mixture: Mixture Models for Clustering and Classification
An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>, Browne and McNicholas (2014) <doi:10.1007/s11634-013-0139-1>, Browne and McNicholas (2015) <doi:10.1002/cjs.11246>.
Version: |
2.0.4 |
Depends: |
R (≥ 3.5.0), lattice (≥ 0.20) |
Imports: |
Rcpp (≥ 1.0.2) |
LinkingTo: |
Rcpp, RcppArmadillo, BH, RcppGSL |
Published: |
2021-04-19 |
Author: |
Nik Pocuca [aut],
Ryan P. Browne [aut],
Paul D. McNicholas [aut, cre] |
Maintainer: |
Paul D. McNicholas <mcnicholas at math.mcmaster.ca> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
yes |
SystemRequirements: |
GNU GSL |
Materials: |
ChangeLog |
In views: |
Cluster, MissingData |
CRAN checks: |
mixture results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mixture
to link to this page.