
Package ‘mixComp’
February 25, 2021

Version 0.1-2

Title Estimation of Order of Mixture Distributions

Description Methods for estimating the order of a mixture model. The approaches considered are
based on the following papers (extensive list of references is available in the vignette):
1. Dacunha-Castelle, Didier, and Elisabeth Gassiat. The estimation of the order of a mix-
ture model. Bernoulli 3, no. 3 (1997): 279-
299. <https://projecteuclid.org/download/pdf_1/euclid.bj/1177334456>.
2. Woo, Mi-Ja, and T. N. Sriram. Robust estimation of mixture complexity. Journal of the Ameri-
can Statistical Association 101, no. 476 (2006): 1475-
1486. <doi:10.1198/016214506000000555>.
3. Woo, Mi-Ja, and T. N. Sriram. Robust estimation of mixture complexity for count data. Compu-
tational statistics & data analysis 51, no. 9 (2007): 4379-4392. <doi:10.1016/j.csda.2006.06.006>.
4. Umashanger, T., and T. N. Sriram. L2E estimation of mixture complexity for count data. Com-
putational statistics & data analysis 53, no. 12 (2009): 4243-
4254. <doi:10.1016/j.csda.2009.05.013>.
5. Karlis, Dimitris, and Evdokia Xekalaki. On testing for the number of compo-
nents in a mixed Poisson model. Annals of the Institute of Statistical Mathemat-
ics 51, no. 1 (1999): 149-162. <doi:10.1023/A:1003839420071>.
6. Cutler, Adele, and Olga I. Cordero-Brana. Minimum Hellinger Distance Estimation for Fi-
nite Mixture Models. Journal of the American Statistical Association 91, no. 436 (1996): 1716-
1723. <doi:10.2307/2291601>.
A number of datasets are included.
1. accidents, from Karlis, Dimitris, and Evdokia Xekalaki. On testing for the number of compo-
nents in a mixed Poisson model. Annals of the Institute of Statistical Mathemat-
ics 51, no. 1 (1999): 149-162. <doi:10.1023/A:1003839420071>.
2. acidity, from Sybil L. Crawford, Morris H. DeG-
root, Joseph B. Kadane & Mitchell J. Small (1992) Modeling Lake-Chemistry Distributions: Ap-
proximate Bayesian Methods for Estimating a Finite-Mixture Model, Technometrics, 34:4, 441-
453. <doi:10.1080/00401706.1992.10484955>.
3. children, from Thisted, R. A. (1988). Elements of statistical computing: Numerical computa-
tion (Vol. 1). CRC Press.
4. faithful, from R package ``datasets''; Azzalini, A. and Bow-
man, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics, 39, 357--
365. <https://www.jstor.org/stable/2347385>.
5. shakespeare, from Efron, Bradley, and Ronald Thisted. ``Estimating the number of un-
seen species: How many words did Shakespeare know?.'' Biometrika 63.3 (1976): 435-

1

2 R topics documented:

447. <doi:10.1093/biomet/63.3.435>.

Depends R (>= 3.5.0)

Imports cluster, boot, expm, matrixcalc, Rsolnp, kdensity

Suggests knitr, rmarkdown

License GPL-3

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Anja Weigel [aut],
Yulia Kulagina [aut, cre],
Fadoua Balabdaoui [aut, ths],
Lilian Mueller [ctb],
Martin Maechler [ctb] (package 'nor1mix' as model,
<https://orcid.org/0000-0002-8685-9910>)

Maintainer Yulia Kulagina <yulia.kulagina@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2021-02-25 15:50:07 UTC

R topics documented:
accidents . 3
acidity . 4
children . 5
datMix . 6
dMix . 9
faithful . 10
hellinger.cont . 11
hellinger.disc . 15
L2.disc . 18
Mix . 21
mix.lrt . 23
nonparamHankel . 25
paramHankel . 28
plot.Mix . 31
plot.rMix . 33
rMix . 34
RtoDat . 36
shakespeare . 38

Index 40

accidents 3

accidents Accidents Dataset

Description

Number of accidents incurred by 414 machinists over a period of three months from Karlis and
Xekalaki (1999).

Usage

data(accidents)

Format

A data frame with 414 observations on 1 variable. Replicates are generated to reflect the number
of accidents n incurred by michinists over a tree-month period (n = 0, 2, ..., 8). As there are 296
machinists that had no accidents, 0 appears 296 times in the data, as there are 74 machinists that
had one accident, 1 appears 74 times in the data, etc.

Source

Karlis, D., Xekalaki, E. (1999) On Testing for the Number of Components in a Mixed Poisson
Model. Annals of the Institute of Statistical Mathematics 51, 149-162.

Examples

data(accidents)

convert the data to vector:
accidents.obs <- unlist(accidents)

generate MLE function:
MLE.pois <- function(dat) mean(dat)

generate function needed for estimating the j^th moment of the
mixing distribution via Hankel.method "explicit"

explicit.pois <- function(dat, j){
mat <- matrix(dat, nrow = length(dat), ncol = j) -

matrix(0:(j-1), nrow = length(dat), ncol = j, byrow = TRUE)
return(mean(apply(mat, 1, prod)))

}

construct a 'datMix' object:
accidents.dM <- datMix(accidents.obs, dist = "pois", discrete = TRUE,

Hankel.method = "explicit",
Hankel.function = explicit.pois,
theta.bound.list = list(lambda = c(0, Inf)),
MLE.function = MLE.pois)

4 acidity

define the penalty:
pen <- function(j, n) j * log(n)

complexity estimation:
set.seed(0)
res <- paramHankel(accidents.dM, j.max = 5, B = 1000, ql = 0.025, qu = 0.975)

plot the results:
plot(res, breaks = 8, ylim = c(0, 0.8))

acidity Acidity Dataset

Description

Data for the Acidity index on the log-scale for 155 lakes in North-Central Wisconsin from the
Eastern Lake Survey. The measurements are acid neutralizing capacity (ANC) on the log scale;
specifically, log(ANC + 50). The Acidity index describes the capability of a lake to absorb acid;
low ANC values can lead to a loss of biological resources, see Crawford (1994).

Usage

data(acidity)

Format

A data frame with 155 observations on 1 variable.

Source

Crawford et al. (1992) Modeling Lake-Chemistry Distributions: Approximate Bayesian Methods
for Estimating a Finite-Mixture Model, Technometrics, 34:4, 441-453

Examples

data(acidity)

acidity.obs <- unlist(acidity)

define the MLE functions for the mean and sd:
MLE.norm.mean <- function(dat) mean(dat)
MLE.norm.sd <- function(dat){

sqrt((length(dat) - 1) / length(dat)) * sd(dat)
}
MLE.norm.list <- list("MLE.norm.mean" = MLE.norm.mean, "MLE.norm.sd" = MLE.norm.sd)

define the range for parameter values:
norm.bound.list <- list("mean" = c(-Inf, Inf), "sd" = c(0, Inf))

children 5

create 'datMix' object:
acidity.dM <- datMix(acidity.obs, dist = "norm", discrete = FALSE,

MLE.function = MLE.norm.list,
theta.bound.list = norm.bound.list)

set.seed(0)
res <- mix.lrt(acidity.dM, B = 50, quantile = 0.95)
plot(res)

children Children Dataset

Description

Number of children of 4075 widows entitled to support from a certain pension fund from Thisted
(1988).

Usage

data(children)

Format

A data frame with 4075 observations on 1 variable. Replicates are generated to reflect the number
of children n that widows entitled to support have (n = 0, 1, ..., 6). As there are 3062 widows that
have no children, 0 appears 3062 times in the data, as there are 587 widows that have one child, 1
appears 587 times in the data, etc.

Source

Thisted, R. A. (1988). Elements of statistical computing: Numerical computation (Vol. 1). CRC
Press.

Examples

data(children)

convert the data to vector:
children.obs <- unlist(children)

explicit function giving the estimate for the j^th moment of the
mixing distribution, needed for Hankel.method "explicit"
explicit.pois <- function(dat, j){

mat <- matrix(dat, nrow = length(dat), ncol = j) -
matrix(0:(j-1), nrow = length(dat), ncol = j, byrow = TRUE)

return(mean(apply(mat, 1, prod)))
}

6 datMix

define the MLE function:
MLE.pois <- function(dat) mean(dat)

construct a 'datMix' object:
children.dM <- datMix(children.obs, dist = "pois", discrete = TRUE,

Hankel.method = "explicit",
Hankel.function = explicit.pois,
theta.bound.list = list(lambda = c(0, Inf)),
MLE.function = MLE.pois)

define the penalty:
pen <- function(j, n) j * log(n)

complexity estimation:

set.seed(0)
det_sca_pen <- nonparamHankel(children.dM, j.max = 5, scaled = TRUE,

B = 1000, pen.function = pen)
plot(det_sca_pen, main = "Non-parametric Hankel method for Children dataset")

datMix Constructor for Objects for Which to Estimate the Mixture Complexity

Description

Function to generate objects of class datMix to be passed to other mixComp functions used for
estimating mixture complexity.

Usage

datMix(dat, dist, discrete = NULL, theta.bound.list = NULL,
MLE.function = NULL, Hankel.method = NULL, Hankel.function = NULL)

is.datMix(x)

S3 method for class 'datMix'
print(x, ...)

Arguments

dat numeric vector containing observations from the mixture model.
dist character string providing the (abbreviated) name of the component distribution,

such that the function ddist evaluates its density function and rdist generates
random numbers. The function sources functions for the density/mass estima-
tion and random variate generation from distributions in distributions, so the
abbreviations should be specified accordingly. Thus to create a gaussian mix-
ture, set dist = "norm", for a poisson mixture, set dist = "pois". The MixComp
functions will find the functions dnorm, rnorm and dpois, rpois respectively.

datMix 7

discrete logical flag indicating whether the mixture distribution is discrete, required for
methods that estimate component weights and parameters.

theta.bound.list

named list specifying the upper and lower bounds for the component param-
eters. The names of the list elements have to match the names of the formal
arguments of the functions ddist and rdist exactly as specified in the distribu-
tions in distributions. For a gaussian mixture, the list elements would have
to be named mean and sd, as these are the formal arguments used by rnorm and
dnorm. Has to be supplied if a method that estimates the component weights and
parameters is to be used.

MLE.function function (or a list of functions) which takes the data as input and outputs the
maximum likelihood estimator for the parameter(s) the component distribution
dist. If the component distribution has more than one parameter, a list of func-
tions has to be supplied and the order of the MLE functions has to match the or-
der of the component parameters in theta.bound.list (e.g. for a normal mix-
ture, if the first entry of theta.bound.list is the bounds of the mean, then then
first entry of MLE.function has to be the MLE of the mean). If this argument
is supplied and the datMix object is handed over to a complexity estimation
procedure relying on optimizing over a likelihood function, the MLE.function
attribute will be used for the single component case. In case the objective func-
tion is neither a likelihood nor corresponds to a mixture with more than 1 com-
ponent, numerical optimization will be used based on Rsolnp’s function solnp,
but MLE.function will be used to calculate the initial values passed to solnp.
Specifying MLE.function is optional. If not supplied, for example because the
MLE solution does not exist in a closed form, numerical optimization is used to
find the relevant MLE.

Hankel.method character string in c("explicit","translation","scale"), specifying the
method of estimating the moments of the mixing distribution used to calculate
the relevant Hankel matrix. Has to be specified when using nonparamHankel,
paramHankel or paramHankel.scaled. For further details see below.

Hankel.function

function required for the moment estimation via Hankel.method. This normally
depends on Hankel.method as well as dist. For further details see below.

x in is.datMix(): returns TRUE if the argument is a datMix object and FALSE
otherwise.

in print.datMix(): object of class datMix.

... further arguments passed to the print method.

Details

If the datMix object is supposed to be passed to a function that calculates the Hankel matrix of the
moments of the mixing distribution (i.e. nonparamHankel, paramHankel or paramHankel.scaled),
the arguments Hankel.method and Hankel.function have to be specified. The Hankel.methods
that can be used to generate the estimate of the (raw) moments of the mixing distribution and the
corresponding Hankel.functions are the following, where j specifies an estimate of the number
of components:

8 datMix

"explicit" For this method, Hankel.function contains a function with arguments called dat
and j, explicitly estimating the moments of the mixing distribution from the data and as-
sumed mixture complexity at current iteration. Note that what Dacunha-Castelle & Gassiat
(1997) called the "natural" estimator in their paper is equivalent to using "explicit" with
Hankel.function

fj((1/n) ∗
∑
i

(ψj(Xi))).

"translation" This method corresponds to Dacunha-Castelle & Gassiat’s (1997) example 3.1. It
is applicable if the family of component distributions (Gθ) is given by

dGθ(x) = dG(x− θ),

whereG is a known probability distribution, such that its moments can be expressed explicitly.
Hankel.function contains a function of j returning the jth (raw) moment of G.

"scale" This method corresponds to Dacunha-Castelle & Gassiat’s (1997) example 3.2. It is ap-
plicable if the family of component distributions (Gθ) is given by

dGθ(x) = dG(x/θ),

whereG is a known probability distribution, such that its moments can be expressed explicitly.
Hankel.function contains a function of j returning the jth (raw) moment of G.

If the datMix object is supposed to be passed to a function that estimates the component weights and
parameters (i.e. all but nonparamHankel), the arguments discrete and theta.bound.list have
to be specified, and MLE.function will be used in the estimation process if it is supplied (otherwise
the MLE is found numerically).

Value

Object of class datMix with the following attributes (for further explanations see above):

dist character string giving the abbreviated name of the component distribution, such
that the function ddist evaluates its density/mass and rdist generates random
variates.

discrete logical flag indicating whether the mixture distribution is discrete.
theta.bound.list

named list specifying the upper and lower bounds for the component parameters.

MLE.function function which computes the MLE of the component distribution dist.

Hankel.method character string taking on values "explicit", "translation", or "scale",
specifying the method of estimating the moments of the mixing distribution to
compute the corresponding Hankel matrix.

Hankel.function

function required for the moment estimation via Hankel.method. See details
for more information.

See Also

RtoDat for conversion of rMix to datMix objects.

dMix 9

Examples

observations from a (presumed) mixture model
obs <- faithful$waiting

generate list of parameter bounds (assuming gaussian components)
norm.bound.list <- list("mean" = c(-Inf, Inf), "sd" = c(0, Inf))

generate MLE functions
for "mean"
MLE.norm.mean <- function(dat) mean(dat)
for "sd" (the sd function uses (n-1) as denominator)
MLE.norm.sd <- function(dat){

sqrt((length(dat) - 1) / length(dat)) * sd(dat)
}
combining the functions to a list
MLE.norm.list <- list("MLE.norm.mean" = MLE.norm.mean,

"MLE.norm.sd" = MLE.norm.sd)

function giving the j^th raw moment of the standard normal distribution,
needed for calculation of the Hankel matrix via the "translation" method
(assuming gaussian components with variance 1)

mom.std.norm <- function(j){
ifelse(j %% 2 == 0, prod(seq(1, j - 1, by = 2)), 0)

}

generate 'datMix' object
faithful.dM <- datMix(obs, dist = "norm", discrete = FALSE,

theta.bound.list = norm.bound.list, MLE.function = MLE.norm.list,
Hankel.method = "translation", Hankel.function = mom.std.norm)

using 'datMix' object to estimate the mixture complexity
set.seed(1)
res <- paramHankel.scaled(faithful.dM)
plot(res)

dMix Mixture density

Description

Evaluation of the (log) density function of a mixture specified as a Mix object.

Usage

dMix(x, obj, log = FALSE)

10 faithful

Arguments

x vector of quantiles.

obj object of class Mix.

log logical flag, if TRUE, probabilities/densities f are returned as log(f).

Value

dMix(x) returns a numeric vector of probability values f(x) and logarithm thereof if log is TRUE.

See Also

Mix for the construction of Mix objects, rMix for random number generation (and construction of
rMix objects) and plot.Mix for plotting the densities computed using dMix.

Examples

define 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))

evaluate density at points x
x <- seq(7, 20, length = 501)
dens <- dMix(x, normLocMix)
plot(x, dens, type = "l")

compare to plot.Mix
plot(normLocMix)

faithful Faithful Dataset

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming, USA from datasets.

Usage

data(faithful)

Format

A data frame with 272 observations on 2 variables:

eruptions numeric, eruption time in mins

waiting numeric, waiting time to next eruption (in mins)

hellinger.cont 11

Source

1. Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser.
Applied Statistics, 39, 357–365.

2. datasets

Examples

data(faithful)

faithful.obs <- faithful$waiting

function giving the j^th raw moment of the standard normal distribution,
needed for calculation of the Hankel matrix via the "translation" method
(assuming gaussian components with variance 1)
mom.std.norm <- function(j){

ifelse(j %% 2 == 0, prod(seq(1, j - 1, by = 2)), 0)
}

generate list of parameter bounds
norm.bound.list <- list("mean" = c(-Inf, Inf), "sd" = c(0, Inf))

define the MLE functions for the mean and sd:
MLE.norm.mean <- function(dat) mean(dat)
MLE.norm.sd <- function(dat){
sqrt((length(dat) - 1) / length(dat)) * sd(dat)
}
MLE.norm.list <- list("MLE.norm.mean" = MLE.norm.mean, "MLE.norm.sd" = MLE.norm.sd)

construct a 'datMix' object that summarizes all the necessary information:
faithful.dM <- datMix(faithful.obs, dist = "norm", discrete = FALSE,

theta.bound.list = norm.bound.list,
MLE.function = MLE.norm.list, Hankel.method = "translation",
Hankel.function = mom.std.norm)

estimate the number of components and plot the results:
res <- hellinger.cont(faithful.dM, bandwidth = 4,

sample.n = 5000, threshold = "AIC")
plot(res)

hellinger.cont Estimation of a Continuous Mixture Complexity Based on Hellinger
Distance

Description

Estimation of a continuous mixture complexity as well as its component weights and parameters by
minimizing the squared Hellinger distance to a kernel density estimate.

12 hellinger.cont

Usage

hellinger.cont(obj, bandwidth, j.max = 10, threshold = "SBC", sample.n = 5000,
sample.plot = FALSE, control = c(trace = 0))

hellinger.boot.cont(obj, bandwidth, j.max = 10, B = 100, ql = 0.025,
qu = 0.975, sample.n = 3000, sample.plot = FALSE,
control = c(trace = 0), ...)

Arguments

obj object of class datMix.

bandwidth numeric, indicating the bandwidth to be used. Can also be set to "adaptive" if the
adaptive kernel density estimator as defined by Cutler & Cordero-Brana (1996,
page 1720, Equation 2) should be employed.

j.max integer stating the maximal number of components to be considered.

threshold function or character string in c("AIC","SBC") specifying which threshold should
be used to compare two mixture estimates of complexities j and j + 1. If the
difference in minimized squared distances is smaller than the relevant threshold,
j will be returned as complexity estimate.

sample.n integer, specifying the sample size to be used for approximation of the objective
function (see details).

sample.plot logical, indicating whether the histogram of the sample drawn to approximate
the objective function should be plotted.

control control list of optimization parameters, see solnp.

B integer, specifying the number of bootstrap replicates.

ql numeric between 0 and 1, specifying the lower quantile to which the observed
difference in minimized squared distances will be compared.

qu numeric between 0 and 1, specifying the upper quantile to which the observed
difference in minimized squared distances will be compared.

... further arguments passed to the boot function.

Details

Define the complexity of a finite continuous mixture F as the smallest integer p, such that its
probability density function (pdf) f can be written as

f(x) = w1 ∗ g(x; θ1) + . . .+ wp ∗ g(x; θp).

Further, let g, f be two probability density functions. The squared Hellinger distance between g and
f is given by

H2(g, f) =

∫
(
√
g(x)−

√
f(x))2 = 2− 2

∫ √
f(x)

√
g(x),

where
√
g(x), respectively

√
f(x) denotes the square root of the probability density functions at

point x. To estimate p, hellinger.cont iteratively increases the assumed complexity j and finds

hellinger.cont 13

the "best" estimate for both, the pdf of a mixture with j and j+1 components, ideally by calculating
the parameters that minimize the sum of squared Hellinger distances to a kernel density estimate
evaluated at each point. Since the computational burden of optimizing over an integral to find the
"best" component weights and parameters is immense, the algorithm approximates the objective
function by sampling sample.n observations Yi from the kernel density estimate and using

2− 2
∑√

f(Yi)/
√
g(Yi),

instead, with f being the mixture density and g being the kernel density estimate. Once the "best"
parameters have been obtained, the difference in squared distances is compared to a predefined
threshold. If this difference is smaller than the threshold, the algorithm terminates and the true
complexity is estimated as j, otherwise j is increased by 1 and the procedure is started over. The
predefined thresholds are the "AIC" given by

(d+ 1)/n

and the "SBC" given by
(d+ 1)log(n)/(2n),

n being the sample size and d the number of component parameters, i.e. θ is in Rd. Note that, if a
customized function is to be used, it may only take the arguments j and n, so if the user wants to in-
clude the number of component parameters d, it has to be entered explicitly. hellinger.boot.cont
works similarly to hellinger.cont with the exception that the difference in squared distances is
not compared to a predefined threshold but a value generated by a bootstrap procedure. At every
iteration (j), the function sequentially tests p = j versus p = j + 1 for j = 1, 2, . . ., using a para-
metric bootstrap to generate B samples of size n from a j-component mixture given the previously
calculated "best" parameter values. For each of the bootstrap samples, again the "best" estimates
corresponding to pdfs with j and j + 1 components are calculated, as well as their difference in
approximated squared Hellinger distances from the kernel density estimate. The null hypothesis
H0 : p = j is rejected and j increased by 1 if the original difference in squared distances lies
outside of the interval [ql, qu], specified by the ql and qu empirical quantiles of the bootstrapped
differences. Otherwise, j is returned as the complexity estimate. To calculate the minimum of the
Hellinger distance (and the corresponding parameter values), the solver solnp is used. The ini-
tial values supplied to the solver are calculated as follows: the data is clustered into j groups by
the function clara and the data corresponding to each group is given to MLE.function (if sup-
plied to the datMix object obj, otherwise numerical optimization is used here as well). The size
of the groups is taken as initial component weights and the MLE’s are taken as initial component
parameter estimates.

Value

Object of class paramEst with the following attributes:

dat data based on which the complexity is estimated.

dist character string stating the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density/ mass function and rdist
generates random variates.

ndistparams integer specifying the number of parameters identifying the component distri-
bution, i.e. if θ is in Rd then ndistparams= d.

14 hellinger.cont

formals.dist string vector specifying the names of the formal arguments identifying the dis-
tribution dist and used in ddist and rdist, e.g. for a gaussian mixture (dist =
norm) amounts to mean and sd, as these are the formal arguments used by dnorm
and rnorm.

discrete logical indicating whether the underlying mixture distribution is discrete. Will
always be FALSE in this case.

mle.fct attribute MLE.function of obj.

pars say the complexity estimate is equal to some j. Then pars is a numeric vector
of size (d+1)∗j−1 specifying the component weight and parameter estimates,
given as

(w1, ...wj−1, θ11, ...θ1j , θ21, ...θdj).

values numeric vector of function values gone through during optimization at iteration
j, the last entry being the value at the optimum.

convergence integer, indicating whether the solver has converged (0) or not (1 or 2) at iteration
j.

References

Details can be found in

1. M.-J. Woo and T. Sriram, "Robust Estimation of Mixture Complexity", Journal of the Ameri-
can Statistical Association, Vol. 101, No. 476, 1475-1486, Dec. 2006.

2. A. Cutler, O.I. Cordero-Brana, "Minimum Hellinger Distance Estimation for Finite Mixture
Models." Journal of the American Statistical Association, Vol. 91, No. 436, 1716-1723, Dec.
1996.

See Also

hellinger.disc for the same estimation method for discrete mixtures, solnp for the solver, datMix
for the creation of the datMix object.

Examples

generating 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))

generating 'rMix' from 'Mix' object (with 1000 observations)
set.seed(1)
normLocRMix <- rMix(10000, normLocMix)

generating 'datMix' from 'R' object

generate list of parameter bounds

norm.bound.list <- list("mean" = c(-Inf, Inf), "sd" = c(0, Inf))

generate MLE functions

hellinger.disc 15

for "mean"
MLE.norm.mean <- function(dat) mean(dat)
for "sd" (the sd function uses (n-1) as denominator)
MLE.norm.sd <- function(dat){
sqrt((length(dat) - 1) / length(dat)) * sd(dat)
}
combining the functions to a list
MLE.norm.list <- list("MLE.norm.mean" = MLE.norm.mean,

"MLE.norm.sd" = MLE.norm.sd)

generating 'datMix' object
normLoc.dM <- RtoDat(normLocRMix, theta.bound.list = norm.bound.list,

MLE.function = MLE.norm.list)

complexity and parameter estimation
Not run:
set.seed(0)
res <- hellinger.cont(normLoc.dM, bandwidth = 0.5, sample.n = 5000)
plot(res)

End(Not run)

hellinger.disc Estimation of a Discrete Mixture Complexity Based on Hellinger Dis-
tance

Description

Estimation of a discrete mixture complexity as well as its component weights and parameters by
minimizing the squared Hellinger distance to the empirical probability mass function.

Usage

hellinger.disc(obj, j.max = 10, threshold = "SBC", control = c(trace = 0))

hellinger.boot.disc(obj, j.max = 10, B = 100, ql = 0.025, qu = 0.975,
control = c(trace = 0), ...)

Arguments

obj object of class datMix.

j.max integer, stating the maximal number of components to be considered.

threshold function or character string in c("AIC","SBC") specifying which threshold should
be used to compare two mixture estimates of complexities j and j + 1. If the
difference in minimized squared distances is smaller than the relevant threshold,
j will be returned as complexity estimate.

16 hellinger.disc

control control list of optimization parameters, see solnp.

B integer, specifying the number of bootstrap replicates.

ql numeric between 0 and 1 specifying the lower quantile to which the observed
difference in minimized squared distances will be compared.

qu numeric between 0 and 1 specifying the upper quantile to which the observed
difference in minimized squared distances will be compared.

... further arguments passed to the boot function.

Details

Define the complexity of a finite discrete mixture F as the smallest integer p, such that its proba-
bility mass function (pmf) f can be written as

f(x) = w1 ∗ g(x; θ1) + . . .+ wp ∗ g(x; θp).

Let g, f be two probability mass functions. The squared Hellinger distance between g and f is
given by

H2(g, f) =
∑

(
√
g(x)−

√
f(x))2,

where
√
g(x) and

√
f(x) denote the square roots of the respective probability mass functions at

point x. To estimate p, hellinger.disc iteratively increases the assumed complexity j and finds
the "best" estimate for the pmf of a mixture with j and the pmf of a mixture with j+1 components,
by calculating the parameters that minimize the sum of squared Hellinger distances to the empirical
probability mass function at given points. Once these parameters have been obtained, the difference
in squared distances is compared to a predefined threshold. If this difference is smaller than
the threshold, the algorithm terminates and the true complexity is estimated as j, otherwise j is
increased by 1. The predefined thresholds are the "AIC" given by

(d+ 1)/n

and the "SBC" given by
(d+ 1)log(n)/(2n),

n being the sample size and d the number of component parameters, i.e. θ is in Rd. Note that, if a
customized function is to be used, it may only take the arguments j and n, so if the user wants to in-
clude the number of component parameters d, it has to be entered explicitly. hellinger.boot.disc
works similarly to hellinger.disc with the exception that the difference in squared distances is
compared to a value generated via a bootstrap procedure instead of being compared to a predefined
threshold. At every iteration (of j), the function sequentially tests p = j versus p = j + 1 for
j = 1, 2, . . ., using a parametric bootstrap to generate B samples of size n from a j-component
mixture given the previously calculated "best" parameter values. For each of the bootstrap samples,
again the "best" estimates corresponding to pmfs with j and j + 1 components are computed, as
well as their difference in squared Hellinger distances from the empirical probability mass func-
tion. The null hypothesis H0 : p = j is rejected and j increased by 1 if the original difference in
squared distances lies outside of the interval [ql, qu], specified by ql and qu, empirical quantiles of
the bootstrapped differences. Otherwise, j is returned as the complexity estimate. To calculate the
minimum of the Hellinger distance (and the corresponding parameter values), the solver solnp is
used. The initial values supplied to the solver are calculated as follows: the data is clustered into j
groups by the function clara and the data corresponding to each group is given to MLE.function (if

hellinger.disc 17

supplied to the datMix object obj, otherwise numerical optimization is used here as well). The size
of the groups is taken as initial component weights and the MLE’s are taken as initial component
parameter estimates.

Value

Object of class paramEst with the following attributes:

dat data based on which the complexity is estimated.

dist character string stating the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density/ mass function and rdist
generates random variates.

ndistparams integer specifying the number of parameters identifying the component distri-
bution, i.e. if θ is in R^d then ndistparams= d.

formals.dist string vector specifying the names of the formal arguments identifying the dis-
tribution dist and used in ddist and rdist, e.g. for a gaussian mixture (dist =
norm) amounts to mean and sd, as these are the formal arguments used by dnorm
and rnorm.

discrete logical flag indicating whether the underlying mixture distribution is discrete.
Will always be TRUE in this case.

mle.fct attribute MLE.function of obj.

pars say the complexity estimate is equal to some j. Then pars is a numeric vector
of size (d+1)∗j−1 specifying the component weight and parameter estimates,
given as

(w1, ...wj−1, θ11, ...θ1j , θ21, ...θdj).

values numeric vector of function values gone through during optimization at iteration
j, the last entry being the value at the optimum.

convergence integer indicating whether the solver has converged (0) or not (1 or 2) at iteration
j.

References

M.-J. Woo and T. Sriram, "Robust estimation of mixture complexity for count data", Computational
Statistics and Data Analysis 51, 4379-4392, 2007.

See Also

L2.disc for the same estimation method using the L2 distance, hellinger.cont for the same
estimation method for continuous mixtures, solnp for the solver, datMix for the creation of the
datMix object.

Examples

create 'Mix' object
poisMix <- Mix("pois", , discrete = TRUE, w = c(0.45, 0.45, 0.1), lambda = c(1, 5, 10))

18 L2.disc

create random data based on 'Mix' object (gives back 'rMix' object)
set.seed(0)
poisRMix <- rMix(1000, obj = poisMix)

create 'datMix' object for estimation

generate list of parameter bounds
poisList <- list("lambda" = c(0,Inf))

generate MLE function
MLE.pois <- function(dat){

mean(dat)
}

generating 'datMix' object
pois.dM <- RtoDat(poisRMix, theta.bound.list = poisList, MLE.function = MLE.pois)

complexity and parameter estimation
set.seed(0)
res <- hellinger.disc(pois.dM)
plot(res)

L2.disc Estimate a Discrete Mixture’s Complexity Based on L2 Distance

Description

Estimation of a discrete mixture’s complexity as well as its component weights and parameters by
minimizing the squared L2 distance to the empirical probability mass function.

Usage

L2.disc(obj, j.max = 10, n.inf = 1000, threshold = "SBC", control = c(trace = 0))

L2.boot.disc(obj, j.max = 10, n.inf = 1000, B = 100, ql = 0.025, qu = 0.975,
control = c(trace = 0), ...)

Arguments

obj object of class datMix.

j.max integer stating the maximal number of components to be considered.

n.inf integer, the L2 distance contains an infinite sum, which will be approximated by
a sum ranging from 0 to n.inf.

threshold function or character string in c("LIC","SBC") specifying which threshold should
be used to compare two mixture estimates of complexities j and j + 1. If the
difference in minimized squared distances is smaller than the relevant threshold,
j will be returned as complexity estimate.

L2.disc 19

control control list of optimization parameters, see solnp.

B integer specifying the number of bootstrap replicates.

ql numeric between 0 and 1 specifying the lower quantile to which the observed
difference in minimized squared distances will be compared.

qu numeric between 0 and 1 specifying the upper quantile to which the observed
difference in minimized squared distances will be compared.

... further arguments passed to the boot function.

Details

Define the complexity of a finite discrete mixture F as the smallest integer p, such that its proba-
bility mass function (pmf) f can be written as

f(x) = w1 ∗ g(x; θ1) + . . .+ wp ∗ g(x; θp).

Further, let g, f be two probability mass functions. The squared L2 distance between g and f is
given by

L2
2(g, f) =

∑
(g(x)− f(x))2.

To estimate p, L2.disc iteratively increases the assumed complexity j and finds the "best" estimate
for both, the pmf of a mixture with j and j + 1 components, by calculating the parameters that
minimize the squared L2 distances to the empirical probability mass function. The infinite sum
contained in the objective function will be approximated by a sum ranging from 0 to n.inf, set
to 1000 by default. Once the "best" parameters have been obtained, the difference in squared dis-
tances is compared to a predefined threshold. If this difference is smaller than the threshold, the
algorithm terminates and the true complexity is estimated as j, otherwise j is increased by 1 and
the procedure is started over. The predefined thresholds are the "LIC" given by

0.6 ∗ log((j + 1)/j)/n

and the "SBC" given by
0.6 ∗ log(n) ∗ log((j + 1)/j)/n,

n being the sample size. Note that, if a customized function is to be used, it may only take the
arguments j and n. L2.boot.disc works similarly to L2.disc with the exception that the difference
in squared distances is not compared to a predefined threshold but a value generated by a bootstrap
procedure. At every iteration (of j), the function sequentially tests p = j versus p = j + 1 for
j = 1, 2, . . ., using a parametric bootstrap to generate B samples of size n from a j-component
mixture given the previously calculated "best" parameter values. For each of the bootstrap samples,
again the "best" estimates corresponding to pmfs with j and j + 1 components are calculated, as
well as their difference in squared L2 distances from the empirical probability mass function. The
null hypothesis H0 : p = j is rejected and j increased by 1 if the original difference in squared
distances lies outside of the interval [ql, qu], specified by the ql and qu empirical quantiles of the
bootstrapped differences. Otherwise, j is returned as the complexity estimate. To calculate the
minimum of the L2 distance (and the corresponding parameter values), the solver solnp is used.
The initial values supplied to the solver are calculated as follows: the data is clustered into j groups
by the function clara and the data corresponding to each group is given to MLE.function (if
supplied to the datMix object obj, otherwise numerical optimization is used here as well). The size
of the groups is taken as initial component weights and the MLE’s are taken as initial component
parameter estimates.

20 L2.disc

Value

Object of class paramEst with the following attributes:

dat data based on which the complexity is estimated.

dist character string stating the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density function and rdist generates
random numbers.

ndistparams integer specifying the number of parameters identifying the component distri-
bution, i.e. if θ is in Rd then ndistparams= d.

formals.dist string vector specifying the names of the formal arguments identifying the dis-
tribution dist and used in ddist and rdist, e.g. for a gaussian mixture (dist =
norm) amounts to mean and sd, as these are the formal arguments used by dnorm
and rnorm.

discrete logical flag indicating whether the underlying mixture distribution is discrete.
Will always be TRUE in this case.

mle.fct attribute MLE.function of obj.

pars Say the complexity estimate is equal to some j. Then pars is a numeric vector
of size (d+1)∗j−1 specifying the component weight and parameter estimates,
given as

(w1, ...wj−1, θ11, ...θ1j , θ21, ...θdj).

values numeric vector of function values gone through during optimization at iteration
j, the last entry being the value at the optimum.

convergence integer indicating whether the solver has converged (0) or not (1 or 2) at iteration
j.

References

T. Umashanger and T. Sriram, "L2E estimation of mixture complexity for count data", Computa-
tional Statistics and Data Analysis 51, 4379-4392, 2007.

See Also

hellinger.disc for the same estimation method using the Hellinger distance, solnp for the solver,
datMix for the creation of the datMix object.

Examples

create 'Mix' object
poisMix <- Mix("pois", discrete = TRUE, w = c(0.45, 0.45, 0.1), lambda = c(1, 5, 15))

create random data based on 'Mix' object (gives back 'rMix' object)
set.seed(1)
poisRMix <- rMix(1000, obj = poisMix)

create 'datMix' object for estimation
generate list of parameter bounds

Mix 21

poisList <- list("lambda" = c(0, Inf))

generate MLE function
MLE.pois <- function(dat){

mean(dat)
}

generating 'datMix' object
pois.dM <- RtoDat(poisRMix, theta.bound.list = poisList, MLE.function = MLE.pois)

complexity and parameter estimation

set.seed(1)
res <- L2.disc(pois.dM)
plot(res)

Mix Mixtures of Univariate Distributions

Description

Function constructing objects of class Mix that represent finite mixtures of any univariate distribu-
tion. Additionally methods for printing and plotting are provided.

Usage

Mix(dist, discrete, w = NULL, theta.list = NULL, name = NULL, ...)

is.Mix(x)

S3 method for class 'Mix'
print(x, ...)

Arguments

dist character string providing the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density function and rdist generates
random numbers. The function sources functions for the density/mass estima-
tion and random variate generation from distributions in distributions, so the
abbreviations should be specified accordingly. Thus to create a gaussian mix-
ture, set dist = "norm", for a poisson mixture, set dist = "pois". The Mix
function will find the functions dnorm, rnorm and dpois, rpois respectively.

discrete logical flag, should be set to TRUE if the mixture distribution is discrete and to
FALSE if continuous.

22 Mix

w numeric vector of length p, specifying the mixture weights w[i] of the com-
ponents, i = 1, . . . , p. If the weights do not add up to 1, they will be scaled
accordingly. Equal weights for all components are used by default.

theta.list named list specifying the component parameters. The names of the list ele-
ments have to match the names of the formal arguments of the functions ddist
and rdist exactly. For a gaussian mixture, the list elements would have to be
named mean and sd, as these are the formal arguments used by rnorm and dnorm
functions from distributions. Alternatively, the component parameters can
be supplied directly as named vectors of length p via . . .

name optional name tag of the result (used for printing and plotting).

... in Mix(): alternative way of supplying the component parameters (instead of
using theta.list).

in print.Mix(): further arguments passed to the print method.

x in is.Mix(): returns TRUE if the argument is a datMix object and FALSE
otherwise.

in print.Mix(): object of class Mix.

Value

An object of class Mix (implemented as a matrix) with the following attributes:

dim dimensions of the matrix.

dimnames a dimnames attribute for the matrix.

name optional name tag for the result passed on to printing and plotting methods.

dist character string giving the abbreviated name of the component distribution, such
that the function ddist evaluates its density/mass and rdist generates random
variates.

discrete logical flag indicating whether the mixture distribution is discrete.

theta.list named list specifying component parameters.

See Also

dMix for the density, rMix for random numbers (and construction of an rMix object) and plot.Mix
for the plot method.

Examples

define 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))
poisMix <- Mix("pois", discrete = TRUE, w = c(0.45, 0.45, 0.1), lambda = c(1, 5, 10))

plot 'Mix' object
plot(normLocMix)
plot(poisMix)

mix.lrt 23

mix.lrt Estimation of a Mixture Complexity Based on Likelihood Ratio Test
Statistics

Description

Estimation of a mixture complexity as well as its component weights and parameters based on
comparing the likelihood ratio test statistic (LRTS) to a bootstrapped quantile.

Usage

mix.lrt(obj, j.max = 10, B = 100, quantile = 0.95, control = c(trace = 0), ...)

Arguments

obj object of class datMix.

j.max integer, giving the maximal complexity to be considered.

B integer, specifying the number of bootstrap replicates.

quantile numeric between 0 and 1 specifying the bootstrap quantile to which the observed
LRTS will be compared.

control control list of optimization parameters, see solnp.

... further arguments passed to the boot function.

Details

Define the complexity of a finite mixture F as the smallest integer p, such that its pdf/pmf f can
be written as

f(x) = w1 ∗ g(x; θ1) + . . .+ wp ∗ g(x; θp).

To estimate p, mix.lrt sequentially tests p = j versus p = j + 1 for j = 1, 2, . . ., by finding
the maximum likelihood estimator (MLE) for the density of a mixture with j and j + 1 compo-
nents and calculating the corresponding likelihood ratio test statistic (LRTS). Next, a parametric
bootstrap procedure is used to generate B samples of size n from a j-component mixture given the
previously calculated MLE. For each of the bootstrap samples, the MLEs corresponding to densities
of mixtures with j and j + 1 components are calculated, as well as the LRTS. The null hypothesis
H0 : p = j is rejected and j increased by 1 if the LRTS based on the original data is larger than
the chosen quantile of its bootstrapped counterparts. Otherwise, j is returned as the complexity
estimate. The MLEs are calculated via the MLE.function attribute (of the datMix object obj) for
j = 1, if it is supplied. For all other j (and also for j = 1 in case MLE.function = NULL) the solver
solnp is used to calculate the minimum of the negative log-likelihood. The initial values supplied
to the solver are calculated as follows: the data is clustered into j groups by the function clara and
the data corresponding to each group is given to MLE.function (if supplied to the datMix object,
otherwise numerical optimization is used here as well). The size of the groups is taken as initial
component weights and the MLE’s are taken as initial component parameter estimates.

24 mix.lrt

Value

Object of class paramEst with the following attributes:

dat data based on which the complexity is estimated.

dist character string stating the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density/ mass function and rdist
generates random variates.

ndistparams integer specifying the number of parameters identifying the component distri-
bution, i.e. if θ is in Rd then ndistparams= d.

formals.dist string vector, specifying the names of the formal arguments identifying the dis-
tribution dist and used in ddist and rdist, e.g. for a gaussian mixture (dist =
norm) amounts to mean and sd, as these are the formal arguments used by dnorm
and rnorm.

discrete logical indicating whether the underlying mixture distribution is discrete.

mle.fct attribute MLE.function of obj.

pars Say the complexity estimate is equal to some j. Then pars is a numeric vector
of size (d+1)∗j−1 specifying the component weight and parameter estimates,
given as

(w1, ...wj−1, θ11, ...θ1j , θ21, ...θdj).

values numeric vector of function values gone through during optimization at iteration
j, the last entry being the value at the optimum.

convergence integer indicating whether the solver has converged (0) or not (1 or 2) at iteration
j.

See Also

solnp for the solver, datMix for the creation of the datMix object.

Examples

generating 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))

generating 'rMix' from 'Mix' object (with 1000 observations)
set.seed(0)
normLocRMix <- rMix(1000, normLocMix)

generating 'datMix' from 'R' object

generate list of parameter bounds

norm.bound.list <- list("mean" = c(-Inf, Inf), "sd" = c(0, Inf))

generate MLE functions

nonparamHankel 25

for "mean"
MLE.norm.mean <- function(dat) mean(dat)
for "sd" (the sd function uses (n-1) as denominator)
MLE.norm.sd <- function(dat){
sqrt((length(dat) - 1) / length(dat)) * sd(dat)
}
combining the functions to a list
MLE.norm.list <- list("MLE.norm.mean" = MLE.norm.mean,

"MLE.norm.sd" = MLE.norm.sd)

generating 'datMix' object
normLoc.dM <- RtoDat(normLocRMix, theta.bound.list = norm.bound.list,

MLE.function = MLE.norm.list)

complexity and parameter estimation

set.seed(0)
res <- mix.lrt(normLoc.dM, B = 30)
plot(res)

nonparamHankel Estimation of Mixture Complexity Based on Hankel Matrix

Description

Estimation of mixture complexity based on estimating the determinant of the Hankel matrix of the
moments of the mixing distribution. The estimated determinants can be scaled and/or penalized.

Usage

nonparamHankel(obj, j.max = 10, pen.function = NULL, scaled = FALSE, B = 1000, ...)

S3 method for class 'hankDet'
print(x, ...)

S3 method for class 'hankDet'
plot(
x,
type = "b",
xlab = "j",
ylab = NULL,
mar = NULL,
ylim = c(min(0, min(obj)), max(obj)),
...

)

26 nonparamHankel

Arguments

obj object of class datMix.

j.max integer specifying the maximal number of components to be considered.

pen.function function with arguments j and n specifying the penalty added to the determinant
value in the objective function, given sample size n and the assumed complexity
at current iteration j. If left empty, no penalty will be added. If non-empty and
scaled is TRUE, the penalty function will be added after the determinants are
scaled.

scaled logical flag specifying whether the vector of estimated determinants should be
scaled.

B integer specifying the number of bootstrap replicates used for scaling of the
determinants. Ignored if scaled is FALSE.

... in nonparamHankel(): further arguments passed to the boot function if scaled
is TRUE.

in plot.hankDet(): further arguments passed to plot.
in print.hankDet(): further arguments passed to print.

x object of class hankDet.

type character denoting type of plot, see, e.g. lines. Defaults to "b".

xlab, ylab labels for the x and y axis with defaults (the default for ylab is created within
the function, if no value is supplied).

mar numerical vector of the form c(bottom, left, top, right) which gives the number
of lines of margin to be specified on the four sides of the plot, see par.

ylim range of y values to use.

Details

Define the complexity of a finite mixture F as the smallest integer p, such that its pdf/pmf f can
be written as

f(x) = w1 ∗ g(x; θ1) + . . .+ wp ∗ g(x; θp).

nonparamHankel estimates p by iteratively increasing the assumed complexity j and calculating
the determinant of the (j + 1)x(j + 1) Hankel matrix made up of the first 2j raw moments of the
mixing distribution. As shown by Dacunha-Castelle & Gassiat (1997), once the correct complexity
is reached (i.e. for all j >= p), this determinant is zero. This suggests an estimation procedure
for p based on initially finding a consistent estimator of the moments of the mixing distribution and
then choosing the estimator estimp as the value of j which yields a sufficiently small value of the
determinant. Since the estimated determinant is close to 0 for all j >= p, this could lead to choosing
estimp rather larger than the true value. The function therefore returns all estimated determinant
values corresponding to complexities up to j.max, so that the user can pick the lowest j generating
a sufficiently small determinant. In addition, the function allows the inclusion of a penalty term
as a function of the sample size n and the currently assumed complexity j which will be added to
the determinant value (by supplying pen.function), and/or scaling of the determinants (by setting
scaled = TRUE). For scaling, a nonparametric bootstrap is used to calculate the covariance of the
estimated determinants, with B being the size of the bootstrap sample. The inverse of the square
root of this covariance matrix (i.e. the matrix S(−1) such that A = SS (see sqrtm), where A

nonparamHankel 27

is the covariance matrix) is then multiplied with the estimated determinant vector to get the scaled
determinant vector. Note that in the case of the scaled version the penalty function chosen should be
multiplied by

√
n before it is entered as pen.function: let S∗ denote a jmxjm covariance matrix

of the determinants calculated for the bth bootstrap sample (b = 1, ..., B and j=1,...,j_m). Then S∗
goes to S/n as B,n go to infinity. Write

S∗−1/2 =
√
n ∗ Ŝ−1/2.

Define the rescaled vector

(y1, ..., yjm)T =
√
n ∗ Ŝ−1/2(d̂1, ..., d̂jm)T .

Then the creterion to be minimized becomes

|yj |+ pen.function ∗
√
n.

See further sections for examples. For a thorough discussion of the methods that can be used for
the estimation of the moments see the details section of datMix.

Value

Vector of estimated determinants (optionally scaled and/or penalized) as an object of class hankDet
with the following attributes:

scaled logical flag indicating whether the determinants are scaled.

pen logical flag indicating whether a penalty was added to the determinants.

dist character string stating the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density function and rdist generates
random numbers.

References

D. Dacunha-Castelle and E. Gassiat, "The estimation of the order of a mixture model", Bernoulli,
Volume 3, Number 3, 279-299, 1997.

See Also

paramHankel for a similar approach which additionally estimates the component weights and pa-
rameters, datMix for construction of a datMix object.

Examples

create 'Mix' object
geomMix <- Mix("geom", discrete = TRUE, w = c(0.1, 0.6, 0.3), prob = c(0.8, 0.2, 0.4))

create random data based on 'Mix' object (gives back 'rMix' object)
set.seed(1)
geomRMix <- rMix(1000, obj = geomMix)

create 'datMix' object for estimation

28 paramHankel

explicit function giving the estimate for the j^th moment of the
mixing distribution, needed for Hankel.method "explicit"

explicit.fct.geom <- function(dat, j){
1 - ecdf(dat)(j - 1)

}

generating 'datMix' object
geom.dM <- RtoDat(geomRMix, Hankel.method = "explicit",

Hankel.function = explicit.fct.geom)

function for penalization w/o scaling
pen <- function(j, n){

(j*log(n))/(sqrt(n))
}

estimate determinants w/o scaling
set.seed(1)
geomdets_pen <- nonparamHankel(geom.dM, pen.function = pen, j.max = 5,

scaled = FALSE)
plot(geomdets_pen, main = "Three component geometric mixture")

function for penalization with scaling
pen <- function(j, n){

j*log(n)
}

estimate determinants using the same penalty with scaling
geomdets_pen <- nonparamHankel(geom.dM, pen.function = pen, j.max = 5,

scaled = TRUE)
plot(geomdets_pen, main = "Three component geometric mixture")

paramHankel Estimation of Mixture Complexity (and Component
Weights/Parameters) Based on Hankel Matrix Approach

Description

Estimation method of mixture complexity as well as component weights and parameters based on
estimating the determinant of the Hankel matrix of the moments of the mixing distribution and
comparing it to determinant values generated by a parametric bootstrap.

Usage

paramHankel(obj, j.max = 10, B = 1000, ql = 0.025, qu = 0.975,
control = c(trace = 0), ...)

paramHankel 29

paramHankel.scaled(obj, j.max = 10, B = 100, ql = 0.025, qu = 0.975,
control = c(trace = 0), ...)

S3 method for class 'paramEst'
plot(x, mixture = TRUE, components = TRUE, ylim = NULL, cex.main = 0.9, ...)

S3 method for class 'paramEst'
print(x, ...)

Arguments

obj object of class datMix.

j.max integer stating the maximal number of components to be considered.

B integer specifying the number of bootstrap replicates.

ql numeric between 0 and 1 specifying the lower bootstrap quantile to which the
observed determinant value will be compared.

qu numeric between 0 and 1 specifying the upper bootstrap quantile to which the
observed determinant value will be compared.

control control list of optimization parameters, see solnp.

... in paramHankel() and paramHankel.scaled(): further arguments passed to
the boot function.

in plot.hankDet(): further arguments passed to the hist function plotting the
data.

in print.hankDet(): further arguments passed to the printCoefmat function.

x object of class paramEst.

mixture logical flag, indicating whether the estimated mixture density should be plotted,
set to TRUE by default.

components logical flag, indicating whether the individual mixture components should be
plotted, set to TRUE by default.

ylim range of y values to use; if not specified (or containing NA), the function tries to
construct reasonable default values.

cex.main magnification to be used for main titles relative to the current setting of cex, see
par.

Details

Define complexity of a finite mixture F as the smallest integer p, such that its pdf/pmf f can be
written as

f(x) = w1 ∗ g(x; θ1) + . . .+ wp ∗ g(x; θp).

The paramHankel procedure initially assumes that the mixture only contains one component, set-
ting j = 1, then sequentially tests p = j versus p = j + 1 for j = 1, 2, It determines the MLE
for a j-component mixture, generates B parametric bootstrap samples of size n from the distribution
the MLE corresponds to and calculates B determinants of the corresponding (j+1)x(j+1) Hankel
matrices of the first 2j raw moments of the mixing distribution (for details see nonparamHankel).
The null hypothesis H0 : p = j is rejected and j increased by 1 if the determinant value based

30 paramHankel

on the original data lies outside of the interval [ql, qu], a range specified by ql and qu, empirical
quantiles of the bootstrapped determinants. Otherwise, j is returned as the complexity estimate.
paramHankel.scaled functions similarly to paramHankel with the exception that the bootstrapped
determinants are scaled by the empirical standard deviation of the bootstrap sample. To scale the
original determinant, B nonparametric bootstrap samples of size n are generated from the data,
the corresponding determinants are calculated and their empirical standard deviation is used. The
MLEs are calculated via the MLE.function attribute of the datMix object obj for j = 1, if it is
supplied. For all other j (and also for j = 1 in case MLE.function = NULL) the solver solnp is used
to calculate the minimum of the negative log-likelihood. The initial values supplied to the solver
are calculated as follows: the data is clustered into j groups by the function clara and the data cor-
responding to each group is supplied to MLE.function (if supplied to the datMix object, otherwise
numerical optimization is used). The size of the groups is taken as initial component weights and
the MLE’s are taken as initial component parameter estimates.

Value

Object of class paramEst with the following attributes:

dat data based on which the complexity is estimated.

dist character string giving the abbreviated name of the component distribution, such
that the function ddist evaluates its density/mass and rdist generates random
variates.

ndistparams integer specifying the number of parameters identifying the component distri-
bution, i.e. if θ is in Rd then ndistparams= d.

formals.dist string vector specifying the names of the formal arguments identifying the dis-
tribution dist and used in ddist and rdist, e.g. for a gaussian mixture (dist =
norm) amounts to mean and sd, as these are the formal arguments used by dnorm
and rnorm.

discrete logicalflag, indicating whether the underlying mixture distribution is discrete.

mle.fct attribute MLE.function of obj.

pars Say the complexity estimate is equal to some j. Then pars is a numeric vector
of size (d+1)∗j−1 specifying the component weight and parameter estimates,
given as

(w1, ...wj−1, θ11, ...θ1j , θ21, ...θdj).

values numeric vector of function values gone through during optimization at iteration
j, the last entry being the value at the optimum.

convergence indicates whether the solver has converged (0) or not (1 or 2) at iteration j.

See Also

nonparamHankel for estimation of the mixture complexity based on the Hankel matrix without
parameter estimation, solnp for the solver, datMix for creation of the datMix object.

plot.Mix 31

Examples

create 'Mix' object
poisMix <- Mix("pois", discrete = TRUE, w = c(0.45, 0.45, 0.1), lambda = c(1, 5, 10))

create random data based on 'Mix' object (gives back 'rMix' object)
set.seed(1)
poisRMix <- rMix(1000, obj = poisMix)

create 'datMix' object for estimation
generate list of parameter bounds
poisList <- list("lambda" = c(0, Inf))

generate MLE function
MLE.pois <- function(dat){

mean(dat)
}

generate function needed for estimating the j^th moment of the
mixing distribution via Hankel.method "explicit"

explicit.pois <- function(dat, j){
res <- 1
for (i in 0:(j-1)){
res <- res*(dat-i)

}
return(mean(res))

}

generating 'datMix' object
pois.dM <- RtoDat(poisRMix, theta.bound.list = poisList, MLE.function = MLE.pois,

Hankel.method = "explicit", Hankel.function = explicit.pois)

complexity and parameter estimation

set.seed(1)
res <- paramHankel(pois.dM)
plot(res)

plot.Mix plot Method for Mix Objects

Description

plot method for Mix objects visualizing the mixture density, with an option of showing the compo-
nent densities.

32 plot.Mix

Usage

S3 method for class 'Mix'
plot(
x,
ylim,
xlim = NULL,
xout = NULL,
n = 511,
type = NULL,
xlab = "x",
ylab = "f(x)",
main = attr(obj, "name"),
lwd = 1.4,
log = FALSE,
components = TRUE,
h0 = FALSE,
parComp = list(col = NULL, lty = 3, lwd = 1),
parH0 = list(col = NULL, lty = 3, lwd = 1),
...

)

Arguments

x object of class Mix.
ylim range of y values to use, if not specified (or containing NA), the function tries to

construct reasonable default values.
xlim range of x values to use, particularly important if xout is not specified. If not

specified, the function tries to construct reasonable default values.
xout numeric or NULL giving the abscissae at which to draw the density.
n number of points to generate if xout is unspecified (for continuous distribu-

tions).
type character denoting the type of plot, see e.g. lines. Defaults to "l" if the mixture

distribution is continuous and to "h" if discrete.
xlab, ylab labels for the x and y axis with defaults.
main main title of plot, defaulting to the Mix object name.
lwd line width for plotting, a positive number.
log logical flag, if TRUE, probabilities/densities f are plotted as log(f). Only works

if components is set to FALSE.
components logical flag indicating whether the individual mixture components should be

plotted, set to TRUE by default.
h0 logical flag indicating whether the line y = 0 should be drawn.
parComp graphical parameters for drawing the individual components if components is

set to TRUE.
parH0 graphical parameters for drawing the line y = 0 if h0 is set to TRUE.
... further arguments passed to the function for plotting the mixture density.

plot.rMix 33

See Also

Mix for the construction of Mix objects, dMix for the density/mass of a mixture.

Examples

define 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))
poisMix <- Mix("pois", discrete = TRUE, w = c(0.45, 0.45, 0.1), lambda = c(1, 5, 10))

plot 'Mix' object
plot(normLocMix)
plot(poisMix)

plot.rMix plot Method for rMix Objects

Description

plot method for rMix objects, plotting the histogram of the random sample, with the option of
additionally plotting the components (stacked or plotted over one another).

Usage

S3 method for class 'rMix'
plot(
x,
xlab = attr(obj, "name"),
ylim = NULL,
main = paste("Histogram of", attr(obj, "name")),
breaks = NULL,
col = "grey",
components = TRUE,
stacked = FALSE,
component.colors = NULL,
freq = TRUE,
plot = TRUE,
...

)

Arguments

x object of class rMix.

xlab label for the x axis with default.

34 rMix

ylim range of y values to use, if not specified (or containing NA), default values are
used.

main main title of the plot, defaulting to the rMix object name.

breaks see hist. If left unspecified the function tries to construct reasonable default
values.

col colour to be used to fill the bars of the histogram evaluated on the whole data.

components logical flag indicating whether the plot should show to which component the
observations belong (either by plotting individual histograms or by overlaying a
stacked barplot), defaulting to TRUE. Ignored if plot is FALSE.

stacked logical flag indicating whether the component plots should be stacked or plot-
ted one over another, defaulting to FALSE. Ignored if components is FALSE or
ignored itself.

component.colors

colors for the component plots. If unspecified, default colors are used.

freq logical flag, if TRUE, the histogram graphic is a representation of frequencies, if
FALSE, probability densities. See hist.

plot logical flag, if TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned. See hist.

... further arguments passed to the histogram function evaluated on the whole data
as well as the component data (if components is TRUE and stacked is FALSE).

See Also

rMix for the construction of rMix objects.

Examples

define 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))
generate n random samples
set.seed(1)
x <- rMix(1000, normLocMix)
plot(x)

rMix Random Variate Generation from a Mixture Distribution

Description

Function for generating a random sample of size n, distributed according to a mixture specified as
Mix object. Returns an object of class rMix.

rMix 35

Usage

rMix(n, obj)

is.rMix(x)

S3 method for class 'rMix'
print(x, ...)

Arguments

n integer specifying the number of observations.

obj object of class Mix.

x in is.rMix(): R object.
in print.rMix(): object of class rMix.

... further arguments passed to the print method.

Details

For a mixture of p components, generates the number of observations in each component as multi-
nomial, and then use an implemented random variate generation function for each component. The
integer (multinomial) numbers are generated via sample.

Value

An object of class rMix with the following attributes (for further explanations see Mix):

name name of the Mix object that was given as input.

dist character string stating the (abbreviated) name of the component distribution,
such that the function ddist evaluates its density function and rdist generates
random numbers.

discrete logical flag indicating whether the underlying mixture distribution is discrete.

theta.list named list specifying the parameter values of the p components.

w numeric vector of length p specifying the mixture weights w[i] of the compo-
nents, i = 1, . . . , p.

indices numeric vector of length n containing integers between 1 and p specifying which
mixture component each observation belongs to.

See Also

dMix for the density, Mix for the construction of Mix objects and plot.rMix for the plot method.

Examples

define 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))

36 RtoDat

generate n random samples
set.seed(1)
x <- rMix(1000, normLocMix)
hist(x)

RtoDat Converting rMix to datMix Objects

Description

Function for converting objects of class rMix to objects of class datMix, so that they could be passed
to functions estimating the mixture complexity.

Usage

RtoDat(obj, theta.bound.list = NULL, MLE.function = NULL, Hankel.method = NULL,
Hankel.function = NULL)

Arguments

obj object of class rMix.
theta.bound.list

named list specifying the upper and lower bounds for the component param-
eters. The names of the list elements have to match the names of the formal
arguments of the functions ddist and rdist exactly as specified in the distribu-
tions in distributions. For a gaussian mixture, the list elements would have
to be named mean and sd, as these are the formal arguments used by rnorm and
dnorm. Has to be supplied if a method that estimates the component weights and
parameters is to be used.

MLE.function function (or a list of functions) which takes the data as input and outputs the
maximum likelihood estimator for the parameter(s) the component distribution
dist. If the component distribution has more than one parameter, a list of func-
tions has to be supplied and the order of the MLE functions has to match the or-
der of the component parameters in theta.bound.list (e.g. for a normal mix-
ture, if the first entry of theta.bound.list is the bounds of the mean, then then
first entry of MLE.function has to be the MLE of the mean). If this argument
is supplied and the datMix object is handed over to a complexity estimation
procedure relying on optimizing over a likelihood function, the MLE.function
attribute will be used for the single component case. In case the objective func-
tion is neither a likelihood nor corresponds to a mixture with more than 1 com-
ponent, numerical optimization will be used based on Rsolnp’s function solnp,
but MLE.function will be used to calculate the initial values passed to solnp.
Specifying MLE.function is optional. If not supplied, for example because the
MLE solution does not exist in a closed form, numerical optimization is used to
find the relevant MLE.

RtoDat 37

Hankel.method character string in c("explicit","translation","scale"), specifying the
method of estimating the moments of the mixing distribution used to calculate
the relevant Hankel matrix. Has to be specified when using nonparamHankel,
paramHankel or paramHankel.scaled. For further details see the details sec-
tion of datMix.

Hankel.function

function required for the moment estimation via Hankel.method. This normally
depends on Hankel.method as well as dist. For further details see the datMix
details section.

Value

Object of class datMix with the following attributes (for further explanations see above):

dist character string giving the abbreviated name of the component distribution, such
that the function ddist evaluates its density/mass and rdist generates random
variates.

discrete logical flag indicating whether the mixture distribution is discrete.
theta.bound.list

named list specifying the upper and lower bounds for the component parameters.

MLE.function function which computes the MLE of the component distribution dist.

Hankel.method character string taking on values "explicit", "translation", or "scale",
specifying the method of estimating the moments of the mixing distribution to
compute the corresponding Hankel matrix.

Hankel.function

function required for the moment estimation via Hankel.method. See details
for more information.

See Also

datMix for direct generation of a datMix object from a vector of observations.

Examples

generating 'Mix' object
normLocMix <- Mix("norm", discrete = FALSE, w = c(0.3, 0.4, 0.3), mean = c(10, 13, 17),

sd = c(1, 1, 1))

generating 'rMix' from 'Mix' object (with 1000 observations)
set.seed(1)
normLocRMix <- rMix(1000, normLocMix)

generating 'datMix' from 'R' object

generate list of parameter bounds

norm.bound.list <- vector(mode = "list", length = 2)
names(norm.bound.list) <- c("mean", "sd")
norm.bound.list$mean <- c(-Inf, Inf)

38 shakespeare

norm.bound.list$sd <- c(0, Inf)

generate MLE functions

for "mean"
MLE.norm.mean <- function(dat) mean(dat)
for "sd" (the sd function uses (n-1) as denominator)
MLE.norm.sd <- function(dat){

sqrt((length(dat) - 1) / length(dat)) * sd(dat)
}
combining the functions to a list
MLE.norm.list <- list("MLE.norm.mean" = MLE.norm.mean,

"MLE.norm.sd" = MLE.norm.sd)

function giving the j^th raw moment of the standard normal distribution,
needed for calculation of the Hankel matrix via the "translation" method
(assuming gaussian components with variance 1)

mom.std.norm <- function(j){
ifelse(j %% 2 == 0, prod(seq(1, j - 1, by = 2)), 0)

}

normLoc.dM <- RtoDat(normLocRMix, theta.bound.list = norm.bound.list,
MLE.function = MLE.norm.list, Hankel.method = "translation",
Hankel.function = mom.std.norm)

using 'datMix' object to estimate the mixture

set.seed(0)
res <- paramHankel.scaled(normLoc.dM)
plot(res)

shakespeare Shakespeare Dataset

Description

Shakespeare’s word type frequencies data from Efron and Thisted (1976).

Usage

data(shakespeare)

Format

A data frame with 30792 observations on 1 variable. Replicates are generated to reflect the frequen-
cies of word types (words used exactly n times n = 1, 2, ..., 100). As there are 14376 word types
that were used once, 1 appears 14376 times in the data, as there are 4343 word types that were used
twice, 2 appears 4343 times in the data, etc.

shakespeare 39

Source

Efron, B. and Thisted, R. (1976). Estimating the number of unseen species: how many words did
Shakespeare know? Biometrka 63 435-447.

Examples

data(shakespeare)

shakespeare.obs <- unlist(shakespeare) - 1

define the MLE function:
MLE.geom <- function(dat) 1 / (mean(dat) + 1)

Shakespeare.dM <- datMix(shakespeare.obs, dist = "geom", discrete = TRUE,
MLE.function = MLE.geom,
theta.bound.list = list(prob = c(0, 1)))

estimate the number of components and plot the results:

set.seed(0)
res <- hellinger.boot.disc(Shakespeare.dM, B = 50, ql = 0.025, qu = 0.975)
plot(res, breaks = 100, xlim = c(0, 20))

Index

∗ cluster
datMix, 6
dMix, 9
hellinger.cont, 11
hellinger.disc, 15
L2.disc, 18
Mix, 21
mix.lrt, 23
nonparamHankel, 25
plot.Mix, 31
plot.rMix, 33
rMix, 34
RtoDat, 36

∗ datasets
accidents, 3
acidity, 4
children, 5
faithful, 10
shakespeare, 38

accidents, 3
acidity, 4

boot, 12, 16, 19, 23, 26, 29

children, 5
clara, 13, 16, 19, 23, 30

datasets, 10, 11
datMix, 6, 12–15, 17–20, 23, 24, 26, 27, 29,

30, 36, 37
dimnames, 22
distributions, 6, 7, 21, 22, 36
dMix, 9, 10, 22, 33, 35

faithful, 10

hellinger.boot.cont (hellinger.cont), 11
hellinger.boot.disc (hellinger.disc), 15
hellinger.cont, 11, 17
hellinger.disc, 14, 15, 20

hist, 29, 34

is.datMix (datMix), 6
is.Mix (Mix), 21
is.rMix (rMix), 34

L2.boot.disc (L2.disc), 18
L2.disc, 17, 18
lines, 26, 32

Mix, 10, 21, 31–35
mix.lrt, 23

nonparamHankel, 7, 8, 25, 29, 30, 37

par, 26, 29
paramHankel, 7, 27, 28, 37
paramHankel.scaled, 7, 37
plot, 26
plot.hankDet (nonparamHankel), 25
plot.Mix, 10, 22, 31
plot.paramEst (paramHankel), 28
plot.rMix, 33, 35
print, 26
print.datMix (datMix), 6
print.hankDet (nonparamHankel), 25
print.Mix (Mix), 21
print.paramEst (paramHankel), 28
print.rMix (rMix), 34
printCoefmat, 29

rMix, 8, 10, 22, 33, 34, 34, 35, 36
Rsolnp, 7, 36
RtoDat, 8, 36

sample, 35
shakespeare, 38
solnp, 7, 12–14, 16, 17, 19, 20, 23, 24, 29, 30,

36
sqrtm, 26

40

	accidents
	acidity
	children
	datMix
	dMix
	faithful
	hellinger.cont
	hellinger.disc
	L2.disc
	Mix
	mix.lrt
	nonparamHankel
	paramHankel
	plot.Mix
	plot.rMix
	rMix
	RtoDat
	shakespeare
	Index

