiar has been detected in the response patterns,
etc). Note that this feature is rarely required for most applications, though more advanced users
may wish to modify these various low-level elements of the design object directly to change the
flow of the CAT to suit their specific needs.

While the person object is defined as a Reference Class (see setRefClass) the design object is
generally considered a fixed S4 class, meaning that, unlike the person object, it’s elements are not
mutable. Therefore, in order to make changes directly to the design object the users should follow
these steps:

1. Within the defined customNextItem function, the design object slots are first modified (e.g.,
design@max_items <- 20L).

2. Along with the desired next item scalar value from customNextItem(), the scalar object
should also contain an attribute with the name 'design' which holds the newly defined
design object (e.g., attr(ret, 'design') <- design; return(ret)).

Following the above process the work-flow in mirtCAT will use the new design object in place of
the old one, even in Monte Carlo simulations.

https://github.com/philchalmers/mirtCAT/wiki

mirtCAT 31

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

generate_pattern, generate.mirt_object, extract.mirtCAT, findNextItem, computeCriteria

Examples

Not run:

unidimensional scored example with generated items

create mo from estimated parameters
set.seed(1234)
nitems <- 50
itemnames <- paste0('Item.', 1:nitems)
a <- matrix(rlnorm(nitems, .2, .3))
d <- matrix(rnorm(nitems))
dat <- simdata(a, d, 1000, itemtype = 'dich')
mod <- mirt(dat, 1)
coef(mod, simplify=TRUE)

alternatively, define mo from population values (not run)
pars <- data.frame(a1=a, d=d)

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

32 mirtCAT

mod2 <- generate.mirt_object(pars, itemtype='2PL')
coef(mod2, simplify=TRUE)

simple math items
questions <- answers <- character(nitems)
choices <- matrix(NA, nitems, 5)
spacing <- floor(d - min(d)) + 1 #easier items have more variation in the options

for(i in 1:nitems){
n1 <- sample(1:50, 1)
n2 <- sample(51:100, 1)
ans <- n1 + n2
questions[i] <- paste0(n1, ' + ', n2, ' = ?')
answers[i] <- as.character(ans)
ch <- ans + sample(c(-5:-1, 1:5) * spacing[i,], 5)
ch[sample(1:5, 1)] <- ans
choices[i,] <- as.character(ch)

}

df <- data.frame(Question=questions, Option=choices,
Type = 'radio', stringsAsFactors = FALSE)

head(df)

(res <- mirtCAT(df)) #collect response only (no scoring or estimating thetas)
summary(res)

include scoring by providing Answer key
df$Answer <- answers
(res_seq <- mirtCAT(df, mod)) #sequential scoring
(res_random <- mirtCAT(df, mod, criteria = 'random')) #random
(res_MI <- mirtCAT(df, mod, criteria = 'MI', start_item = 'MI')) #adaptive, MI starting item

summary(res_seq)
summary(res_random)
summary(res_MI)

#---
HTML tags for better customization, coerced to characters for compatibility

help(tags, package='shiny')
options <- matrix(c("Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"),

nrow = 3, ncol = 5, byrow = TRUE)
shinyStems <- list(HTML('Building CATs with mirtCAT is difficult.'),

div(HTML('mirtCAT requires a'), br(), HTML('substantial amount of coding.')),
div(strong('I would use'), HTML('mirtCAT in my research.')))

questions <- sapply(shinyStems, as.character)
df <- data.frame(Question=questions,

Option = options,
Type = "radio",
stringsAsFactors=FALSE)

res <- mirtCAT(df)
res

mirtCAT_preamble 33

#---

run locally, random response pattern given Theta
set.seed(1)
pat <- generate_pattern(mod, Theta = 0, df=df)
head(pat)

seq scoring with character pattern for the entire test (adjust min_items)
res <- mirtCAT(df, mod, local_pattern=pat, design = list(min_items = 50))
summary(res)

same as above, but using special input vector that doesn't require df input
set.seed(1)
pat2 <- generate_pattern(mod, Theta = 0)
head(pat2)
print(mirtCAT(mo=mod, local_pattern=pat2))

run CAT, and save results to object called person (start at 10th item)
person <- mirtCAT(df, mod, item_answers = answers, criteria = 'MI',

start_item = 10, local_pattern = pat)
print(person)
summary(person)

plot the session
plot(person) #standard errors
plot(person, SE=1.96) #95 percent confidence intervals

#---

save response object to temp directory in case session ends early
wdf <- paste0(getwd(), '/temp_file.rds')
res <- mirtCAT(df, mod, shinyGUI = list(temp_file = wdf))

resume test this way if test was stopped early (and temp files were saved)
res <- mirtCAT(df, mod, shinyGUI = list(temp_file = wdf))
print(res)

End(Not run)

mirtCAT_preamble Preamble function called by mirtCAT

Description

This is largely an internal function called by mirtCAT, however it is made public for better use with
external web-hosting interfaces (like shinyapps.io). For more information see https://shiny.
rstudio.com/articles/persistent-data-storage.html for further information about saving
output remotely when using shiny.

https://shiny.rstudio.com/articles/persistent-data-storage.html
https://shiny.rstudio.com/articles/persistent-data-storage.html

34 updateDesign

Usage

mirtCAT_preamble(..., final_fun = NULL)

Arguments

... arguments passed to mirtCAT

final_fun a function called just before the shiny GUI has been terminated, primarily for
saving results externally with packages such as rDrop2, RAmazonS3, googlesheets,
RMySQL, personal servers, and so on when applications are hosted on the web.
The function must be of the form final_fun <- function(person){...}, where
person is the standard output returned from mirtCAT

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirtCAT, createShinyGUI, getPerson

Examples

Not run:

mirtCAT_preamble(df = df)

End(Not run)

updateDesign Update design elements

Description

A function that will update the object returned from findNextItem. This can be used to run the
CAT session manually in a set-by-step manner.

Usage

updateDesign(x, new_item, new_response, updateTheta = TRUE)

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

updateDesign 35

Arguments

x an object of class ’mirtCAT_design’ returned from the mirtCAT function when
passing design_elements = TRUE

new_item a numeric vector indicating which items to select

new_response a numeric vector indicating the responses the the selected items

updateTheta logical; update the internal ability terms after the new item response has been
added to the internal objects?

Value

returns an object of class ’mirtCAT_design’ with updated elements.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Envi-
ronment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimen-
sional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/
jss.v071.i05

See Also

mirtCAT, findNextItem

Examples

Not run:

set.seed(1)
nitems <- 100
itemnames <- paste0('Item.', 1:nitems)
a <- matrix(rlnorm(nitems, .2, .3))
d <- matrix(rnorm(nitems))
dat <- simdata(a, d, 500, itemtype = 'dich')
colnames(dat) <- itemnames
mod <- mirt(dat, 1, verbose = FALSE)

test defined in mirtCAT help file, first example
CATdesign <- mirtCAT(mo = mod, criteria = 'MI', design_elements = TRUE,

start_item = 2)

returns 2 in this case, since that was the starting item
findNextItem(CATdesign)

first iteration, no answered items

https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v071.i05
https://doi.org/10.18637/jss.v071.i05

36 updateDesign

CATdesign$person$items_answered

update when next item is item 2 and answered correctly
CATdesign <- updateDesign(CATdesign, new_item = 2, new_response = 1)
CATdesign$person$items_answered # item 2 answered first
CATdesign$person$responses # in item 2 element response was = 1
CATdesign$person$thetas # current estimate
findNextItem(CATdesign)

determine next item if item 70 were also answered correctly next
CATdesign <- updateDesign(CATdesign, new_item = 70, new_response = 1)
CATdesign$person$items_answered
CATdesign$person$responses
findNextItem(CATdesign)

continue on, now with item 95 added next (answered incorrectly)
CATdesign <- updateDesign(CATdesign, new_item = 95, new_response = 0)
CATdesign$person$thetas
CATdesign$person$thetas_history
CATdesign$person$thetas_SE_history
findNextItem(CATdesign)

End(Not run)

Index

∗ adaptive
mirtCAT, 18

∗ computerized
mirtCAT, 18

∗ package
mirtCAT-package, 2

∗ testing
mirtCAT, 18

as.character, 20

browser, 25

checkboxGroupInput, 19
computeCriteria, 3, 10, 31
createSessionName, 4
createShinyGUI, 5, 17, 34

extract.mirt, 7, 8
extract.mirtCAT, 4, 6, 11, 25, 31

findNextItem, 4, 8, 9, 22, 25, 26, 31, 34, 35
fscores, 23, 29

generate.mirt_object, 13, 21, 31
generate_pattern, 14, 15, 22, 31
get_mirtCAT_env, 18
getPerson, 5, 17, 34

h5, 27
HTML, 20, 21, 27

lattice, 29
lp, 10, 11, 25

mirt, 8, 14, 21, 29
mirtCAT, 3–6, 8–11, 13, 14, 16–18, 18, 30,

33–35
mirtCAT-package, 2
mirtCAT_preamble, 5, 17, 33

plot.mirtCAT (mirtCAT), 18

print.mirtCAT (mirtCAT), 18

radioButtons, 19, 22, 28
ReferenceClasses, 25
runApp, 5, 29

sapply, 20
selectInput, 19
setRefClass, 30
shinyApp, 5
sliderInput, 19, 21
stopApp, 5
summary.mirtCAT (mirtCAT), 18

textAreaInput, 19
textInput, 19

updateDesign, 4, 9, 11, 34

37

	mirtCAT-package
	computeCriteria
	createSessionName
	createShinyGUI
	extract.mirtCAT
	findNextItem
	generate.mirt_object
	generate_pattern
	getPerson
	get_mirtCAT_env
	mirtCAT
	mirtCAT_preamble
	updateDesign
	Index

