Minimal R for Intro Stats

Randall Pruim, Project MOSAIC

January 16, 2021

"Less volume, more creativity."

Mike McCarthy, Head Coach, Green Bay Packers

Mike McCarthy had signs proclaiming his "Less volume, more creativity" mantra hung on the office walls of all of his coordinators during one off-season. When asked about it, he said, "A lot of times you end up putting in a lot more volume, because you are teaching fundamentals and you are teaching concepts that you need to put in, but you may not necessarily use because they are building blocks for other concepts and variations that will come off of that ... In the offseason you have a chance to take a step back and tailor it more specifically towards your team and towards your players."

Statistics instructors using R face a similar dilemma. R is capable of so much that it is tempting to include this, and then that, and then the other, and then one more thing. Vectors and lists and recycling and coercion and functions and \ldots It all seems so fundamental to the way R works. And when mastered, these concepts do become building blocks for other concepts and variations.

But when looking back at the end of a term, we have to admit that some of these things really aren't necessary to get the job done, and may do more harm than good for beginners. We too need to take a step back and tailor things toward our students and their abilities and needs. The colored commands on the next page are sufficient for an Introductory Statistics course that includes ANOVA, regression, and resampling techniques. The others are optional extras. This is followed by a 1-page sampler showing usage examples for some of the functions.

Note: These pages are intended as a guide for instructors, not as a reference card for students. Although they may also be useful for students, they would need supplementing with additional details.

The list of functions we present are not the only sufficient set of functions, but they were carefully chosen to fit as much as possible into a small number of paradigms. In particular,

1. We make use of the "formula interface" whenever possible.

Students will need the formula interface to do regression an ANOVA. Since we are going to teach it anyway, we use formulas as consistently and as often as we can. In some cases, my colleagues and I have written new functions or expanded the use of existing functions to serve this end. These functions are available in the mosaic package and are indicated in the comments in our palette. Some of the data sets are from the mosaicData package.

2. We use **ggformula** for graphics.

The ggformula package provides an interface to ggplot2 graphics that uses the same formula interface used elsewhere. It encourages students to think about disaggregating data according to the values of covariates by making this very easy to do. In addition, complex plots can be created by layering simpler plots.

Previously we used lattice for graphics; lattice also uses a formula interface, but layering in lattice is more challenging and the ggformula interface is a bit cleaner.

Whether you use this list or some other list, we encourage you to make a complete list of the commands you want your students to learn over the course of a semester. Organize them by topic. Organize them again by syntactic structure. Ask yourself how they look as a whole. Have you chosen a set of functions that fit well together? And most importantly: What is your creativity to volume quotient?

Help	Numerical Summaries	Randomization/Simulation	Data
<pre>apropos() ? ?? example()</pre>	These functions have a formula interface to match plotting. favstats()	<pre>rflip() # mosaic do() # mosaic sample() # mosaic augmented resample() # with replacement shuffle() # mosaic rbinom()</pre>	<pre>nrow(); ncol(); dim() inspect() # mosaic names() head(); tail() factor()</pre>
Basic Calculations Basic calculation works like a calculator.	<pre>median() # mosaic augmented median() # mosaic augmented sd() # mosaic augmented var() # mosaic augmented diffmean() # mosaic</pre>	Distributions	<pre>read.file() # mosaic with() summary() glimpse() # dplyr</pre>
<pre># basic ops: + - * / ^ () log(); exp(); sqrt()</pre>	<pre>quantile() # mosaic augmented prop() # mosaic perc() # mosaic</pre>	<pre>gf_dist() # ggformula # plain pbinom(); pnorm();</pre>	<pre>ntiles() # mosaic cut() c() cbind(); rbind()</pre>
<pre>log10(); abs(); choose() Formula Interface</pre>	<pre>rank() IQR() # mosaic augmented min(); max() # mosaic augmented</pre>	<pre># mosaic augmented xpnorm(); xpchisq(); xpt() xqbinom(); xqnorm(); xqchisq(); xqt()</pre>	<pre>colnames() rownames() relevel() reorder()</pre>
The following syntax (often with some parts omitted) is used for graphical sum- maries, numerical summaries, and infer- ence procedures.	Graphics (with ggformula)	Inference	<pre>rep() seq() sort() rank()</pre>
<pre>goal(y ~ x z, data = mydata,) For plots:</pre>	<pre>gf_histogram() # ggformula</pre>	<pre>t.test() # mosaic augmented binom.test() # mosaic augmented prop.test() # mosaic augmented xchisq.test() # mosaic</pre>	Data Transformation
 y: is y-axis variable x: is x-axis variable	gf_density()# ggformulagf_dens()# ggformulagf_freqpol()# ggformulagf_qq()# ggformula	fisher.test()# mosaicpval()# mosaicmodel <- lm()	
• z: conditioning variable (separate panels)	<pre>gf_fun() # ggformula makeFun() # mosaic gf_dot() # ggformula</pre>	<pre>coef(model) confint(model) # mosaic augmented anova(model) makeFun(model) # mosaic</pre>	<pre>select() # dplyr mutate() # dplyr filter() # dplyr</pre>
For other things: 'y $\sim x \mid z$ ' can usually be read 'y is modeled by (or depends on) x differently	gf_bar() # ggformula	<pre>resid(model); fitted(model) gf_model(model) # ggformula</pre>	arrange()# dplyrsummarise()# dplyrgroup_by()# dplyrleft_join()# dplyr
for each z'.	<pre>mplot(HELPrct)</pre>	<pre>mplot(TukeyHSD(model))</pre>	left_join()

model <- glm() # logistic reg.</pre>

See the sampler for examples.

rflip(6)

Flipping 6 coins [Prob(Heads) = 0.5] ...

ТНТННТ

Number of Heads: 3 [Proportion Heads: 0.5]

do(2) * rflip(6)

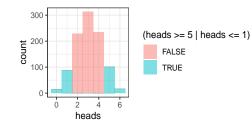
n heads tails prop 1 6 0 6 0.0 2 6 3 3 0.5

coins <- do(1000) * rflip(6)
tally(~heads, data = coins)</pre>

heads 0 1 2 3 4 5 6 15 89 229 313 235 102 17

tally(~heads, data = coins, format = "perc")

heads 0 1 2 3 4 5


1.5 8.9 22.9 31.3 23.5 10.2 1.7

```
tally(~(heads >= 5 | heads <= 1), data = coins)</pre>
```

6

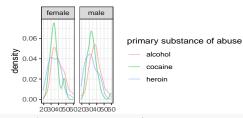
(heads >= 5 | heads <= 1) TRUE FALSE 223 777

gf_histogram(~heads, data = coins, binwidth = 1,
 fill = ~(heads >= 5 | heads <= 1))</pre>

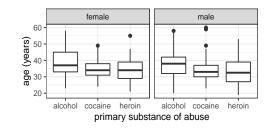
tally(sex ~ substance, data = HELPrct)

substance sex alcohol cocaine heroin female 36 41 30 male 141 111 94

mean(age ~ sex, data = HELPrct)


female male 36.25 35.47

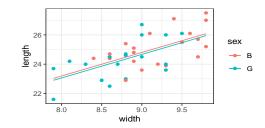
diffmean(age ~ sex, data = HELPrct)


diffmean -0.7841

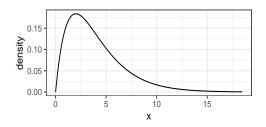
favstats(age ~ sex, data = HELPrct)

sex min Q1 median Q3 max mean 1 female 21 31 35 40.5 58 36.25 2 male 19 30 35 40.0 60 35.47 sd n missing 1 7.585 107 0 2 7.750 346 0

pval(binom.test(~sex, data = HELPrct))


p.value 1.932e-30

confint(t.test(~age, data = HELPrct))


mean of x lower upper level
1 35.65 34.94 36.37 0.95

```
model <-
    lm(length ~ width + sex, data = KidsFeet)
l.hat <- makeFun(model)
l.hat(width = 8.25, sex = "B")</pre>
```

```
1
23.6
```


gf_dist("chisq", df = 4)

