Package ‘multiAssetOptions’

April 20, 2021
Type Package
Title Finite Difference Method for Multi-Asset Option Valuation
Version 0.1-2
Date 2021-04-20
Author Michael Eichenberger and Carlo Rosa
Maintainer Michael Eichenberger mike.eichenberger@gmail.com
Imports Matrix, graphics
Description Efficient finite difference method for valuing European and American multi-asset options.
License GPL-2 I GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-20 14:50:07 UTC

R topics documented:

multiAssetOptions-package 1
matrixFDM 2
multiAssetOption 3
nodeSpacer 6
payoff 7
plotOptionValues 8
Index 10
multiAssetOptions-package

Description

This package implements an efficient finite difference method for valuing multi-asset options in the Black-Scholes world. The model assumes static volatilities and correlations. The implementation allows users to vary the option setup (number of underlying assets, call vs. put, European vs. American, etc.) as well as some of the features of the numerical method (mesh spacing, timestepping scheme, etc.).

Details

Package:	multiAssetOptions
Type:	Package
Version:	$0.1-2$
Date:	$2021-04-20$
License:	GPL-2 I GPL-3

This package contains the function multiAssetOption, which implements a generalized version of the finite difference method for option valuation. Several sub-functions are included in this package to improve code clarity and presentation.

Author(s)

Michael Eichenberger and Carlo Rosa
Maintainer: Michael Eichenberger mike.eichenberger@gmail.com
matrixFDM Finite Difference Matrix Generator

Description

Generates a modified coefficient matrix (M-matrix) used in the finite difference method from the option inputs. See Tavella and Randall (2000) for more on the standard formulation of the M-matrix.

Usage

matrixFDM(S, rf, q, vol, rho)

Arguments

S
list containing the vectors of spatial grid points associated with each underlying. Vector sizes of underlying spatial grid points need not be equal.
rf scalar; applicable risk-free rate (domestic risk-free rate).
$\mathrm{q} \quad$ vector; holding costs of the option's underlyings (dividends, foreign risk-free rates, etc.).
vol vector; volatilities of the option's underlyings.
rho matrix; correlation matrix of the option's underlyings.

Details

matrixFDM first constructs the non-zero diagonals of the M-matrix and stores them as columns. The bandSparse function from the Matrix package then constructs a sparse banded matrix from the columns of the previously contructed matrix. Spatial domain boundaries are calculated firstorder inwards with second difference terms dropped, maintaining block tridiagonality.

Value

matrixFDM returns a CsparseMatrix-class matrix used for timestepping in the finite difference method.

Author(s)

Michael Eichenberger and Carlo Rosa

References

Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John Wiley \& Sons, Inc., New York.

Examples

```
# finite difference matrix for uniformly-spaced two-asset option
S1 <- list(seq(0, 5, by=1), seq(0, 5, by=1))
rf <- 0.1
q <- c(0.05, 0.04)
vol <- c(0.20, 0.25)
rho <- matrix(c(1,-0.5,-0.5,1), 2, 2)
matrixFDM(S1, rf, q, vol, rho)
```


Description

multiAssetOption generalizes the standard finite difference method to handle mulitple underlying assets, non-uniform grid spacing, non-uniform timestepping, and American exercise. The implementation allows users to vary the option setup (number of underlying assets, call vs. put, European vs. American, etc.) as well as the features of the numerical method (grid spacing, timestepping scheme, etc.). Strike shifting the mesh and Rannacher smoothing are optionally included to remedy problems arising from potential spurious oscillations in the solution.

Usage

multiAssetOption(X)

Arguments

Details

Items of the input list X are as follows:
X\$opt\$nAsset integer; number of underlying assets.
X\$opt\$payType case; if 0 , digital payoff, if 1 , best-of payoff, if 2 , worst-of payoff.
X\$opt\$exerType case; if 0, European exercise, if 1, American exercise.
X\$opt\$pcFlag case vector; if 0 , call, if 1 , put.
X\$opt\$ttm scalar; time to maturity.
X\$opt\$strike vector; option strikes.
X\$opt\$rf scalar; applicable risk-free rate (domestic risk-free rate).
$X \$ o p t \$ q$ vector; holding costs of the option's underlyings (dividends, foreign risk-free rates, etc.).
X\$opt\$vol vector; volatilities of the option's underlyings.
X\$opt\$rho matrix; correlation matrix of the option's underlyings.
$X \$ f d \$ m$ vector; number of spatial steps for each underlying's domain discretization.
$X \$ f d \$ l e f t B o u n d$ vector; near spatial boundaries of each underlying's domain.
$X \$ f d \$ k M u l t$ vector; right boundary strike multiples. If 0 , far domain boundary calculated via formula given in Kangro and Nicolaides (2000). Otherwise, far domain boundary calculated as the strike multiplied by the strike multiple.
$X \$ f d \$ d e n s i t y$ vector; impacts the concentration of nodes around the option strike. At 0 , nodes are uniformly distributed between the near and far boundaries. Increasing the parameter increases the node concentration around the strike.

X\$fd\$kShift case vector; if 0 , no mesh shifting, if 1 , adjusts the node spacing such that the strike falls exactly between two nodes, if 2 , adjusts the node spacing such that the strike falls exactly on a node. See Tavella and Randall (2000).
X\$fd\$theta scalar; implicitness parameter of the theta method. Chosen between 0 (fully explicit) and 1 (fully implicit).

X\$fd\$maxSmooth integer; number of Rannacher smoothing steps. See Rannacher (1984).
X\$fd\$tol scalar; error tolerance in penalty iteration for American exercise.
$X \$ f d \$ m a x I t e r$ integer; maximum number of iterations per penalty loop for American exercise.
X\$time\$tsType case; if 0 , constant timestep size, if 1 , adaptive timestep size. See Forsyth and Vetzal (2002).
$X \$$ time $\$ N$ integer; number of total timesteps if not using adaptive timesteps.
X\$time\$dtInit scalar; inital timestep size for adaptive timesteps.
X\$time\$dNorm scalar; target relative change for adaptive timesteps.
X\$time\$D scalar; normalizing parameter for adaptive timesteps.
The classical order for the state vectors output from the function is illustrated by example. With two underlying assets, option values in each state vector are stored in the order: [11, 21, 31, ... , M1, $12,22, \ldots, \mathrm{MN}]$ with M being the total number of nodes used in the first asset spatial discretization and N being the total number of nodes in the second.

Value

multiAssetOption returns a list:
value matrix of per-unit option values. Each column stores the state of the option value array (collection of option values for all nodes of the spatial mesh) as a vector following the classical order (see Details section). The columns of the matrix are indexed over time, with the first column beginning at option maturity, and subsequent columns moving backward in time.

S list containing the vectors of spatial grid points associated with each underlying. Vector sizes of underlying spatial grid points need not be equal.
dimS dimension of option value array. This item can be used to reshape the column vectors in value into an appropriately dimensioned array using array(... , dim=dimS).
time vector of times associated with each column of the value item.
For each column (time) of the value item, the option value at that time can be calculated as the option's notional amount multiplied by the unit option value interpolated over the S item at the current underlying prices.

Author(s)

Michael Eichenberger and Carlo Rosa

References

Forsyth, P.A., Vetzal, K.R., 2002. Quadratic convergence for valuing American options using a penalty method. SIAM Journal on Scientific Computing, 23 (6), 2095-2122.
Kangro, R., Nicolaides, R., 2000. Far field boundary conditions for Black-Scholes equations. SIAM Journal on Numerical Analysis, 38 (4), 1357-1368.
Rannacher, R., 1984. Finite element solution of diffusion problems with irregular data. Numberische Mathematik, 43, 309-327.
Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John Wiley \& Sons, Inc., New York.

Examples

```
# european dual-asset digital option example
# initialize inputs list
X <- list()
# option inputs
X$opt$nAsset <- 2
X$opt$payType <- 0
X$opt$exerType <- 0
X$opt$pcFlag <- c(1, 0)
X$opt$ttm <- 0.5
X$opt$strike <- c(110, 90)
```

```
    X$opt$rf <- 0.10
    X$opt$q <- c(0.05, 0.04)
    X$opt$vol <- c(0.20, 0.25)
    X$opt$rho <- matrix(c(1, -0.5, -0.5, 1), X$opt$nAsset, X$opt$nAsset)
    # finite difference inputs
X$fd$m <- c(20, 20)
X$fd$leftBound <- c(0, 0)
X$fd$kMult <- c(0, 0)
X$fd$density <- c(5, 5)
X$fd$kShift <- c(1, 1)
X$fd$theta <- 0.5
X$fd$maxSmooth <- 2
X$fd$tol <- 1e-7
X$fd$maxIter <- 3
# timestep inputs
X$time$tsType <- 0
X$time$N <- min(X$fd$m) * 4
X$time$dtInit <- 0.1 / 4^log2(min(X$fd$m)/5)
X$time$dNorm <- 5 / 2^log2(min(X$fd$m)/5)
X$time$D <- 0.05
# function check
output <- multiAssetOption(X)
```

nodeSpacer Non-Uniform Finite Difference Node Spacer

Description

nodeSpacer implements the spatial discretization scheme from Hout and Foulon (2010) with arbitrary left and right bounds. The function additionally includes logic for mesh shifting.

Usage

nodeSpacer(K, leftBound, rightBound, nodes, density, kShift)

Arguments

K
scalar; option strike.
leftBound
rightBound
nodes
density
kShift
scalar; near spatial boundary of the underlying domain.
scalar; far spatial boundary of the underlying domain.
integer; number of nodes used in the spatial discretization.
scalar; impacts the concentration of nodes around the option strike. At 0 , nodes are uniformly distributed between the leftBound and rightBound. Increasing the parameter increases the node concentration around the strike.
case; if 0 , no mesh shifting, if 1 , adjusts the node spacing such that the strike falls exactly between two nodes, if 2 , adjusts the node spacing such that the strike falls exactly on a node. See Tavella and Randall (2000).

Details

Mesh shifting is accomplished by multiplying the vector of gridpoints by a scalar. For multi-asset options, this nodeSpacer is called iteratively to discretize each underlying's spatial domain.

Value

nodeSpacer returns a vector of gridpoints used in spatial discretization in the finite difference method. The nodes input determines the length of the output vector.

Author(s)

Michael Eichenberger and Carlo Rosa

References

Hout, K. J., Foulon, S., 2010. ADI finite difference schemes for option pricing in the Heston model with correlation. International Journal of Numerical Analysis and Modeling, 7 (2), 303320. http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-2-10/2010-02-06.pdf

Pooley, D. M., Vetzal, K. R., Forsyth, P. A., 2002. Convergence remedies for non-smooth payoffs in option pricing. https://cs.uwaterloo.ca/~paforsyt/report.pdf
Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John Wiley \& Sons, Inc., New York.

Examples

```
# sample mesh spacing
plot(nodeSpacer(100, 0, 500, 26, 5, 1), rep(0, times=26), main='Non-Uniform Mesh Spacing',
    xlab='Underlying Price (Strike = 100)', ylab='', yaxt='n', type='p', cex=0.5, pch=16)
```

payoff

Multi-Asset Option Payoff Calculator

Description

payoff calculates the per-unit option payoff for digital, best-of, and worst-of multi-asset options.

Usage

payoff(payType, pcFlag, strike, S)

Arguments

payType case; if 0 , digital payoff, if 1 , best-of payoff, if 2 , worst-of payoff.
pcFlag case vector; if 0 , call, if 1 , put.
strike vector; option strikes.
S
list containing the vectors of spatial grid points associated with each underlying. Vector sizes of underlying spatial grid points need not be equal.

Value

payoff returns an array of the unit option values at each point spanned by the list of underlying vectors. Dimension of array is inhereted from S.

Author(s)

Michael Eichenberger and Carlo Rosa

Examples

\# payoff of a dual-asset digital call with strikes at 100 and 90.
S <- list(seq(0, 500, by=1), seq(0, 500, by=1))
payoff(0, c(0, 0), c(100, 90), S)
plotOptionValues Plot Option Values Over Time

Description

plotOptionValues plots the solution of the option PDE over time.

Usage

plotOptionValues(Y, fps)

Arguments

$\begin{array}{ll}Y & \text { list containing the items resulting from the multiAssetOption function. } \\ \text { fps } & \text { integer; number of frames per second of the animation. }\end{array}$

Details

Animation occurs in backwards time, beginning from the option's expiry date, moving toward time $=0$. This function applies only to options written on one or two underlying assets. Higher dimensional options are not plotted.

Author(s)

Michael Eichenberger and Carlo Rosa

See Also

multiAssetOption

Examples

```
# plot test
# initialize inputs list
X <- list()
# option inputs
x$opt$nAsset <- 2
X$opt$payType <- 0
X$opt$exerType <- 0
X$opt$pcFlag <- c(0, 0)
X$opt$ttm <- 0.5
X$opt$strike <- c(110, 90)
X$opt$rf <- 0.10
X$opt$q <- c(0.05, 0.04)
X$opt$vol <- c(0.20, 0.25)
X$opt$rho <- matrix(c(1, -0.5, -0.5, 1), X$opt$nAsset, X$opt$nAsset)
# finite difference inputs
X$fd$m <- c(10, 10)
X$fd$leftBound <- c(0, 0)
X$fd$kMult <- c(0, 0)
X$fd$density <- c(5, 5)
X$fd$kShift <- c(1, 1)
X$fd$theta <- 0.5
X$fd$maxSmooth <- 2
X$fd$tol <- 1e-7
X$fd$maxIter <- 3
# timestep inputs
X$time$tsType <- 0
X$time$N <- min(X$fd$m) * 4
X$time$dtInit <- 0.1 / 4^ log2(min(X$fd$m)/5)
X$time$dNorm <- 5 / 2^log2(min(X$fd$m)/5)
X$time$D <- 0.05
Y <- multiAssetOption(X)
# function check
plotOptionValues(Y, 40)
```


Index

```
* package
    multiAssetOptions-package, 1
matrixFDM,2
multiAssetOption, 3, 8
multiAssetOptions
    (multiAssetOptions-package), 1
multiAssetOptions-package, 1
nodeSpacer, 6
payoff,7
plotOptionValues, }
```

