delete_
functions have the argument n_mis_stochastic
now. For some functions, this is only a renaming of the old stochastic
argument (e.g. delete_MCAR()
), for others this is completely new. The new name emphasis that this argument controls if the number of missing values is stochastic or deterministic.delete_MAR_1_to_x()
and delete_MNAR_1_to_x()
get a new argument x_stochastic
along the line of n_mis_stochastic
.missMethods.warn.too.high.p
to control the displaying of warnings for too high values of p
(the probability for a value to be missing).delete_values()
and get_NA_indices()
centralize many steps of the old (not exported) delete_
functions.delete_MAR_
and delete_MNAR_
functions and delete_MCAR()
call the new delete_values()
function now.delete_
functions use the new get_NA_indices()
to determine the missing values.impute_EM()
now returns the number of performed EM iterations as attribute.delete_rank()
now hands the argument ties.method
over to rank()
.delete_one_group()
(wrong argument FUN
instead of cutoff_fun
).median.factor()
(thanks to @labachevskij).impute_LS_adaptive()
has now the default setting warn_r_max = FALSE
.impute_in_classes()
allows to apply any imputation function inside imputation classesimpute_hot_deck_in_classes()
hot deck imputation inside of imputation classes (adjustment cells)impute_EM()
imputes values using EM parameter estimatesimputed_expected_values()
imputes expected values from a multivariate normal distributionimpute_LS_adaptive()
performs LSimpute_adaptive as described by Bo et al. (2004)impute_LS_array()
performs LSimpute_array as described by Bo et al. (2004)impute_LS_combined()
performs LSimpute_combined as described by Bo et al. (2004)impute_LS_gene()
performs LSimpute_gene as described by Bo et al. (2004)cov_only
and cor_only
as parameter
in evaluate_imputation_parameters()
cols
variables: now all should be named cols_mis
, cols_ctrl
etc.ds
variables: now all should be named ds_imp
, ds_orig
etc.pars
variables: now all should be named pars_est
or pars_true
cols_seq
is now correct, if the donor is only one numeric valueFunctions for the creation of missing values:
delete_MAR_censoring()
and delete_MNAR_censoring()
create missing (not) at random values using a censoring mechanismdelete_MAR_one_group()
and delete_MNAR_one_group()
create missing (not) at random values by deleting values in one of two groupsdelete_MAR_rank()
and delete_MNAR_rank()
create missing (not) at random values using a ranking mechanismFunctions for evaluation:
evaluate_imputation_parameters()
compares estimated parameters after imputation to true parametersdelete_MAR_1_to_x()
and delete_MNAR_1_to_x()
can now handle (unordered) factorsevaluate_imputed_values()
and evaluate_parameters()
: six forms of NRMSE, nr_equal, nr_NA and precisionevaluate_imputed_values()
: add argument cols_which
to select columns for evaluation.delete_
functions now take the same first three arguments: ds
, p
, cols_mis
Functions for the creation of missing values:
delete_MCAR()
creates missing completely at random values in different waysdelete_MAR_1_to_x()
and delete_MNAR_1_to_x()
create missing (not) at random values using a 1:x mechanismFunctions for imputation:
impute_mean()
, impute_median()
, impute_mode()
different forms of mean, median and mode imputationimpute_sRHD()
simple Random Hot-Deck imputation with the possibility to specify a donor limitapply_imputation()
a function to apply aggregating functions for imputationFunctions for evaluation:
evaluate_imputed_values()
compares imputed to true valuesevaluate_parameters()
compares estimated to true parametersMiscellaneous:
median.factor()
computes medians for ordered factors