Package 'mlbstats'

March 16, 2018

Type Package
Title Major League Baseball Player Statistics Calculator
Version 0.1.0
Author Philip D. Waggoner philip.waggoner@gmail.com
Maintainer Philip D. Waggoner philip.waggoner@gmail.com
Description Computational functions for player metrics in major league baseball including bat-ting, pitching, fielding, base-running, and overall player statistics. This package is actively main-tained with new metrics being added as they are developed.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-16 09:15:57 UTC
R topics documented:
ab_hr 2
aera 3
ba 4
baa 4
babip 5
bb9 6
bb_k 6
BsR 7
dice 7
EqA 8
era 9
erc 9
fip 10
fp 11
go_ao 11
gpa 12
h9 13
iso 13
k9 14
k_bb 14
obp 15
ops 16
pafa 16
pa_so 17
pfr 18
ra 18
rc 19
rc2 19
rc3 20
rfa 21
risp 21
rp 22
sba 22
sbsr 23
slg 23
ta 24
tc 25
tob 25
vorp 26
whip 26
wr 27
wra 27
xbh 28
Index 29
ab_hr Calculates at bats per home run

Description

Takes number of at bats and divides by number of home runs

Usage

ab_hr (ab, hr)

Arguments

ab	Number of at bats
hr	Number of home runs

Value

ab_hr

Examples

$$
\text { ab_hr }(400,25)
$$

Description

Computes adjusted earned run average accounting for park factor and league era (compare with "era" which is the traditional formula for earned run average, "erc" which is the component earned run average, or "dice" which is the defense-independent component earned run average)

Usage

aera(er, ip, lera, home_rs, home_ra, home_r, road_rs, road_ra, road_r)

Arguments

er	Number of runs that did not occur as a result of errors or passed balls
ip	Number of innings pitched
lera	Average league ERA
home_rs	Number of pitcher's team runs scored at home park
home_ra	Number of pitcher's team runs allowed at home park
home_r	Total number of runs scored at home park
road_rs	Number of pitcher's team runs scored at away park
road_ra	Number of pitcher's team runs allowed at away park
road_r	Total number of runs scored at away park

Value

aera

Examples

$\operatorname{aera}(10,5.5,2.5,8,7,15,6,4,10) \#$ for a pair of games (one away, one home)

Description

Takes number of hits and divides by at bats. 1.000 (read "one-thousand" is perfect)

Usage

ba(h, ab)

Arguments

h	Number of hits
ab	Number of at bats

Value

ba

Examples

ba(200, 525)
\qquad
baa Calculates batting average against

Description

Computes pitcher's ability to prevent hits, based on h, bfp, bb, hbp, sf, sh, and ci (catcher's interference)

Usage

baa(h, bfp, bb, hbp, sh, sf, ci)

Arguments

h	Number of hits allowed
bfp	Number of batters facing pitcher
bb	Number of bases on balls
hbp	Number of hit batters
sh	Number of sacrifice hits
sf	Number of sacrifice flies
ci	Number of catcher's interference

Value

baa

Examples

```
baa(105, 250, 50, 15, 10, 5, 1)
```

babip Calculates batting average on balls in play

Description

Generates the frequency a batter reaches a base after putting the ball in play (normal around .300)

Usage

babip(h, hr, ab, k, sf)

Arguments

h
Number of hits
hr Number of home runs
ab Number of at bats
$k \quad$ Number of strikeouts
sf Number of sacrifice flies

Value

babip

Examples

babip(200, 25, 525, 55, 6)

Description

Computes bases on balls (walks) per nine innings pitched

Usage

bb9(bb, ip)

Arguments

bb
Number of bases on balls
ip
Number of innings pitched

Value

bb9

Examples

bb9 35,210)
bb_k Calculates walk to strikeout ratio (batting)

Description

Takes the number of bases on balls and divides by number of strikeouts (for pitching version, see "k_bb")

Usage

bb_k(bb, k)

Arguments

bb
Number of bases on balls
k
Number of strikeouts

Value

bb_k

Examples

$$
b b _k(65,125)
$$

Description

Takes the number of hits, bases on balls, home runs, total bases, and at bats to compute the base runs estimator, which is similar to runs created

Usage

$\operatorname{BsR}(h, b b, h r, t b, a b)$

Arguments

h	Number of hits
bb	Number of bases on balls
hr	Number of home runs
tb	Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
ab	Number of at bats

Value

BsR

Examples

$\operatorname{BsR}(135,22,12,155,330)$

```
dice
```


Description

Computes earned run average from hits and walks (compare with "era" which is the traditional formula for earned run average, "aera" which is a pitcher's adjusted earned run average, or "erc" which is the component earned run average)

Usage

dice(bb, hbp, hr, k, ip)

Arguments

bb	Number of bases on balls
hbp	Number of hit batters
hr	Number of home runs
k	Number of strikeouts
ip	Number of innings pitched

Value
dice

Examples

```
    dice(45, 10, 60, 130, 400)
```


Description

Takes the number of hits, total bases, bases on balls, hits by pitch, stolen bases, sacrifice hits, sacrifice flies, at bats, and caught stealing to compute the base runs, which is a player's batting average absent park and league effects

Usage

EqA(h, tb, bb, hbp, sb, sh, sf, ab, cs)

Arguments

h	Number of hits
tb	Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
bb	Number of bases on balls
hbp	Number of hits by pitch
sb	Number of stolen bases
sh	Number of sacrifice hits (typically bunts)
sf	Number of sacrifice flies
ab	Number of at bats
cs	Number of caught stealing

Value

EqA

Examples

EqA(135, 155, 22, 3, 15, 4, 2, 365, 1)

```
era Calculates earned run average
```


Description

Computes a pitcher's earned run average (compare with "erc" which is the component earned run average, "aera" which is a pitcher's adjusted earned run average, or "dice" which is the defenseindependent component earned run average)

Usage

era(er, ip)

Arguments

er
Number of runs that did not occur as a result of errors or passed balls
ip
Number of innings pitched

Value

era

Examples

$$
\operatorname{era}(150,400)
$$

erc Calculates component earned run average

Description

Computes earned run average from hits and walks (compare with "era" which is the traditional formula for earned run average, "aera" which is a pitcher's adjusted earned run average, or "dice" which is the defense-independent component earned run average)

Usage

$\operatorname{erc}(h, b b, h b p, h r, i b b, b f p, i p)$

Arguments

h	Number of hits allowed
bb	Number of bases on balls
hbp	Number of hit batters
hr	Number of home runs
ibb	Number of intentional bases on balls
bfp	Number of batters faced by pitcher
ip	Number of innings pitched

Value

erc

Examples

$\operatorname{erc}(110,45,10,70,5,400,215)$
fip Calculates fielding independent pitching

Description

Computes pitching performance statistic similar to ERA, but based on factors within the pitcher's control (compare with "dice" which is the defense-independent component earned run average)

Usage

fip(hr, bb, k, ip)

Arguments

hr	Number of home runs
bb	Number of bases on balls
k	Number of strikeouts
ip	Number of innings pitched

Value

fip

Examples

fip(65, 50, 100, 175)

| $\mathrm{fp} \quad$ Calculates fielding percentage |
| :--- | :--- |

Description

Computes the fielding percentage (aka, fielding average), which reflects the percentage of proper ball handling

Usage

$f p(p, a, e)$

Arguments

p	Number of putouts
a	Number of assists
e	Number of errors

Value

fp

Examples

$f p(13,4,2)$
go_ao Calculates ground outs-fly outs ratio (GO/AO)

Description

Takes the number of ground ball outs and divides by number of fly ball outs to compute the GO/AO ratio

Usage

go_ao(go, ao)

Arguments

go
Number of ground ball outs
ao
Number of fly ball outs

Value
go_ao

Examples

go_ao(150, 88)
gpa Calculates gross production average

Description

Computes the gross production average, which is 1.8 times on-base percentage (OBP) plus slugging percentage (SLG), divided by four

Usage

gpa(h, bb, hbp, ab, sf, b1, b2, b3, hr)

Arguments

h	Number of hits
bb	Number of bases on balls
hbp	Number of hits by pitch
ab	Number of at bats
sf	Number of sacrifice flies
b1	Number of singles
b2	Number of doubles
b3	Number of triples
hr	Number of home runs

Value

gpa

Examples

$\operatorname{gpa}(150,40,2,400,5,100,40,3,7)$

Description

Computes hits per nine innings pitched

Usage

h9(h, ip)

Arguments

h	Number of hits allowed
ip	Number of innings pitched

Value

h9

Examples

h9 (150, 175)

Calculates isolated power

Description

Computes isolated power, which is a player's ability to obtain extra bases from a hit. The statistic subtracts a hitter's batting average from the slugging percentage, with the maximum ISO being 3.000 .

Usage

iso(b1, b2, b3, hr, ab, h)

Arguments

b1
b2
b3
hr
ab
h

Number of singles
Number of doubles
Number of triples
Number of home runs
Number of at bats
Number of hits

Value

iso

Examples

iso(100, 40, 3, 7, 350, 150)

Description

Computes strikeouts per nine innings pitched

Usage

k9 (k, ip)

Arguments

k
Number of strikeouts
ip
Number of innings pitched

Value

k9

Examples

k9 (105, 175)

k_bb \quad Calculates strikeout to walk ratio (pitching)

Description

Computes strikeouts to walk ratio, based on number of strikeouts and number of walks (for batting version, see "bb_k")

Usage

k_bb(k, bb)

Arguments

k	Number of strikeouts
bb	Number of bases on balls

Value

k_bb

Examples

k_bb(105, 40)
obp

Description

Computes the on-base percentage based on number of hits, bases on balls, hits by pitch, at bats, and sacrifice flies

Usage

obp(h, bb, hbp, ab, sf)

Arguments

h	Number of hits
bb	Number of bases on balls
hbp	Number of hits by pitch
ab	Number of at bats
sf	Number of sacrifice flies

Value

obp

Examples

$\operatorname{obp}(150,40,2,400,5)$

Description

Computes the on-base percentage plus slugging average (OPS) based on number of hits, bases on balls, hits by pitch, at bats, sacrifice flies, and total weighted bases (represented individually, as in SLG and GPA calculations)

Usage

ops(h, bb, hbp, ab, sf, b1, b2, b3, hr)

Arguments

h	Number of hits
bb	Number of bases on balls
hbp	Number of hits by pitch
ab	Number of at bats
sf	Number of sacrifice flies
b1	Number of singles
b2	Number of doubles
b3	Number of triples
hr	Number of home runs

Value

ops

Examples

$\operatorname{ops}(200,18,4,401,4,50,20,3,13)$

```
pafa Calculates park factor
```


Description

Computes the runs a team scores at home versus away (it is often used in other metrics, e.g., adjusted era (ERA+) for pitchers; see "aera")

Usage

pafa(home_rs, home_ra, home_r, road_rs, road_ra, road_r)

Arguments

home_rs	Number of pitcher's team runs scored at home park
home_ra	Number of pitcher's team runs allowed at home park
home_r	Total number of runs scored at home park
road_rs	Number of pitcher's team runs scored at away park
road_ra	Number of pitcher's team runs allowed at away park
road_r	Total number of runs scored at away park

Value

pafa

Examples

```
pafa(5, 6, 11, 4, 8, 12) # for a pair of games (one home, one away)
```

pa_so

Calculates plate appearances per strikeout (PA/SO)

Description

Computes the number of times a hitter strikes out in relation to their plate appearances

Usage

```
pa_so(pa, so)
```


Arguments

pa	Number of plate appearances
so	Number of strikeouts

Value

pa_so

Examples

$$
\text { pa_so }(450,120)
$$

```
    pfr Calculates power finesse ratio
```


Description

Computes pitcher's performance either by game or overall, based on k, $b b$, and ip

Usage

pfr(k, bb, ip)

Arguments

k	Number of strikeouts
bb	Number of bases on balls
ip	Number of innings pitched

Value

pfr

Examples

$\operatorname{pfr}(115,30,400)$
ra
Calculates run average

Description

Computes pitcher's run average based on number of runs allowed and innings pitched

Usage

$$
r a(r, i p)
$$

Arguments

r
ip
Number of runs allowed
Number of innings pitched

Value

ra

Examples

ra(75, 400)

Description

Computes the basic version of the estimated runs a hitter creates or contributes (see also "rc2" for the 'stolen base' iteration and "rc3" for the technical iteration of the re statistic)

Usage

$$
\mathrm{rc}(\mathrm{~h}, \mathrm{bb}, \mathrm{tb}, \mathrm{ab})
$$

Arguments

h	Number of hits
bb	Number of bases on balls
tb	Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
ab	Number of at bats

Value

rc

Examples

$\operatorname{rc}(150,35,165,400)$
rc2 Calculates runs created accounting for stolen bases

Description

Computes the estimated runs a hitter creates or contributes, accounting for base stealing (see also "rc" for the basic iteration and "rc3" for the technical iteration of the rc statistic)

Usage

rc2(h, bb, tb, ab, cs, sb)

Arguments

h
bb
tb
ab
cs
sb

Number of hits
Number of bases on balls
Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
Number of at bats
Number of stolen bases caught
Number of stolen bases

Value

rc2

Examples

rc2 $150,35,165,400,7,9)$
rc3 Calculates runs created accounting for all offensive indicators

Description

Computes the technical iteration of estimated runs a hitter creates or contributes accounting for virtually all offensive indicators (see also "rc" for the basic iteration and "rc2" for the 'stolen base' iteration of the re statistic)

Usage

rc3(h, bb, ibb, tb, ab, cs, sb, hbp, gidp, sh, sf)

Arguments

h	Number of hits
bb	Number of bases on balls
ibb	Number of intentional bases on balls
tb	Number of total bases (one for 1B, two for 2B, three for 3B, and four for HR)
ab	Number of at bats
cs	Number of stolen bases caught
sb	Number of stolen bases
hbp	Number of hits by pitch
gidp	Number of grounded into double play
sh	Number of sacrifice hits
sf	Number of sacrifice flies

Value

rc3

Examples

$$
\operatorname{rc3}(150,35,3,165,400,7,9,5,1,6,2)
$$

\qquad

Description

Computes the amount of the field covered by a player

Usage

$r f a(p, a, i p)$

Arguments

p
Number of putouts
a Number of assists
ip Number of innings played in a defensive position

Value

rfa

Examples

$r f a(20,5,450)$

risp

Calculates batting average with runners in scoring position

Description

Computes batting average accounting for runners in scoring position

Usage

risp(hrisp, abrisp)

Arguments

hrisp Number of hits with runners in scoring position (on either 2nd or 3rd base)
abrisp Number of at bats with runners in scoring position (on either 2nd or 3rd base)

Value

risp

Examples

> risp(35, 120)
\qquad

Description

Computes the number of runs contributed by a hitter, based on runs, runs batted in, and home runs

Usage

$r p(r, r b i, h r)$

Arguments

r
Number of runs
rbi Number of runs batted in
hr Number of home runs

Value

rp

Examples

$r p(70,41,22)$ sba

Calculates stolen base attempts

Description

Computes total attempts to steal a base, by adding sb and cs

Usage

sba(sb, cs)

Arguments

sb
Number of stolen bases
cs
Number of caught stealing

Value

sba

Examples

$\operatorname{sba}(20,4)$

sbsr

Calculates stolen base success rate

Description

Computes percentage of bases successfully stolen

Usage

sbsr(sb, cs)

Arguments

sb	Number of stolen bases
cs	Number of caught stealing

Value

sbsr

Examples

$$
\operatorname{sbsr}(20,4)
$$

slg Calculates slugging percentage

Description

Computes the slugging percentage (SLG), based on the weighted number of singles, doubles, triples, home runs, and at bats

Usage

$\mathrm{slg}(\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3, \mathrm{hr}, \mathrm{ab})$

Arguments

b1	Number of singles
b2	Number of doubles
b3	Number of triples
hr	Number of home runs
ab	Number of at bats

Value

slg

Examples

```
slg(100, 40, 3, 7, 350)
```

 ta Calculates total average

Description

Computes overall offensive contribution of a single player

Usage

ta(tb, hbp, bb, sb, ab, h, cs, gidp)

Arguments

tb
hbp Number of hits by pitch
bb Number of bases on balls
sb Number of stolen bases
ab Number of at bats
h Number of hits
cs Number of caught stealing
gidp \quad Number of grounded into double play

Value

ta

Examples

$\operatorname{ta}(125,11,40,10,400,105,2,6)$

tc Calculates total chances

Description

Computes the opportunities for defensive ball handling

Usage

tc (p, a, e)

Arguments

p	Number of putouts
a	Number of assists
e	Number of errors

Value

tc

Examples

tc (11, 5, 5)
tob Calculates times on base

Description

Computes total times a player reaches a base by adding h, hbp, and bb

Usage

tob(h, hbp, bb)

Arguments

h	Number of hits
hbp	Number of hits by pitch
bb	Number of bases on balls

Value

tob

Examples

tob(234, 6, 24)
vorp Calculates value over replacement player (pitching)

Description

Computes a pitcher's marginal utility

Usage

vorp(ip, lr, lg, r)

Arguments

ip	Number of innings pitched
$l r$	Number of league runs
$l g$	Number of league games played
r	Number of runs

Value

vorp

Examples

$\operatorname{vorp}(400,98,20,110)$
whip
Calculates walks plus hits per innings pitched (WHIP)

Description

Computes walks plus hits per innings pitched, which reflects the number of baserunners allowed by a pitcher over a given period

Usage

whip(bb, h, ip)

Arguments

bb	Number of bases on balls
h	Number of hits allowed
ip	Number of innings pitched

Value

whip

Examples

whip(50, 110, 425)
wr
Calculates whiff rate

Description

Computes pitcher's ability to get a batter to swing and miss pitches over any period of time (e.g., in a single game, single season, career, etc.)

Usage

wr (sw, tp)

Arguments

sw	Number of swings and misses
tp	Total pitches thrown

Value

wr

Examples

wr (300, 750)
wra Calculates win ratio

Description

Computes a team's win ratio, which is used in the so-called "Pythagorean expectation"

Usage

wra(rs, ra)

Arguments

rs
Number of runs scored
ra
Number of runs allowed

Value
wra

Examples

wra(400, 301)
xbh
Calculates extra base hits

Description

Computes total hits by a player greater than singles (1B) by adding 2B, 3B, and hr

Usage

xbh(b2, b3, hr)

Arguments

b2	Number of doubles
b3	Number of triples
hr	Number of home runs

Value
xbh

Examples

$\operatorname{xbh}(20,18,4)$

Index

ab_hr, 2
aera, 3
ba, 4
baa, 4
babip, 5
bb9, 6
bb_k, 6
BsR, 7
dice, 7
EqA, 8
era, 9
erc, 9
fip, 10
fp, 11
go_ao, 11
gpa, 12
h9, 13
iso, 13
k9, 14
k_bb, 14
obp, 15
ops, 16
pa_so, 17
pafa, 16
pfr, 18
ra, 18
rc, 19
rc2, 19
rc3, 20
rfa, 21
risp, 21
rp, 22
sba, 22
sbsr, 23
slg, 23
ta, 24
tc, 25
tob, 25
vorp, 26
whip, 26
wr, 27
wra, 27
xbh, 28

