
Package ‘miselect’
March 31, 2020

Title Variable Selection for Multiply Imputed Data

Version 0.9.0

Description Penalized regression methods, such as lasso and elastic net, are used in
many biomedical applications when simultaneous regression coefficient
estimation and variable selection is desired. However, missing data
complicates the implementation of these methods, particularly when
missingness is handled using multiple imputation. Applying a variable
selection algorithm on each imputed dataset will likely lead
to different sets of selected predictors, making it difficult
to ascertain a final active set without resorting to ad hoc
combination rules. 'miselect' presents Stacked Adaptive Elastic Net (saenet)
and Grouped Adaptive LASSO (galasso) for continuous and binary outcomes,
developed by Du et al (2020), currently under review. They, by construction,
force selection of the same variables across multiply imputed data.
'miselect' also provides cross validated variants of these methods.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Depends R (>= 3.5.0)

Suggests mice, knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Alexander Rix [aut, cre],
Jiacong Du [aut]

Maintainer Alexander Rix <alexrix@umich.edu>

Repository CRAN

Date/Publication 2020-03-31 10:00:06 UTC

1

2 coef.cv.galasso

R topics documented:

coef.cv.galasso . 2
coef.cv.saenet . 3
coef.galasso . 3
coef.saenet . 4
cv.galasso . 4
cv.saenet . 6
galasso . 9
miselect.df . 11
print.cv.galasso . 12
print.cv.saenet . 12
saenet . 13

Index 16

coef.cv.galasso Extract Coefficients From a ’cv.galasso’ Object

Description

Extract Coefficients From a ’cv.galasso’ Object

Usage

S3 method for class 'cv.galasso'
coef(object, lambda = object$lambda.min, ...)

Arguments

object A ’cv.galasso’ fit

lambda Chosen value of lambda. Must be between ’min(lambda)’ and ’max(lambda)’.
Default is ’lambda.min’

... Additional unused arguments

Value

A numeric vector containing the coefficients from running galasso on lambda.

coef.cv.saenet 3

coef.cv.saenet Extract Coefficients From a ’cv.saenet’ Object

Description

Extract Coefficients From a ’cv.saenet’ Object

Usage

S3 method for class 'cv.saenet'
coef(object, lambda = object$lambda.min, alpha = object$alpha.min, ...)

Arguments

object A ’cv.saenet’ fit
lambda Chosen value of lambda. Must be between ’min(lambda)’ and ’max(lambda)’.

Default is ’lambda.min’
alpha Chosen value of alpha. Must be between ’min(alpha)’ and ’max(alpha)’. Default

is ’alpha.min’
... Additional unused arguments

Value

A numeric vector containing the coefficients from running saenet on lambda and alpha.

coef.galasso Extract Coefficients From a ’galasso’ Object

Description

Extract Coefficients From a ’galasso’ Object

Usage

S3 method for class 'galasso'
coef(object, lambda, ...)

Arguments

object A ’galasso’ fit
lambda Chosen value of lambda. Must be between ’min(lambda)’ and ’max(lambda)’.

Default is ’lambda.min’
... Additional unused arguments

Value

A numeric vector containing the coefficients from running galasso on lambda.

4 cv.galasso

coef.saenet Extract Coefficients From a ’saenet’ Object

Description

coef.galasso averages the estimates across imputations to return a single vector instead of a ma-
trix.

Usage

S3 method for class 'saenet'
coef(object, lambda, alpha, ...)

Arguments

object A ’cv.saenet’ fit

lambda Chosen value of lambda. Must be between ’min(lambda)’ and ’max(lambda)’.
Default is ’lambda.min’

alpha Chosen value of alpha. Must be between ’min(alpha)’ and ’max(alpha)’. Default
is ’alpha.min’

... Additional unused arguments

Value

A numeric vector containing the coefficients from running saenet on lambda and alpha.

cv.galasso Cross Validated Multiple Imputation Grouped Adaptive LASSO

Description

Does k-fold cross-validation for galasso, and returns an optimal value for lambda.

Usage

cv.galasso(
x,
y,
pf,
adWeight,
family = c("gaussian", "binomial"),
nlambda = 100,
lambda.min.ratio = 1e-04,
lambda = NULL,
nfolds = 5,

cv.galasso 5

foldid = NULL,
maxit = 10000,
eps = 1e-05

)

Arguments

x A length m list of n * p numeric matrices. No matrix should contain an intercept,
or any missing values

y A length m list of length n numeric response vectors. No vector should contain
missing values

pf Penalty factor. Can be used to differentially penalize certain variables

adWeight Numeric vector of length p representing the adaptive weights for the L1 penalty

family The type of response. "gaussian" implies a continuous response and "binomial"
implies a binary response. Default is "gaussian".

nlambda Length of automatically generated ’lambda’ sequence. If lambda’ is non NULL,
’nlambda’ is ignored. Default is 100

lambda.min.ratio

Ratio that determines the minimum value of ’lambda’ when automatically gen-
erating a ’lambda’ sequence. If ’lambda’ is not NULL, ’lambda.min.ratio’ is
ignored. Default is 1e-4

lambda Optional numeric vector of lambdas to fit. If NULL, galasso will automatically
generate a lambda sequence based off of nlambda and codelambda.min.ratio.
Default is NULL

nfolds Number of foldid to use for cross validation. Default is 5, minimum is 3

foldid an optional length n vector of values between 1 and cv.galasso will automati-
cally generate folds

maxit Maximum number of iterations to run. Default is 10000

eps Tolerance for convergence. Default is 1e-5

Details

cv.galasso works by adding a group penalty to the aggregated objective function to ensure se-
lection consistency across imputations. Simulations suggest that the "stacked" objective function
approaches (i.e., saenet) tend to be more computationally efficient and have better estimation and
selection properties.

Value

An object of type "cv.galasso" with 7 elements:

call The call that generated the output.

lambda The sequence of lambdas fit.

cvm Average cross validation error for each ’lambda’. For family = "gaussian", ’cvm’ corresponds
to mean squared error, and for binomial ’cvm’ corresponds to deviance.

6 cv.saenet

cvse Standard error of ’cvm’.

galasso.fit A ’galasso’ object fit to the full data.

lambda.min The lambda value for the model with the minimum cross validation error.

lambda.1se The lambda value for the sparsest model within one standard error of the minimum
cross validation error.

df The number of nonzero coefficients for each value of lambda.

References

Variable selection with multiply-imputed datasets: choosing between stacked and grouped methods.
Jiacong Du, Jonathan Boss, Peisong Han, Lauren J Beesley, Stephen A Goutman, Stuart Batterman,
Eva L Feldman, and Bhramar Mukherjee. 2020. arXiv:2003.07398

Examples

library(miselect)
library(mice)

set.seed(48109)

Using the mice defaults for sake of example only.
mids <- mice(miselect.df, m = 5, printFlag = FALSE)
dfs <- lapply(1:5, function(i) complete(mids, action = i))

Generate list of imputed design matrices and imputed responses
x <- list()
y <- list()
for (i in 1:5) {

x[[i]] <- as.matrix(dfs[[i]][, paste0("X", 1:20)])
y[[i]] <- dfs[[i]]$Y

}

pf <- rep(1, 20)
adWeight <- rep(1, 20)

fit <- cv.galasso(x, y, pf, adWeight)

By default 'coef' returns the betas for lambda.min.
coef(fit)

cv.saenet Cross Validated Multiple Imputation Stacked Adaptive Elastic Net

Description

Does k-fold cross-validation for saenet, and returns optimal values for lambda and alpha.

cv.saenet 7

Usage

cv.saenet(
x,
y,
pf,
adWeight,
weights,
family = c("gaussian", "binomial"),
alpha = 1,
nlambda = 100,
lambda.min.ratio = 0.001,
lambda = NULL,
nfolds = 5,
foldid = NULL,
maxit = 1000,
eps = 1e-05

)

Arguments

x A length m list of n * p numeric matrices. No matrix should contain an intercept,
or any missing values

y A length m list of length n numeric response vectors. No vector should contain
missing values

pf Penalty factor of length p. Can be used to differentially penalize certain vari-
ables. 0 indicates to not penalize the covariate

adWeight Numeric vector of length p representing the adaptive weights for the L1 penalty
weights Numeric vector of length n containing the proportion observed (non-missing)

for each row in the un-imputed data.
family The type of response. "gaussian" implies a continuous response and "binomial"

implies a binary response. Default is "gaussian".
alpha Elastic net parameter. Can be a vector to cross validate over. Default is 1
nlambda Length of automatically generated ’lambda’ sequence. If lambda’ is non NULL,

’nlambda’ is ignored. Default is 100
lambda.min.ratio

Ratio that determines the minimum value of ’lambda’ when automatically gen-
erating a ’lambda’ sequence. If ’lambda’ is not NULL, ’lambda.min.ratio’ is
ignored. Default is 1e-3

lambda Optional numeric vector of lambdas to fit. If NULL, galasso will automatically
generate a lambda sequence based off of nlambda and codelambda.min.ratio.
Default is NULL

nfolds Number of foldid to use for cross validation. Default is 5, minimum is 3
foldid an optional length n vector of values between 1 and cv.galasso will automati-

cally generate folds
maxit Maximum number of iterations to run. Default is 1000
eps Tolerance for convergence. Default is 1e-5

8 cv.saenet

Details

cv.saenet works by stacking the multiply imputed data into a single matrix and running a weighted
adaptive elastic net on it. Simulations suggest that the "stacked" objective function approaches tend
to be more computationally efficient and have better estimation and selection properties.

Due to stacking, the automatically generated lambda sequence cv.saenet generates may end up
underestimating lambda.max, and thus the degrees of freedom may be nonzero at the first lambda
value.

Value

An object of type "cv.saenet" with 9 elements:

call The call that generated the output.

lambda Sequence of lambdas fit.

cvm Average cross validation error for each lambda and alpha. For family = "gaussian", ’cvm’
corresponds to mean squared error, and for binomial ’cvm’ corresponds to deviance.

cvse Standard error of ’cvm’.

saenet.fit A ’saenet’ object fit to the full data.

lambda.min The lambda value for the model with the minimum cross validation error.

lambda.1se The lambda value for the sparsest model within one standard error of the minimum
cross validation error.

alpha.min The alpha value for the model with the minimum cross validation error.

alpha.1se The alpha value for the sparsest model within one standard error of the minimum cross
validation error.

df The number of nonzero coefficients for each value of lambda and alpha.

References

Variable selection with multiply-imputed datasets: choosing between stacked and grouped methods.
Jiacong Du, Jonathan Boss, Peisong Han, Lauren J Beesley, Stephen A Goutman, Stuart Batterman,
Eva L Feldman, and Bhramar Mukherjee. 2020. arXiv:2003.07398

Examples

library(miselect)
library(mice)

set.seed(48109)

Using the mice defaults for sake of example only.
mids <- mice(miselect.df, m = 5, printFlag = FALSE)
dfs <- lapply(1:5, function(i) complete(mids, action = i))

Generate list of imputed design matrices and imputed responses
x <- list()
y <- list()

galasso 9

for (i in 1:5) {
x[[i]] <- as.matrix(dfs[[i]][, paste0("X", 1:20)])
y[[i]] <- dfs[[i]]$Y

}

Calculate observational weights
weights <- 1 - rowMeans(is.na(miselect.df))
pf <- rep(1, 20)
adWeight <- rep(1, 20)

Since 'Y' is a binary variable, we use 'family = "binomial"'
fit <- cv.saenet(x, y, pf, adWeight, weights, family = "binomial")

By default 'coef' returns the betas for (lambda.min , alpha.min)
coef(fit)

You can also cross validate over alpha

fit <- cv.saenet(x, y, pf, adWeight, weights, family = "binomial",
alpha = c(.5, 1))

Get selected variables from the 1 standard error rule
coef(fit, lambda = fit$lambda.1se, alpha = fit$alpha.1se)

galasso Multiple Imputation Grouped Adaptive LASSO

Description

galasso fits an adaptive LASSO for multiply imputed data. "galasso" supports both continuous
and binary responses.

Usage

galasso(
x,
y,
pf,
adWeight,
family = c("gaussian", "binomial"),
nlambda = 100,
lambda.min.ratio = ifelse(all.equal(adWeight, rep(1, p)), 0.001, 1e-06),
lambda = NULL,
maxit = 10000,
eps = 1e-05

)

10 galasso

Arguments

x A length m list of n * p numeric matrices. No matrix should contain an intercept,
or any missing values

y A length m list of length n numeric response vectors. No vector should contain
missing values

pf Penalty factor. Can be used to differentially penalize certain variables

adWeight Numeric vector of length p representing the adaptive weights for the L1 penalty

family The type of response. "gaussian" implies a continuous response and "binomial"
implies a binary response. Default is "gaussian".

nlambda Length of automatically generated ’lambda’ sequence. If lambda’ is non NULL,
’nlambda’ is ignored. Default is 100

lambda.min.ratio

Ratio that determines the minimum value of ’lambda’ when automatically gen-
erating a ’lambda’ sequence. If ’lambda’ is not NULL, ’lambda.min.ratio’ is
ignored. Default is 1e-4

lambda Optional numeric vector of lambdas to fit. If NULL, galasso will automatically
generate a lambda sequence based off of nlambda and codelambda.min.ratio.
Default is NULL

maxit Maximum number of iterations to run. Default is 10000

eps Tolerance for convergence. Default is 1e-5

Details

galasso works by adding a group penalty to the aggregated objective function to ensure selection
consistency across imputations. The objective function is:

argminβjk
− L(βjk|Xijk, Yik)

+λ ∗ Σpj=1âj ∗ pfj ∗
√

Σmk=1β
2
jk

Where L is the log likelihood,a is the adaptive weights, and pf is the penalty factor. Simulations sug-
gest that the "stacked" objective function approach (i.e., saenet) tends to be more computationally
efficient and have better estimation and selection properties. However, the advantage of galasso is
that it allows one to look at the differences between coefficient estimates across imputations.

Value

An object with type "galasso" and subtype "galasso.gaussian" or galasso.binomial", depending on
which family was used. Both subtypes have 4 elements:

lambda Sequence of lambda fit.

beta p + 1 x nlambda matrix representing the estimated betas at each value of lambda. The betas
are constructed as the average of the betas from each imputation.

df Number of nonzero betas at each value of lambda.

mse For objects with subtype "galasso.gaussian", the training MSE for each value of lambda.

dev For objects with subtype "galasso.binomial", the training deviance for each value of lambda.

miselect.df 11

References

Variable selection with multiply-imputed datasets: choosing between stacked and grouped methods.
Jiacong Du, Jonathan Boss, Peisong Han, Lauren J Beesley, Stephen A Goutman, Stuart Batterman,
Eva L Feldman, and Bhramar Mukherjee. 2020. arXiv:2003.07398

Examples

library(miselect)
library(mice)

mids <- mice(miselect.df, m = 5, printFlag = FALSE)
dfs <- lapply(1:5, function(i) complete(mids, action = i))

Generate list of imputed design matrices and imputed responses
x <- list()
y <- list()
for (i in 1:5) {

x[[i]] <- as.matrix(dfs[[i]][, paste0("X", 1:20)])
y[[i]] <- dfs[[i]]$Y

}

pf <- rep(1, 20)
adWeight <- rep(1, 20)

fit <- galasso(x, y, pf, adWeight)

miselect.df Synthetic Example Data For ’miselect’

Description

This synthetic data is taken from the first simulation case from the miselect paper

Usage

miselect.df

Format

A data.frame with 500 observations on 21 variables:

Y Binary response.

X1-X20 Covariates with missing data.

12 print.cv.saenet

print.cv.galasso Print cv.galasso Objects

Description

print.cv.galasso print the fit and returns it invisibly.

Usage

S3 method for class 'cv.galasso'
print(x, ...)

Arguments

x An object of type "cv.galasso" to print

... Further arguments passed to or from other methods

print.cv.saenet Print cv.saenet Objects

Description

print.cv.saenet print the fit and returns it invisibly.

Usage

S3 method for class 'cv.saenet'
print(x, ...)

Arguments

x An object of type "cv.saenet" to print

... Further arguments passed to or from other methods

saenet 13

saenet Multiple Imputation Stacked Adaptive Elastic Net

Description

Fits an adaptive elastic net for multiply imputed data. The data is stacked and is penalized that each
imputation selects the same betas at each value of lambda. "saenet" supports both continuous and
binary responses.

Usage

saenet(
x,
y,
pf,
adWeight,
weights,
family = c("gaussian", "binomial"),
alpha = 1,
nlambda = 100,
lambda.min.ratio = ifelse(all.equal(adWeight, rep(1, p)), 0.001, 1e-06),
lambda = NULL,
maxit = 1000,
eps = 1e-05

)

Arguments

x A length m list of n * p numeric matrices. No matrix should contain an intercept,
or any missing values

y A length m list of length n numeric response vectors. No vector should contain
missing values

pf Penalty factor. Can be used to differentially penalize certain variables

adWeight Numeric vector of length p representing the adaptive weights for the L1 penalty

weights Numeric vector of length n containing the proportion observed (non-missing)
for each row in the un-imputed data.

family The type of response. "gaussian" implies a continuous response and "binomial"
implies a binary response. Default is "gaussian".

alpha Elastic net parameter. Can be a vector to cross validate over. Default is 1

nlambda Length of automatically generated ’lambda’ sequence. If lambda’ is non NULL,
’nlambda’ is ignored. Default is 100

lambda.min.ratio

Ratio that determines the minimum value of ’lambda’ when automatically gen-
erating a ’lambda’ sequence. If ’lambda’ is not NULL, ’lambda.min.ratio’ is
ignored. Default is 1e-3

14 saenet

lambda Optional numeric vector of lambdas to fit. If NULL, galasso will automatically
generate a lambda sequence based off of nlambda and codelambda.min.ratio.
Default is NULL

maxit Maximum number of iterations to run. Default is 1000

eps Tolerance for convergence. Default is 1e-5

Details

saenet works by stacking the multiply imputed data into a single matrix and running a weighted
adaptive elastic net on it. The objective function is:

argminβj
− 1

n

m∑
k=1

n∑
i=1

oi ∗ L(βj |Yik, Xijk)

+λ(α

p∑
j=1

âj ∗ pfj |βj |

+(1− α)

p∑
j=1

pfj ∗ β2
j)

Where L is the log likelihood, o = w / m, a is the adaptive weights, and pf is the penalty factor.
Simulations suggest that the "stacked" objective function approach (i.e., saenet) tends to be more
computationally efficient and have better estimation and selection properties. However, the advan-
tage of galasso is that it allows one to look at the differences between coefficient estimates across
imputations.

Value

An object with type "saenet" and subtype "saenet.gaussian" or saenet.binomial", depending on
which family was used. Both subtypes have 4 elements:

lambda Sequence of lambda fit.

beta nlambda x nalpha x p + 1 tensor representing the estimated betas at each value of lambda and
alpha.

df Number of nonzero betas at each value of lambda and alpha.

mse For objects with subtype "saenet.gaussian", the training MSE for each value of lambda and
alpha.

dev For objects with subtype "saenet.binomial", the training deviance for each value of lambda and
alpha.

References

Variable selection with multiply-imputed datasets: choosing between stacked and grouped methods.
Jiacong Du, Jonathan Boss, Peisong Han, Lauren J Beesley, Stephen A Goutman, Stuart Batterman,
Eva L Feldman, and Bhramar Mukherjee. 2020. arXiv:2003.07398

saenet 15

Examples

library(miselect)
library(mice)

mids <- mice(miselect.df, m = 5, printFlag = FALSE)
dfs <- lapply(1:5, function(i) complete(mids, action = i))

Generate list of imputed design matrices and imputed responses
x <- list()
y <- list()
for (i in 1:5) {

x[[i]] <- as.matrix(dfs[[i]][, paste0("X", 1:20)])
y[[i]] <- dfs[[i]]$Y

}

Calculate observational weights
weights <- 1 - rowMeans(is.na(miselect.df))
pf <- rep(1, 20)
adWeight <- rep(1, 20)

Since 'Y' is a binary variable, we use 'family = "binomial"'
fit <- saenet(x, y, pf, adWeight, weights, family = "binomial")

Index

∗Topic datasets
miselect.df, 11

coef.cv.galasso, 2
coef.cv.saenet, 3
coef.galasso, 3
coef.saenet, 4
cv.galasso, 4
cv.saenet, 6

galasso, 9

miselect.df, 11

print.cv.galasso, 12
print.cv.saenet, 12

saenet, 13

16

	coef.cv.galasso
	coef.cv.saenet
	coef.galasso
	coef.saenet
	cv.galasso
	cv.saenet
	galasso
	miselect.df
	print.cv.galasso
	print.cv.saenet
	saenet
	Index

