Cluster analysis for mlr3
mlr3cluster is an extension package for cluster analysis within the mlr3 ecosystem. It is a successor of clustering capabilities of mlr2.
Install the last release from CRAN:
install.packages("mlr3cluster")
Install the development version from GitHub:
::install_github("mlr-org/mlr3cluster") devtools
The current version of mlr3cluster contains:
Also, the package is integrated with mlr3viz which enables you to create great visualizations with just one line of code!
ID | Learner | Package |
---|---|---|
clust.agnes | Agglomerative Hierarchical Clustering | cluster |
clust.ap | Affinity Propagation Clustering | apcluster |
clust.cmeans | Fuzzy C-Means Clustering | e1071 |
clust.cobweb | Cobweb Clustering Algorithm | RWeka |
clust.dbscan | Density-based Clustering | dbscan |
clust.diana | Divisive Hierarchical Clustering | cluster |
clust.em | Expectation-Maximization Clustering | RWeka |
clust.fanny | Fuzzy Clustering | cluster |
clust.featureless | Simple Featureless Clustering | mlr3cluster |
clust.ff | FarthestFirst Clustering Algorithm | RWeka |
clust.hclust | Agglomerative Hierarchical Clustering | stats |
clust.kkmeans | Kernel K-Means Clustering | kernlab |
clust.kmeans | K-Means Clustering | stats |
clust.MBatchKMeans | Mini Batch K-Means Clustering | ClusterR |
clust.meanshift | Mean Shift Clustering | LPCM |
clust.pam | Clustering Around Medoids | cluster |
clust.SimpleKMeans | K-Means Clustering (WEKA) | RWeka |
clust.xmeans | K-Means with Automatic Determination of k | RWeka |
ID | Measure | Package |
---|---|---|
clust.db | Davies-Bouldin Cluster Separation | clusterCrit |
clust.dunn | Dunn index | clusterCrit |
clust.ch | Calinski Harabasz Pseudo F-Statistic | clusterCrit |
clust.silhouette | Rousseeuw’s Silhouette Quality Index | clusterCrit |
clust.wss | Within Sum of Squares | clusterCrit |
library(mlr3)
library(mlr3cluster)
task = mlr_tasks$get("usarrests")
learner = mlr_learners$get("clust.kmeans")
learner$train(task)
preds = learner$predict(task = task)
Check out the blogpost for a more detailed introduction to the package. Also, mlr3book has a section on clustering.
If you have any questions, feedback or ideas, feel free to open an issue here.