
Package ‘multiclassPairs’
May 17, 2021

Type Package

Title Build MultiClass Pair-Based Classifiers using TSPs or RF

Version 0.4.3

Author Nour-al-dain Marzouka

Maintainer Nour-al-dain Marzouka <Nour-al-dain.Marzouka@med.lu.se>

Description
A toolbox to train a single sample classifier that uses in-sample feature relationships. The rela-
tionships are represented as feature1 < feature2 (e.g. gene1 < gene2). We provide two op-
tions to go with. First is based on 'switchBox' package which uses Top-score pairs algorithm. Sec-
ond is a novel implementation based on random forest algorithm. For simple problems we rec-
ommend to use one-vs-rest using TSP option due to its simplicity and for being easy to inter-
pret. For complex problems RF performs better. Both lines filter the features first then com-
bine the filtered features to make the list of all the possible rules (i.e. rule1: feature1 < fea-
ture2, rule2: feature1 < feature3, etc...). Then the list of rules will be filtered and the most impor-
tant and informative rules will be kept. The informative rules will be assembled in an one-vs-
rest model or in an RF model. We provide a detailed description with each function in this pack-
age to explain the filtration and training methodology in each line. Reference: Mar-
zouka & Eriksson (2021) <doi:10.1093/bioinformatics/btab088>.

URL https://github.com/NourMarzouka/multiclassPairs

License GPL (>= 2)

Encoding UTF-8

biocViews Classification

Depends R (>= 4.0.0)

Imports methods, utils, stats, graphics, grDevices, ranger, Boruta,
dunn.test, caret, e1071, rdist

Suggests BiocManager, Biobase, switchBox, knitr, rmarkdown, BiocStyle,
leukemiasEset, qpdf

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-05-16 22:30:02 UTC

1

https://github.com/NourMarzouka/multiclassPairs

2 filter_genes_TSP

R topics documented:

do_dunn_test . 2
filter_genes_TSP . 2
group_TSP . 5
optimize_RF . 6
plot_binary_RF . 10
plot_binary_TSP . 15
predict_one_vs_rest_TSP . 18
predict_RF . 20
print-methods . 24
proximity_matrix_RF . 25
ReadData . 29
sort_genes_RF . 30
sort_rules_RF . 35
summary_genes_RF . 39
train_one_vs_rest_TSP . 43
train_RF . 45

Index 50

do_dunn_test internal function

Description

It loops dunn.test from dunn.test package to perform pairwise comparison between groups for each
gene in the data

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

filter_genes_TSP Filter genes/features for multiclass one-vs-rest classifier downstream
training

Description

filter_genes_TSP filters genes/features prior of downstream training steps that will involve top
scores pairs using switchBox package.

filter_genes_TSP 3

Usage

filter_genes_TSP(data_object,
filter = c("one_vs_one", "one_vs_rest"),
platform_wise = FALSE,
featureNo = 1000,
UpDown = TRUE,
verbose = TRUE)

Arguments

data_object data object generated by ReadData function. Object contains the data and labels.

filter a character indicating the method of comparison to be used in the filtering.
Should be "one_vs_one" or "one_vs_rest".

platform_wise a logical indicating if the comparisons will be done in each platform alone then
the features should be ranked high in all platforms to be selected. If TRUE then
the data object should contain platform vector to be used in splitting samples
based on the platform before the comparisons

featureNo an integer indicating the number of features to be returned after the filtering per
class

UpDown a logical value indicating whether an equal number of up and down genes should
be considered. If FALSE then the number of features will be collected regardless
of the portion of the up genes and down genes

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

Details

Input data will be ranked (rank the features inside each sample) before appling the comparison
methods. Sufficient number of returned features is recommended if large number of rules is used in
the downstream training steps.

For one vs rest comparisons, Wilcoxon test will be performed through SWAP.Filter.Wilcoxon func-
tion from switchBox package. For one vs one comparisons, dunn test will be performed through
dunn.test function from dunn.test package, and this method is recommended in case of class imbal-
ance or if the classes are so close to each other in their properties.

P-values from dunn test are ranked in each one vs one comparison then the ranks are combined, the
selected genes should be ranked at the top in all comparisons.

If platform-wise is TRUE, then the gene that is ranked high in all comparisons and in all platforms
will be selected.

For example, if we have five classes (i.e. C1-C5), and dunn.test was performed, then C1 will have
four comparison agains C2-C5 (so four lists of p-values), pvalues will be ranked (smaller number
means smaller p.value) in each list, and the gene that is ranked (5,5,5,5) will be prioritized over the
gene that is ranked (1,1,1,6), and in case we have two platforms and we truned the platform-wise
to TRUE then we will have 8 lists of p-values, and the top genes will be selected in the same way.
And this is apply also on the platform-wise one-vs-rest comparison. So in brief, the lowest rank in
the different list will determine the position of the gene in the output.

Other p-value combining methods could be added in the future.

4 filter_genes_TSP

Value

OnevsrestScheme_genes_TSP object that contains the names of the top filtered features for each
class

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

random data
Data <- matrix(runif(10000), nrow=100, ncol=100,

dimnames = list(paste0("G",1:100), paste0("S",1:100)))

labels
L <- sample(x = c("A","B","C"), size = 100, replace = TRUE)

study/platform
P <- sample(c("P1","P2"), size = 100, replace = TRUE)

object <- ReadData(Data = Data,
Labels = L,

Platform = P)

not to run
switchBox package from Bioconductor is needed
Visit their website or install switchBox package using:
if(!requireNamespace("switchBox", quietly = TRUE)){
if (!requireNamespace('BiocManager', quietly = TRUE)) {
install.packages('BiocManager')
}
BiocManager::install('switchBox')", call. = FALSE)
}

filtered_genes <- filter_genes_TSP(data_object = object,
filter = "one_vs_rest",
platform_wise = FALSE,
featureNo = 10,
UpDown = TRUE,
verbose = FALSE)

training
classifier <- train_one_vs_rest_TSP(data_object = object,
filtered_genes = filtered_genes,
k_range = 10:50,
include_pivot = FALSE,
one_vs_one_scores = FALSE,
platform_wise_scores = FALSE,
seed = 1234,
verbose = FALSE)

results <- predict_one_vs_rest_TSP(classifier = classifier,

group_TSP 5

Data = object,
tolerate_missed_genes = TRUE,
weighted_votes = TRUE,
verbose = FALSE)

Confusion Matrix and Statistics on training data
caret::confusionMatrix(data = factor(results$max_score, levels = unique(L)),
reference = factor(L, levels = unique(L)),
mode="everything")

plot_binary_TSP(Data = object, classes=c("A","B","C"),
classifier = classifier,
prediction = results,
title = "Test")

group_TSP Internal function: for grouping labels for one-vs-rest usage

Description

Used to convert labels to factor to be used by switchBox package.

Usage

group_TSP(label, my_group)

Arguments

label a vector indicating multi classes

my_group character indicate the wanted class

Value

a factor contains two levels one is the wanted class and the other is "rest" that represent any other
class other than the wanted class

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

L <- sample(x = c("A","B","C","D"), size = 1000, replace = TRUE)

6 optimize_RF

optimize_RF Optimize parameters to be used in training the final RF model

Description

optimize_RF takes a different sets of parameters to be used as training parameters. optimize_RF
passes each set of the parameters to train_RF function, then optimize_RF returns the accuracies and
related measurements (i.e. number of used genes and rules) for each trained RF model based on
each set of parameters. Accuracies can be calculated based on the training data or by applying the
trained RF model on another testing data.

Usage

optimize_RF(data_object,
sorted_rules_RF,
parameters,
overall = c("Accuracy", "Kappa", "AccuracyLower",

"AccuracyUpper", "AccuracyNull", "AccuracyPValue",
"McnemarPValue")[1:2],

byclass = c("Sensitivity", "Specificity",
"Pos Pred Value", "Neg Pred Value",
"Precision", "Recall", "F1", "Prevalence",
"Detection Rate", "Detection Prevalence",
"Balanced Accuracy")[c(11)],

seed = 123456,
test_object = NULL,
impute = TRUE,
impute_reject = 0.67,
verbose = FALSE)

Arguments

data_object Data object with labels generated by ReadData function
sorted_rules_RF

sorted rules object generated by sort_rules_RF function

parameters a dataframe with the variables that the RF model will be trained based on. Col-
umn names should match arguments used in train_RF function. Each row rep-
resents one trial (model), e.g. a dataframe with 10 rows means you want to
check the performance of 10 different RF models based on 10 different set of
parameters.

overall a vector with the names of the overall performance measurements to be re-
ported in the summary table in results. It can be one or more of these mea-
surements: "Accuracy", "Kappa", "AccuracyLower", "AccuracyUpper", "Ac-
curacyNull", "AccuracyPValue", "McnemarPValue". Default is c("Accuracy",
"Kappa"). These masurements based on confusionMatrix function output in
caret package.

optimize_RF 7

byclass a vector with the names of the performance measurements for individual classes
to be reported in the summary table in results. It can be one or more of these
measurements: "Sensitivity", "Specificity", "Pos Pred Value", "Neg Pred Value",
"Precision", "Recall", "F1", "Prevalence", "Detection Rate", "Detection Preva-
lence", "Balanced Accuracy". Default is "Balanced Accuracy". These masure-
ments based on confusionMatrix function output in caret package.

seed seed to be used in the training process for reproducibility.

test_object data object with labels generated by ReadData to be used as testing data. If this
object is provided then the accuracies and performance results will be based on
this object not the training data.

impute logical to be passed to predict_RF when test_object is used. To impute missed
genes and NA values in test_object. Default is TRUE.

impute_reject a number between 0 and 1 to be passed to predict_RF when test_object is used.
It indicate the threshold of the missed rules in the sample. Based on this thresh-
old the sample will be rejected (i.e. skipped) and the missed rules will not be
imputed in this sample. Default is 0.67.

verbose a logical value indicating whether processing messages will be printed or not.
Default is FALSE.

Details

optimize_RF helps the user to optimize parameters to be used in train_RF function for a given
training dataset.

Value

return optimize_RF_output object which is a list caintains:

summary dataframe contains the input parameters, number of genes and rules in the model,
and the selected overall and by class performance measurements. Each trials (i.e.
set of parameters) as on row.

confusionMatrix

list of confusionMatrix objects generated by caret package, which contains the
fulloverall and by class performance for each trial

errors list of errors generated by trials

calls the call which used to generate this object.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels

8 optimize_RF

L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)
parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),

optimize_RF 9

byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels
if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data

10 plot_binary_RF

proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",
cluster_cols = TRUE)

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

plot_binary_RF Plot binary rule-based heatmaps

Description

plot_binary_RF Plot binary heatmaps for datasets based on rule-based random forest classifier

Usage

plot_binary_RF(Data,
classifier,
ref = NULL,
prediction = NULL,
as_training = FALSE,
platform = NULL,
classes = NULL,
platforms_ord = NULL,
top_anno = c("ref", "prediction", "platform")[1],
title = "",
binary_col = c("white", "black", "gray"),
ref_col = NULL,
pred_col = NULL,
platform_col = NULL,
show_ref = TRUE,
show_predictions = TRUE,
show_platform = TRUE,
show_scores = TRUE,

plot_binary_RF 11

show_rule_name = TRUE,
legend = TRUE,
cluster_cols = TRUE,
cluster_rows = TRUE,
anno_height = 0.03,
score_height = 0.03,
margin = c(0, 5, 0, 5))

Arguments

Data a matrix or a dataframe, samples as columns and row as features/genes. Can
also take ExpressionSet, or data_object generated by ReadData function.

classifier Classifier as a rule_based_RandomForest object, generated by train_RF func-
tion

ref Optional vector with the reference labels. Ref labels in data_object will be used
if not ref input provided. For ExpressionSet, the name of the ref variable in the
pheno data can be used.

prediction Optional. "ranger.prediction" object for the class scores generated by predict_RF
function.

as_training Logical indicates if the plot is for the training data. It means the predictions will
be extracted from the classifier itself and any prediction object will be ignored.
If TRUE, then the training data/object should be used for Data argument.

platform Optional vector with the platform/study labels or any additional annotation.
Platform labels in data_object will be used if no platform input is provided.
For ExpressionSet, the name of the variable in the pheno data can be used.

classes Optional vector with class names. This will determine which classes will be
plotted and in which order. It is not recommended to use both "classes" and
"platforms_ord" arguments together to avoid sample order conflict and may re-
sult in an improper plotting for samples.

platforms_ord Optional vector with the platform/study names. This will determine which
platform/study will be plotted and in which order. This will be used when
top_anno="platform". It is not recommended to use both "classes" and "plat-
forms_ord" arguments together.

top_anno Determine the top annotation level. Samples will be grouped based on the
top_anno. Input can be one of three options: "ref", "prediction", "platform".
Default is "ref".

title Character input as a title for the whole heatmap. Default is "".

binary_col Vector determines the colors of the binary heatmap. Default is c("white", "black",
"gray"). First color for the color when the rule is false in the sample. Second
color for the color when the rule is true. Third color is for NAs.

ref_col Optional named vector determines the colors of classes for the reference labels.
Default is NULL. Vector names should match with the ref labels.

pred_col Optional named vector determines the colors of classes for the prediction labels.
Default is NULL. Vector names should match with the prediction labels in the
prediction labels.

12 plot_binary_RF

platform_col Optional named vector determines the colors of platforms/study labels. Default
is NULL. Vector names should match with the platforms/study labels.

show_ref Logical. Determines if the ref labels will be plotted or not. If the top_anno
argument is "ref" then show_ref will be ignored and ref labels will be plotted.

show_predictions

Logical. Determines if the prediction labels will be plotted or not. If the
top_anno argument is "prediction" then show_predictions will be ignored and
predictions will be plotted.

show_platform Logical. Determines if the platform/study labels will be plotted or not. If the
top_anno argument is "platform" then show_platform will be ignored and plat-
forms will be plotted.

show_scores Logical. Determines if the prediction scores will be plotted or not. To visu-
alize scores, the classifier should be trained with probability=TRUE otherwise
show_scores will be turned FALSE automatically.

show_rule_name Logical. Determines if the rule names will be plotted on the left side of the
heatmapp or not.

legend Logical. Determines if a legend will be plotted under the heatmap.

cluster_cols Logical. Clustering the samples in each class (i.e. not all samples in the cohort)
based on the binary rules for that class. If top_anno is "platform" then the rules
from all classes are used to cluster the samples in each platform.

cluster_rows Logical. Clustering the rules in each class.

anno_height Determines the height of the annotations. It is recommended not to go out of
this range 0.01<height<0.1. Default is 0.03.

score_height Determines the height of the score bars. It is recommended not to go out of this
range 0.01<height<0.1. Default is 0.03.

margin Determines the margins of the heatmap. Default is c(0, 5, 0, 5).

Value

returns a heatmap plot for the binary rule

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

plot_binary_RF 13

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)
parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#

14 plot_binary_RF

train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels
if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data
proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",

plot_binary_TSP 15

cluster_cols = TRUE)

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

plot_binary_TSP Plot binary rule-based heatmaps

Description

plot_binary_TSP Plot binary heatmaps for datasets based on one-vs-rest multiclass top score pairs
classifier

Usage

plot_binary_TSP(Data,
classifier,
ref = NULL,
prediction = NULL,
platform = NULL,
classes = NULL,
platforms_ord = NULL,
top_anno = c("ref", "prediction", "platform")[1],
title = "",
binary_col = c("white", "black", "gray"),
ref_col = NULL,
pred_col = NULL,
platform_col = NULL,
show_ref = TRUE,
show_predictions = TRUE,
show_platform = TRUE,
show_scores = TRUE,
show_rule_name = TRUE,
legend = TRUE,
cluster_cols = TRUE,
cluster_rows = TRUE,

16 plot_binary_TSP

anno_height = 0.03,
score_height = 0.03,
margin = c(0, 5, 0, 5))

Arguments

Data a matrix, dataframe, where samples as columns and row as features/genes. Can
also take ExpressionSet, or data_object generated by ReadData function.

classifier classifier as a OnevsrestScheme_TSP object, generated by train_one_vs_rest_TSP
function

ref Optional vector with the reference labels. Ref labels in data_object will be used
if not ref input provided. For ExpressionSet, the name of the variable in the
pheno data.

prediction Optional dataframe with class "OneVsRestTSP prediction" generated by pre-
dict_one_vs_rest_TSP function with the scores and the predicted labels.

platform Optional vector with the platform/study labels or any additional annotation.
Platform labels in data_object will be used if no platform input provided. For
ExpressionSet, the name of the variable in the pheno data.

classes Optional vector with the class names. This will determine which classes will
be plotted and in which order. It is not recommended to use both "classes" and
"platforms_ord" arguments together.

platforms_ord Optional vector with the platform/study names. This will determine which
platform/study will be plotted and in which order. This will be used when
top_anno="platform". It is not recommended to use both "classes" and "plat-
forms_ord" arguments together.

top_anno Determine the top annotation level. Samples will be grouped based on the
top_anno. Input can be one of three options: "ref", "prediction", "platform".
Default is "ref".

title Carachter input as a title for the whole heatmap. Default is "".

binary_col vector determines the colors of the binary heatmap. Default is c("white", "black",
"gray"). First color for the color when the rule is false in the sample. Second
color for the color when the rule is true. Third color is for NAs.

ref_col optional named vector determines the colors of classes for the reference labels.
Default is NULL. Vector names should match with the ref labels.

pred_col optional named vector determines the colors of classes for the prediction labels.
Default is NULL. Vector names should match with the prediction labels in the
prediction labels.

platform_col optional named vector determines the colors of platforms/study labels. Default
is NULL. Vector names should match with the platforms/study labels.

show_ref logical. Determines if the ref labels will be plotted or not. If the top_anno
argument is "ref" then show_ref will be ignored.

show_predictions

logical. Determines if the prediction labels will be plotted or not. If the top_anno
argument is "prediction" then show_predictions will be ignored.

plot_binary_TSP 17

show_platform logical. Determines if the platform/study labels will be plotted or not. If the
top_anno argument is "platform" then show_platform will be ignored.

show_scores logical. Determines if the prediction scores will be plotted or not.

show_rule_name logical. Determines if the rule names will be plotted on the left side of the
heatmapp or not.

legend logical. Determines if a legend will be plotted under the heatmap.

cluster_cols logical. Clustering the samples in each class (i.e. not all samples in the cohort)
based on the binary rules for that class. If top_anno is "platform" then the rules
from all classes are used to cluster the samples in each platform.

cluster_rows logical. Clustering the rules in each class.

anno_height Determines the height of the annotations. It is recommended not to go out of
this range 0.01<height<0.1. Default is 0.03.

score_height Determines the height of the score bars. It is recommended not to go out of this
range 0.01<height<0.1. Default is 0.03.

margin Determines the margins of the heatmap. Default is c(0, 5, 0, 5).

Value

returns a heatmap plot for the binary rule

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

random data
Data <- matrix(runif(10000), nrow=100, ncol=100,

dimnames = list(paste0("G",1:100), paste0("S",1:100)))

labels
L <- sample(x = c("A","B","C"), size = 100, replace = TRUE)

study/platform
P <- sample(c("P1","P2"), size = 100, replace = TRUE)

object <- ReadData(Data = Data,
Labels = L,

Platform = P)

not to run
switchBox package from Bioconductor is needed
Visit their website or install switchBox package using:
if(!requireNamespace("switchBox", quietly = TRUE)){
if (!requireNamespace('BiocManager', quietly = TRUE)) {
install.packages('BiocManager')
}
BiocManager::install('switchBox')", call. = FALSE)
}

18 predict_one_vs_rest_TSP

#filtered_genes <- filter_genes_TSP(data_object = object,
filter = "one_vs_rest",
platform_wise = FALSE,
featureNo = 10,
UpDown = TRUE,
verbose = FALSE)

training
classifier <- train_one_vs_rest_TSP(data_object = object,
filtered_genes = filtered_genes,
k_range = 2:50,
include_pivot = FALSE,
one_vs_one_scores = FALSE,
platform_wise_scores = FALSE,
seed = 1234,
verbose = FALSE)

results <- predict_one_vs_rest_TSP(classifier = classifier,
Data = object,
tolerate_missed_genes = TRUE,
weighted_votes = TRUE,
verbose = FALSE)

Confusion Matrix and Statistics on training data
caret::confusionMatrix(data = factor(results$max_score, levels = unique(L)),
reference = factor(L, levels = unique(L)),
mode="everything")

plot_binary_TSP(Data = object, classes=c("A","B","C"),
classifier = classifier,
prediction = results,
title = "Test")

predict_one_vs_rest_TSP

Predict sample class based on one-vs-rest multiclass top score pairs
classifier

Description

predict_one_vs_rest_TSP predicts sample class based on one-vs-rest multiclass top score pairs
classifier classifier

Usage

predict_one_vs_rest_TSP(classifier,
Data,
tolerate_missed_genes = TRUE,
weighted_votes = TRUE,

predict_one_vs_rest_TSP 19

classes,
verbose = TRUE)

Arguments

classifier classifier as a OnevsrestScheme_TSP object, generated by train_one_vs_rest_TSP
function

Data a matrix, dataframe, ExpressionSet, or data_object generated by ReadData func-
tion. Samples as columns and row as features/genes.

tolerate_missed_genes

logical. TRUE means that if a gene in the classifier is missed in the data then this
rule will be not considered in the prediction. If tolerate_missed_genes=TRUE
then the user should keep an eye on the left rules. In some cases when the missed
genes are too many then no enough rules left for a good prediction.

weighted_votes logical indicates if the rules will be treated equally or be weighted by their
scores. weighted_votes=TRUE is useful to break vote ties between classes.

classes optional vector with the names of the classes. This will be used to order the
columns of the ouput dataframe. In case not all classes in the classifier is men-
tioned in the vector, then these classes will be excluded from the prediction.

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

Value

returns dataframe with classes votes, ties, and final prediction

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

random data
Data <- matrix(runif(10000), nrow=100, ncol=100,

dimnames = list(paste0("G",1:100), paste0("S",1:100)))

labels
L <- sample(x = c("A","B","C"), size = 100, replace = TRUE)

study/platform
P <- sample(c("P1","P2"), size = 100, replace = TRUE)

object <- ReadData(Data = Data,
Labels = L,

Platform = P)

not to run
switchBox package from Bioconductor is needed
Visit their website or install switchBox package using:

20 predict_RF

if(!requireNamespace("switchBox", quietly = TRUE)){
if (!requireNamespace('BiocManager', quietly = TRUE)) {
install.packages('BiocManager')
}
BiocManager::install('switchBox')", call. = FALSE)
}

filtered_genes <- filter_genes_TSP(data_object = object,
filter = "one_vs_rest",
platform_wise = FALSE,
featureNo = 10,
UpDown = TRUE,
verbose = FALSE)

training
classifier <- train_one_vs_rest_TSP(data_object = object,
filtered_genes = filtered_genes,
k_range = 2:50,
include_pivot = FALSE,
one_vs_one_scores = FALSE,
platform_wise_scores = FALSE,
seed = 1234,
verbose = FALSE)

results <- predict_one_vs_rest_TSP(classifier = classifier,
Data = object,
tolerate_missed_genes = TRUE,
weighted_votes = TRUE,
verbose = FALSE)

Confusion Matrix and Statistics on training data
caret::confusionMatrix(data = factor(results$max_score, levels = unique(L)),
reference = factor(L, levels = unique(L)),
mode="everything")

plot_binary_TSP(Data = object, classes=c("A","B","C"),
classifier = classifier,
prediction = results,
title = "Test")

predict_RF Predict sample class based on gene pair-based random forest classi-
fier

Description

predict_RF predicts sample class based on pair-based random forest classifier

predict_RF 21

Usage

predict_RF(classifier,
Data,
impute = FALSE,
impute_reject = 0.67,
impute_kNN = 5,
verbose = TRUE)

Arguments

classifier classifier as a rule_based_RandomForest object, generated by train_RF function

Data a matrix, dataframe, ExpressionSet, or data_object generated by ReadData func-
tion. Samples as columns and row as features/genes.

impute logical. To determine if missed genes and NA values should be imputed or
not. The non missed rules will be used to detemine the closest samples in the
training binary matrix (i.e. which is stored in the classifier object). For each
sample, the mode value for nearest samples in the training data will be assigned
to the missed rules. Default is FALSE.

impute_reject a number between 0 and 1 indicating the threshold of the missed rules in the
sample. Based on this threshold the sample will be rejected (i.e. skipped if
higher than the impute_reject threshold) and the missed rules will not be imputed
in this sample. Default is 0.67. NOTE, The results object will not have any
results for this sample.

impute_kNN interger determines the number of the nearest samples in the training data to be
used in the imputation. Default is 5. It is not recommended to use large number
(i.e. >10).

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

Value

returns predictions object as "ranger.prediction" class from ranger package. If the RF classifier was
trained with probability=TRUE then the results will contain the scores for the classes, and to help
the user to get clearer outputs predict_RF adds a new slot (i.e. results$predictions_classes) contains
a vector with the prediction based on the highest scores in results$predictions. If the RF classifier
was trained with probability=FALSE then the results will contain the final class but no scores are
provided in results$predictions. In case a sample was rejected in the imputation process (passed the
reject cutoff) then it will not be included in the prediction results. This should be kept in mind in
case the user wants to match the input samples with the results for the confusion matrix for example.
To help the user to get clearer outputs predict_RF adds the sample names as names/row names to
the factor/matrix in results$predictions.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

22 predict_RF

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)

predict_RF 23

parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels
if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,

24 print-methods

top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data
proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",
cluster_cols = TRUE)

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

print-methods Methods for Function print in Package multiclassPairs

Description

Methods for function print in package multiclassPairs

Methods

signature(x = "multiclassPairs_object")

signature(x = "OnevsrestScheme_genes_SB")

signature(x = "OnevsrestScheme_SB")

signature(x = "RandomForest_sorted_genes")

signature(x = "RandomForest_sorted_rules")

signature(x = "rule_based_RandomForest")

proximity_matrix_RF 25

proximity_matrix_RF Plot binary rule-based heatmaps

Description

proximity_matrix_RF Plot clustering heatmaps showing which out-of-bag samples are predicted
in the same class and in the same trees during the training process for the rule-based random forest
classifier

Usage

proximity_matrix_RF(object,
classifier,
plot=TRUE,
return_matrix=TRUE,
title = "",
top_anno = c("ref","platform")[1],
classes = NULL,
sam_order = NULL,
ref_col = NULL,
platform_col = NULL,
platforms_ord = NULL,
show_platform = TRUE,
cluster_cols = FALSE,
legend = TRUE,
anno_height = 0.03,
margin = c(0, 5, 0, 5))

Arguments

object data_object generated by ReadData function which was used in the training pro-
cess.

classifier classifier as a rule_based_RandomForest object, generated by train_RF function

plot logical. To plot the proximity matrix or not. Default is TRUE.

return_matrix logical. To return the proximity matrix or not. Default is TRUE.

title Character input as a title for the whole heatmap. Default is "".

top_anno Determine the top annotation level. Samples will be grouped based on the
top_anno. Input can be one of two options: "ref", "platform". Default is "ref".

classes Optional vector with the class names. Classes will determine which classes will
be plotted and in which order. It is not recommended to use both "classes" and
"platforms_ord" arguments together.

sam_order Optional vector with the samples order in the heatmap.

ref_col optional named vector determines the colors of classes for the reference labels.
Default is NULL. Vector names should match with the ref labels.

26 proximity_matrix_RF

platform_col optional named vector determines the colors of platforms/study labels. Default
is NULL. Vector names should match with the platforms/study labels.

platforms_ord Optional vector with the platform/study names. This will determine which
platform/study will be plotted and in which order. This will be used when
top_anno="platform". It is not recommended to use both "classes" and "plat-
forms_ord" arguments together.

show_platform logical. Determines if the platform/study labels will be plotted or not. If the
top_anno argument is "platform" then show_platform will be ignored.

cluster_cols logical. samples will be grouped based on the class then will be Clustered in
each class (i.e. not all samples in the cohort). If top_anno is "platform" then the
rules from all classes are used to cluster the samples in each platform.

legend logical. Determines if a legend will be plotted under the heatmap.

anno_height Determines the height of the annotations. It is recommended not to go out of
this range 0.01<height<0.1. Default is 0.03.

margin Determines the margins of the heatmap. Default is c(0, 5, 0, 5).

Value

returns the proximity matrix and/or a heatmap plot for the proximity matrix.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,

proximity_matrix_RF 27

genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)
parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,

28 proximity_matrix_RF

sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels
if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data
proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",
cluster_cols = TRUE)

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,

ReadData 29

top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

ReadData Function for preparing data object

Description

ReadData takes data such as matrix, labels, and platform information, and produce data object to be
used in the down stream analysis, such as filtering genes.

Usage

ReadData(Data, Labels, Platform = NULL, verbose = TRUE)

Arguments

Data a dataframe, matrix, or ExpressionSet with values to be used in the down stream
analysis. Samples as columns and rows genes/features as rows. Matrix should
has column names and row names. It is recommended to avoid "-" symbol for
the feature/gene names.

Labels a vector indicating the classes of the samples. Should be with the same length
of the columns number in data. This can be a variable name stored in the Ex-
pressionSet if ExpressionSet is used.

Platform Optional, vector with the same length of labels indicating. This can be a variable
name stored in the ExpressionSet if ExpressionSet is used.

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

Value

data object multiclassPairs_object

Data dataframe (gene as rows and samples as columns)

Labels a vector containing classes information

Platform a vector containing Platform information, or NULL if no input is used

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

30 sort_genes_RF

Examples

example of loading data from matrix
Data <- matrix(runif(10000), nrow=100, ncol=100,

dimnames = list(paste0("G",1:100), paste0("S",1:100)))

L <- sample(x = c("A","B","C"), size = 100, replace = TRUE)

P <- sample(x = c("P1","P2"), size = 100, replace = TRUE)

table(P,L)

object <- ReadData(Data = Data,
Labels = L,
Platform = P,
verbose = FALSE)

object

Not to run
example of loading data from ExpressionSet
library(leukemiasEset, quietly = TRUE)
data(leukemiasEset)

split the data to training and testing
n <- ncol(leukemiasEset)
set.seed(1234)
training_samples <- sample(1:n,size = n*0.6)

train <- leukemiasEset[1:1000,training_samples]
test <- leukemiasEset[1:1000,-training_samples]

create the data object
when we use Expressionset we can use the name of the phenotypes variable
ReadData will automatically extract the phenotype variable and use it as class labels
the same can be used with the Platform/study labels
in this example we are not using any platform labels, so leave it NULL
object <- ReadData(Data = train,
Labels = "LeukemiaType",
Platform = NULL,
verbose = FALSE)
object

sort_genes_RF Sort genes/features for pair-based random forest classifier down-
stream steps

Description

sort_genes_RF uses random forest to sort genes/features prior of downstream steps such as gene
pairs/rules selection which will involve random forest models.

sort_genes_RF 31

Usage

sort_genes_RF(data_object,
featureNo_altogether,
featureNo_one_vs_rest,
rank_data = FALSE,
platform_wise = FALSE,
num.trees = 500,
min.node.size = 1,
importance = "impurity",
write.forest = FALSE,
keep.inbag = FALSE,
verbose = TRUE, ...)

Arguments

data_object data object generated by ReadData function. Object contains the data and labels.
featureNo_altogether

an integer. Optional. Indicating specific number of top sorted genes to be re-
turned from one random forest model contains all the labels together. If 0 then
this sorting will be skipped. By default, if no number is specified then all avail-
able genes will be sorted and returned because user can specify how many top
genes will be used in the downstream analysis.

featureNo_one_vs_rest

an integer. Optional. Indicating specific number of top sorted genes to be re-
turned from ’one vs rest’ random forest models. This means each class will have
a random forest where the samples from the other classes will be labels as ’rest’.
If 0 then this sorting will be skipped. By default, if no number is specified then
all available genes will be sorted and returned because user can specify how
many top genes will be used in the downstream analysis.

rank_data logical indicates if the data should be ranked (features will be ranked inside each
sample). Default is FALSE.

platform_wise logical indicates if the gene importance should be calculated in each platform
seperatly then combined based on the lowest importance value (i.e. a gene with
low importance in any platform will not be prioritized). Default is FALSE. see
details for more description.

num.trees an integer. Number of trees. Default is 500. It is recommended to increase
num.trees in case of having large number of features (ranger function argument).

min.node.size an integer. Minimal node size. Default is 1. (ranger function argument)

importance Variable importance mode, should be one of ’impurity’, ’impurity_corrected’,
’permutation’. Defualt is ’impurity’ (ranger function argument)

write.forest Save ranger.forest object, required for prediction. Default is FALSE to reduce
memory. (ranger function argument)

keep.inbag Save how often observations are in-bag in each tree. Default is FALSE. (ranger
function argument)

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

32 sort_genes_RF

... any additional arguments to be passed to ranger function (i.e. random forest
function) in ranger package. For example, seed for reproducibility.

Details

For platform-wise option. When platform_wise=TRUE, for example, if data has three platforms
(i.e. P1, P2, and P3), and random forest was performed for class 1 (C1) versus rest in each platform
seperatly, then C1 will have 3 importance lists contain the genes sorted based on P1-P3, genes
will be sorted and ranked in each list (lower rank number means higher importance), the combined
final sorting will be determined by the lowest importance level in the lists, it means a gene with
(5,5,5) will be prioritized over a gene with (1,1,6). And this is applied on the altogether sorting and
one-vs-rest sorting. Other combining methods could be added in the future.

Value

returns RandomForest_sorted_genes object which contains sorted genes based on the importance
in each class (one-vs-rest) sorting and based altogether sorting. Also it contains the random forest
objects those used in the sorting.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules

sort_genes_RF 33

rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)
parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#

34 sort_genes_RF

training accuracy
get the prediction labels
if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data
proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",
cluster_cols = TRUE)

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

sort_rules_RF 35

sort_rules_RF Create and sort feature/gene pairs for pair-based random forest clas-
sifier training step

Description

sort_rules_RF uses random forest to create and sort genes/features pairs prior of downstream
random forest model training step.

Usage

sort_rules_RF(data_object,
sorted_genes_RF,
genes_altogether = 50,
genes_one_vs_rest = 50,
run_altogether = TRUE,
run_one_vs_rest = TRUE,
platform_wise = FALSE,
num.trees = 500,
min.node.size = 1,
importance = "impurity",
write.forest = FALSE,
keep.inbag = FALSE,
verbose = TRUE, ...)

Arguments

data_object data object generated by ReadData function. Object contains the data and labels.
sorted_genes_RF

RandomForest_sorted_genes object created by sort_genes_RF function
genes_altogether

integer indicates how many top gene/features should be used altogether genes.
These genes will be pooled with the selected gene from genes_one_vs_rest to
create all the possible rules. Default is 200.

genes_one_vs_rest

integer indicates how many top gene/features should be used from one-vs-rest
genes. These genes will be pooled with the selected gene from genes_altogether
to create all the possible rules. Default is 200.

run_altogether logical indicates if altogether RF model should be performed to sort the rules
based in their importance in all classes together. Default is TRUE.

run_one_vs_rest

logical indicates if one_vs_rest RF model for each class should be performed to
sort the rules based in their importance in each class. Default is TRUE.

platform_wise logical indicates if the rules importance should be calculated in each platform
seperatly then combined based on the lowest importance value (i.e. a rule with
low importance in any platform will not be prioritized). Default is FALSE. see
details for more description.

36 sort_rules_RF

num.trees an integer. Number of trees. Default is 500. It is recommended to increase
num.trees in case of having large number of features (ranger function argument).

min.node.size an integer. Minimal node size. Default is 1. (ranger function argument)

importance Variable importance mode, should be one of ’impurity’, ’impurity_corrected’,
’permutation’. Defualt is ’impurity’ (ranger function argument)

write.forest Save ranger.forest object, required for prediction. Default is FALSE to reduce
memory. (ranger function argument)

keep.inbag Save how often observations are in-bag in each tree. Default is FALSE. (ranger
function argument)

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

... any additional arguments to be passed to ranger function (i.e. random forest
function) in ranger package. For example, seed for reproducibility.

Details

In case of class imbalance rules_one_vs_rest=TRUE is recommended.

For platform-wise option. When platform_wise=TRUE, for example, if data has three platforms
(i.e. P1, P2, and P3), and random forest was performed for class 1 (C1) versus rest in each platform
seperatly, then C1 will have 3 importance lists contain the rules sorted based on P1-P3, rules will
be sorted and ranked in each list (lower rank number means higher importance), the combined final
sorting will be determined by the lowest importance level in the lists, it means a rule with (5,5,5) will
be prioritized over a rule with (1,1,6). And this is applied on the altogether sorting and one-vs-rest
sorting. Other combining methods could be added in the future.

Value

returns RandomForest_sorted_rules object which contains sorted rules based on the importance in
each class (one-vs-rest) sorting and based on altogether sorting. Also it contains the random forest
objects those used in the sorting.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object

sort_rules_RF 37

object <- ReadData(Data = Data,
Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)
parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model

38 sort_rules_RF

it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels
if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data
proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",
cluster_cols = TRUE)

summary_genes_RF 39

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

summary_genes_RF Summarize sorted genes to rules

Description

After sorting genes RF by sort_genes_RF function summary_genes_RF gives an idea of how many
genes you need to use to generate specific number of rules in sort_rules_RF function.

Usage

summary_genes_RF(sorted_genes_RF,
genes_altogether,
genes_one_vs_rest)

Arguments

sorted_genes_RF

sorted genes object with class RandomForest_sorted_genes generated by sort_genes_RF
function

genes_altogether

numeric vector indicating how many genes from altogether slot (i.e. ’all’) should
be used each time. genes_altogether should be a vector with zero or pos-
itive numbers and with the same length of genes_one_vs_rest vector. Each
element in this vector will be used with the element with the same index in
genes_one_vs_rest vector.

genes_one_vs_rest

numeric vector indicating how many genes from one_vs_rest slots (i.e. per
class) should be used each time. genes_one_vs_rest should be a vector with
zero or positive numbers and with the same length of genes_altogether vec-
tor. Each element in this vector will be used with the element with the same
index in genes_altogether vector.

40 summary_genes_RF

Details

summary_genes_RF function helps the user to know which number of genes should be used to get
the needed number of rules in sort_rules_RF function. NOTE: without consideration of gene
replication in rules, because the rules are not sorted yet. summary_genes_RF workes as follows:
take the first element in genes_altogether and genes_one_vs_rest, then bring this number of
top genes from altogether slot and one_vs_rest slots (this number of genes will be taken from each
class), respectively, from the sorted_genes_RF object. Then pool the extracted genes. Then take
the unique genes. Then calculate the number of the possible combinations. Store the number of
unique genes and rules in first row in the output dataframe then pick the second element from the
genes_altogether and genes_one_vs_rest and repeat the steps again.

Value

returns a dataframe with the used paramerters and the expected number of unique genes and rules.
Number of rows of the dataframe equals the length of genes_altogether and genes_one_vs_rest.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(8000), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use
and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,

summary_genes_RF 41

genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)
parameters

Or you can use expand.grid to generate dataframe with all parameter combinations
parameters <- expand.grid(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
num.trees=c(100,500,1000),
stringsAsFactors = FALSE)
parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels

42 summary_genes_RF

if the classifier trained using probability = FALSE
training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
Extract and plot the proximity matrix from the classifier for the training data
it takes long time for large data
proximity_mat <- proximity_matrix_RF(object = object,
classifier = RF_classifier,
plot=TRUE,
return_matrix=TRUE,
title = "Test",
cluster_cols = TRUE)

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

train_one_vs_rest_TSP 43

train_one_vs_rest_TSP Build multiclass rule-based classifier as one-vs-rest scheme

Description

train_one_vs_rest_TSP trains multiclass classifier in a one-vs-rest scheme by combining binary
classifiers for each class produced by switchBox package.

Usage

train_one_vs_rest_TSP(data_object,
filtered_genes,
k_range = 10:50,
include_pivot = FALSE,
one_vs_one_scores = FALSE,
platform_wise_scores = FALSE,
disjoint = TRUE,
seed = NULL,
classes,
SB_arg = list(),
verbose = TRUE)

Arguments

data_object data object generated by ReadData function. Object contains the data and labels.

filtered_genes filtered genes object produced by filter_genes_TSP function

k_range an integer or range represent the candidate number of Top Scoring Pairs (TSPs)
in the individual (i.e. binary) classifiers. Default range from 10 to 50.

include_pivot a logical indicating if the filtered genes should also be paired with all features
available in the data matrix. Default is FALSE. include_pivot=FALSE means
filtered genes will be paired with themselves only.

one_vs_one_scores

logical indicating if rules scores for each class should be calculated as a mean
of one-vs-one scores instead of one-vs-rest manner. Default is FALSE.

platform_wise_scores

logical indicating if rules scores for each class should be calculated in each
platform-wise then averaged instead of merging all platforms together. Default
is FALSE.

disjoint is a logical value indicating whether only disjoint pairs should be considered in
the final set of selected pairs; i.e. all features occur only once among the set of
TSPs. This is an argument to be passed to the training function SWAP.Train.KTSP
from switchBox package.

seed an integer to set a seed for the training process (for reproducibility).

44 train_one_vs_rest_TSP

classes optional vector contains the names of classes in the wanted order. This means
the individual classifiers will be ordered based on this vector. If this vector does
not have all class names, then no classifiers will be train for those classes that
are not mentioned and the samples from these classes will be removed from the
training dataset.

SB_arg list of any additional arguments to be passed to the training function SWAP.Train.KTSP
from switchBox package

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

Details

This function uses SWAP.Train.KTSP function from switchBox where the algorithm (Afsari et al
(AOAS, 2014)) chooses the optimal number of rules (i.e. pairs) among the input range.

Value

Returns OnevsrestScheme_TSP object which contains one-vs-rest classifiers for the classes. These
individual classifiers are top score pairs classifiers.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

random data
Data <- matrix(runif(10000), nrow=100, ncol=100,

dimnames = list(paste0("G",1:100), paste0("S",1:100)))

labels
L <- sample(x = c("A","B","C"), size = 100, replace = TRUE)

study/platform
P <- sample(c("P1","P2"), size = 100, replace = TRUE)

object <- ReadData(Data = Data,
Labels = L,

Platform = P)

not to run
switchBox package from Bioconductor is needed
Visit their website or install switchBox package using:
if(!requireNamespace("switchBox", quietly = TRUE)){
if (!requireNamespace('BiocManager', quietly = TRUE)) {
install.packages('BiocManager')
}
BiocManager::install('switchBox')", call. = FALSE)
}

#filtered_genes <- filter_genes_TSP(data_object = object,

train_RF 45

filter = "one_vs_rest",
platform_wise = FALSE,
featureNo = 10,
UpDown = TRUE,
verbose = FALSE)

training
classifier <- train_one_vs_rest_TSP(data_object = object,
filtered_genes = filtered_genes,
k_range = 10:50,
include_pivot = FALSE,
one_vs_one_scores = FALSE,
platform_wise_scores = FALSE,
seed = 1234,
verbose = FALSE)

results <- predict_one_vs_rest_TSP(classifier = classifier,
Data = object,
tolerate_missed_genes = TRUE,
weighted_votes = TRUE,
verbose = FALSE)

Confusion Matrix and Statistics on training data
caret::confusionMatrix(data = factor(results$max_score, levels = unique(L)),
reference = factor(L, levels = unique(L)),
mode="everything")

plot_binary_TSP(Data = object, classes=c("A","B","C"),
classifier = classifier,
prediction = results,
title = "Test")

train_RF Train pair-based random forest model

Description

train_RF trains random forest model based on binary gene rules (such as geneA<geneB). Boruta
package is used to remove the unimportant rules and ranger function from ranger package is used
for the training.

Usage

train_RF(data_object,
sorted_rules_RF,
gene_repetition = 1,
rules_altogether = 50,
rules_one_vs_rest = 50,
run_boruta = FALSE,

46 train_RF

plot_boruta = FALSE,
boruta_args = list(doTrace = 1),
num.trees = 500,
min.node.size = 1,
importance = "impurity",
write.forest = TRUE,
keep.inbag = TRUE,
probability = TRUE,
verbose = TRUE, ...)

Arguments

data_object data object generated by ReadData function. Object contains the data and labels.
sorted_rules_RF

RandomForest_sorted_rules object generated by sort_rules_RF function
gene_repetition

interger indicating how many times the gene is allowed to be repeated in the
pairs/rules. Default is 1.

rules_altogether

integer indicating how many unique rules to be used from altogether slot in the
sorted rules object. Default is 200.

rules_one_vs_rest

integer indicating how many unique rules to be used from each one_vs_rest slot
(class vs rest slots) in the sorted rules object. Default is 200.

run_boruta logical indicates if Boruta algorithm should be run before building the RF model.
Boruta will be used to remove the unimportant rules. Default is FALSE.

plot_boruta logical indicates if Boruta is allowed to plot importance history plots. Default is
FALSE.

boruta_args list of argument to be passed to Boruta algorithm. Default for doTrace argument
in Boruta is 1.

num.trees an integer. Number of trees. Default is 500. It is recommended to increase
num.trees in case of having large number of features (ranger function argument).

min.node.size an integer. Minimal node size. Default is 1. (ranger function argument)

importance Variable importance mode, should be one of ’impurity’, ’impurity_corrected’,
’permutation’. Defualt is ’impurity’ (ranger function argument)

write.forest Save ranger.forest object, required for prediction. Default is TRUE. (ranger
function argument). Always should be true to return the trained RF model.

keep.inbag Save how often observations are in-bag in each tree. Default is TRUE. (ranger
function argument). Needed for co-clustering heatmaps.

probability Grow a probability forest as in Malley et al. (2012). Default is TRUE. (ranger
function argument). Needed to plot probability scores in the binary rules heatmaps.
If TRUE, when the classifier is used to predict a sample class the user will get
"ranger.prediction" object with a matrix with scores for each class. If FALSE,
the classifier will give a "ranger.prediction" object with the predicted class with-
out scores for each class.

train_RF 47

verbose a logical value indicating whether processing messages will be printed or not.
Default is TRUE.

... any additional arguments to be passed to ranger function (i.e. random forest
function) in ranger package. For example, seed for reproducibility. Note, seed
argument will be used also for Burota run.

Details

train_RF function extracts the lists of the sorted rules from altogether and classes slots, then it
keep the top rules those fit with the gene_repetition number, this step reduces the number of the rule
dramatically. From the left rules, rules_altogether and rules_one_vs_rest determine how many rules
will be used. In case rules_altogether and rules_one_vs_rest were larger than the left rules then all
the rules will be used. After that these rules will be pooled in one list and fid to Boruta function to
remove the unimportant rules. Then random forest will be trained on the important rules.

Value

train_RF returns rule_based_RandomForest object which contains the final RF classifier and the
used genes and rules in the final model.

Boruta results are also included in the object.

The object also contains TrainingMatrix which is a binary matrix for the rules in the training data,
this is used for imputation purposes during the prediction if the sample misses some values.

Author(s)

Nour-al-dain Marzouka <nour-al-dain.marzouka at med.lu.se>

Examples

generate random data
Data <- matrix(runif(800), nrow=100, ncol=80,

dimnames = list(paste0("G",1:100), paste0("S",1:80)))

generate random labels
L <- sample(x = c("A","B","C","D"), size = 80, replace = TRUE)

generate random platform labels
P <- sample(c("P1","P2","P3"), size = 80, replace = TRUE)

create data object
object <- ReadData(Data = Data,

Labels = L,
Platform = P,
verbose = FALSE)

sort genes
genes_RF <- sort_genes_RF(data_object = object,

seed=123456, verbose = FALSE)

to get an idea of how many genes we will use

48 train_RF

and how many rules will be generated
summary_genes_RF(sorted_genes_RF = genes_RF,
genes_altogether = c(10,20,50,100,150,200),
genes_one_vs_rest = c(10,20,50,100,150,200))

creat and sort rules
rules_RF <- sort_rules_RF(data_object = object,
sorted_genes_RF = genes_RF,
genes_altogether = 100,
genes_one_vs_rest = 100,
seed=123456,
verbose = FALSE)

parameters <- data.frame(
gene_repetition=c(3,2,1),
rules_one_vs_rest=0,
rules_altogether=c(2,3,10),
run_boruta=c(FALSE,"produce_error",FALSE),
plot_boruta = FALSE,
num.trees=c(100,200,300),
stringsAsFactors = FALSE)

parameters

test <- optimize_RF(data_object = object,
sorted_rules_RF = rules_RF,
test_object = NULL,
overall = c("Accuracy"),
byclass = NULL, verbose = FALSE,
parameters = parameters)
test
test$summary[which.max(test$summary$Accuracy),]
#
train the final model
it is preferred to increase the number of trees and rules in case you have
large number of samples and features
for quick example, we have small number of trees and rules here
based on the optimize_RF results we will select the parameters
RF_classifier <- train_RF(data_object = object,
gene_repetition = 1,
rules_altogether = 0,
rules_one_vs_rest = 10,
run_boruta = FALSE,
plot_boruta = FALSE,
probability = TRUE,
num.trees = 300,
sorted_rules_RF = rules_RF,
boruta_args = list(),
verbose = TRUE)
#
training accuracy
get the prediction labels
if the classifier trained using probability = FALSE

train_RF 49

training_pred <- RF_classifierRF_schemeRF_classifier$predictions
if (is.factor(training_pred)) {
x <- as.character(training_pred)
}
#
if the classifier trained using probability = TRUE
if (is.matrix(training_pred)) {
x <- colnames(training_pred)[max.col(training_pred)]
}
#
training accuracy
caret::confusionMatrix(data =factor(x),
reference = factor(object$data$Labels),
mode = "everything")

not to run
visualize the binary rules in training dataset
plot_binary_RF(Data = object,
classifier = RF_classifier,
prediction = NULL, as_training = TRUE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Training data")

not to run
predict
test_object # any test data
results <- predict_RF(classifier = RF_classifier, impute = TRUE,
Data = test_object)
#
visualize the binary rules in training dataset
plot_binary_RF(Data = test_object,
classifier = RF_classifier,
prediction = results, as_training = FALSE,
show_scores = TRUE,
top_anno = "ref",
show_predictions = TRUE,
title = "Test data")

Index

∗ methods
print-methods, 24

do_dunn_test, 2

filter_genes_TSP, 2

group_TSP, 5

optimize_RF, 6

plot_binary_RF, 10
plot_binary_TSP, 15
predict_one_vs_rest_TSP, 18
predict_RF, 20
print,multiclassPairs_object-method

(print-methods), 24
print,OnevsrestScheme_genes_SB-method

(print-methods), 24
print,OnevsrestScheme_SB-method

(print-methods), 24
print,RandomForest_sorted_genes-method

(print-methods), 24
print,RandomForest_sorted_rules-method

(print-methods), 24
print,rule_based_RandomForest-method

(print-methods), 24
print-methods, 24
proximity_matrix_RF, 25

ReadData, 29

sort_genes_RF, 30
sort_rules_RF, 35
summary_genes_RF, 39

train_one_vs_rest_TSP, 43
train_RF, 45

50

	do_dunn_test
	filter_genes_TSP
	group_TSP
	optimize_RF
	plot_binary_RF
	plot_binary_TSP
	predict_one_vs_rest_TSP
	predict_RF
	print-methods
	proximity_matrix_RF
	ReadData
	sort_genes_RF
	sort_rules_RF
	summary_genes_RF
	train_one_vs_rest_TSP
	train_RF
	Index

