Package 'multid'

June 8, 2022

Title Multivariate Difference Between Two Groups

Version 0.6.0

Description Estimation of multivariate differences between two groups (e.g., multivariate sex differences) with regularized regression methods and predictive approach. See Lönnqvist & Ilmarinen (2021) <doi:10.1007/s11109-021-09681-2> and Ilmarinen et al. (2022) <doi:10.1177/08902070221088155>.

Includes tools that help in understanding difference score reliability, predictions of difference score variables, conditional intra-class correlations, and heterogeneity of variance estimates. Package development was supported by the Academy of Finland research grant 338891.

License GPL-3

Encoding UTF-8

BugReports https://github.com/vjilmari/multid/issues

RoxygenNote 7.1.2

Imports dplyr (>= 1.0.7), glmnet (>= 4.1.2), stats (>= 4.0.2), pROC (>= 1.18.0), lavaan (>= 0.6.9), emmeans (>= 1.6.3), lme4 (>= 1.1.27.1)

Suggests knitr, rmarkdown, overlapping (>= 1.7), rio (>= 0.5.29)

VignetteBuilder knitr

NeedsCompilation no

Author Ville-Juhani Ilmarinen [aut, cre] (<https://orcid.org/0000-0001-9493-379X>)

Maintainer Ville-Juhani Ilmarinen <vj.ilmarinen@gmail.com>

Repository CRAN

Date/Publication 2022-06-08 14:40:02 UTC

R topics documented:

colwise_pool						•	•		•	•			 			•	•		•		•	•			2
cvv		•	•			•	•		•	•		•	 			•	•		•		•	•			3
cvv_manual .		•	•			•	•		•	•		•	 			•	•		•		•	•			4
d_pooled_sd .						•	•		•	•	•	•	 			•								•	4

colwise_pool

D_regularized	5
D_regularized_fold	8
D_regularized_fold_out	10
D_regularized_out	11
D_regularized_vanilla	13
ml_dadas	14
pcc	16
reliability_dms	17
sem_dadas	18
vpc_at	20
	22

Index

colwise_pool

Column-wise pooling of standard deviations

Description

Column-wise pooling of standard deviations

Usage

colwise_pool(data, n1, n2, m1, m2, sd1, sd2)

Arguments

data	Data frame of d_pooled_sd output for multiple samples.
n1	Sample sizes of group1.
n2	Sample sizes of group2.
m1	Means of group1.
m2	Means of group2.
sd1	Standard deviations of group1.
sd2	Standard deviations of group2.

Value

pooled SDs for groups and across groups

Description

Calculates three different indices for variation between two or more variance estimates. VR = Variance ratio between the largest and the smallest variance. CVV = Coefficient of variance variation (Box, 1954). SVH = Standardized variance heterogeneity (Ruscio & Roche, 2012).

Usage

cvv(data)

Arguments

data

Data frame of two or more columns or list of two or more variables.

Value

A vector including VR, CVV, and SVH.

References

Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290–302.

Ruscio, J., & Roche, B. (2012). Variance Heterogeneity in Published Psychological Research: A Review and a New Index. Methodology, 8(1), 1–11. https://doi.org/10.1027/1614-2241/a000034

Examples

```
d <- list(
  X1 = rnorm(10, sd = 10),
  X2 = rnorm(100, sd = 7.34),
  X3 = rnorm(1000, sd = 6.02),
  X4 = rnorm(100, sd = 5.17),
  X5 = rnorm(10, sd = 4.56)
)
cvv(d)
```

CVV

сvv

cvv_manual

Description

Calculates three different indices for variation between two or more variance estimates. VR = Variance ratio between the largest and the smallest variance. CVV = Coefficient of variance variation (Box, 1954). SVH = Standardized variance heterogeneity (Ruscio & Roche, 2012).

Usage

cvv_manual(sample_sizes, variances)

Arguments

sample_sizes	Numeric vector of length > 1 . Sample sizes used for each variance estimate.
variances	Numeric vector of length > 1. Variance estimates.

Value

A vector including VR, CVV, and SVH.

References

Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290–302.

Ruscio, J., & Roche, B. (2012). Variance Heterogeneity in Published Psychological Research: A Review and a New Index. Methodology, 8(1), 1–11. https://doi.org/10.1027/1614-2241/a000034

Examples

```
cvv_manual(sample_sizes=c(10,100,1000,75,3),
variances=c(1.5,2,2.5,3,3.5))
```

d_pooled_sd

Standardized mean difference with pooled standard deviation

Description

Standardized mean difference with pooled standard deviation

D_regularized

Usage

```
d_pooled_sd(
    data,
    var,
    group.var,
    group.values,
    rename.output = TRUE,
    infer = FALSE
)
```

Arguments

data	A data frame.
var	A continuous variable for which difference is estimated.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female)$ or $c(0,1)$).
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
infer	Logical. Statistical inference with Welch test? (default FALSE)

Value

Descriptive statistics and mean differences

Examples

```
d_pooled_sd(iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  var = "Petal.Length", group.var = "Species",
  group.values = c("setosa", "versicolor"), infer = TRUE
)
```

D_regularized

Multivariate group difference estimation with regularized binomial regression

Description

Multivariate group difference estimation with regularized binomial regression

Usage

```
D_regularized(
   data,
   mv.vars,
   group.var,
   group.values,
```

```
alpha = 0.5,
nfolds = 10,
s = "lambda.min",
type.measure = "deviance",
rename.output = TRUE,
out = FALSE,
size = NULL,
fold = FALSE,
fold.var = NULL,
pcc = FALSE,
auc = FALSE,
pred.prob = FALSE,
prob.cutoffs = seq(0, 1, 0.2),
append.data = FALSE
)
```

Arguments

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = ridge regression$, 1 = lasso, $0.5 = elastic net (default)$.
nfolds	Number of folds used for obtaining lambda (range from 3 to n-1, default 10).
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.lse".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
out	Logical. Should results and predictions be calculated on out-of-bad data set? (Default FALSE)
size	Integer. Number of cases in regularization data per each group. Default 1/4 of cases.
fold	Logical. Is regularization applied across sample folds with separate predictions for each fold? (Default FALSE)
fold.var	Character string. Name of the fold variable. (default NULL)
рсс	Logical. Include probabilities of correct classification? Default FALSE.
auc	Logical. Include area under the receiver operating characteristics? Default FALSE.
pred.prob	Logical. Include table of predicted probabilities? Default FALSE.
prob.cutoffs	Vector. Cutoffs for table of predicted probabilities. Default $seq(0,1,0.20)$.
append.data	Logical. If TRUE, the data is appended to the predicted variables.

D_regularized

Value

D	Multivariate descriptive statistics and differences.
pred.dat	A data.frame with predicted values.
cv.mod	Regularized regression model from cv.glmnet.
P.table	Table of predicted probabilities by cutoffs.

References

Lönnqvist, J. E., & Ilmarinen, V. J. (2021). Using a continuous measure of genderedness to assess sex differences in the attitudes of the political elite. Political Behavior, 43, 1779–1800. https://doi.org/10.1007/s11109-021-09681-2

Ilmarinen, V. J., Vainikainen, M. P., & Lönnqvist, J. E. (2022). Is there a g-factor of genderedness? Using a continuous measure of genderedness to assess sex differences in personality, values, cognitive ability, school grades, and educational track. European Journal of Personality. https://doi.org/10.1177/089020702210881

See Also

cv.glmnet

Examples

```
D_regularized(
  data = iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
  group.var = "Species", group.values = c("setosa", "versicolor")
)$D
# out-of-bag predictions
D_regularized(
  data = iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
  group.var = "Species", group.values = c("setosa", "versicolor"),
  out = TRUE, size = 15, pcc = TRUE, auc = TRUE
)$D
# separate sample folds
# generate data for 10 groups
set.seed(34246)
n1 <- 100
n2 <- 10
d <-
  data.frame(
    sex = sample(c("male", "female"), n1 * n2, replace = TRUE),
    fold = sample(x = LETTERS[1:n2], size = n1 * n2, replace = TRUE),
    x1 = rnorm(n1 * n2),
    x^2 = rnorm(n1 * n^2),
    x3 = rnorm(n1 * n2)
  )
```

Fit and predict with same data

```
D_regularized(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold",
  fold = TRUE,
  rename.output = TRUE
)$D
# Out-of-bag data for each fold
D_regularized(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold",
  size = 17,
  out = TRUE,
  fold = TRUE,
  rename.output = TRUE
)$D
```

D_regularized_fold	Use manually defined data folds for regularization and obtain esti-
	mates for each separately.

Description

Use manually defined data folds for regularization and obtain estimates for each separately.

Usage

```
D_regularized_fold(
   data,
   mv.vars,
   group.var,
   group.values,
   alpha = 0.5,
   s = "lambda.min",
   type.measure = "deviance",
   rename.output = TRUE,
   fold.var,
   append.data = FALSE
)
```

Arguments

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female)$ or $c(0,1)$).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = ridge regression$, 1 = lasso, $0.5 = elastic net (default)$.
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.1se".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
fold.var	Character string. Name of the fold variable.
append.data	Logical. If TRUE, the original data is appended to the predicted variables.

Value

D	Multivariate descriptive statistics and differences.
pred.dat	A data.frame with predicted values.
cv.mod	Regularized regression model from cv.glmnet.

See Also

cv.glmnet

Examples

```
set.seed(34246)
n1 <- 100
n2 <- 10
d <-
  data.frame(
    sex = sample(c("male", "female"), n1 * n2, replace = TRUE),
    fold = sample(x = LETTERS[1:n2], size = n1 * n2, replace = TRUE),
    x1 = rnorm(n1 * n2),
    x^2 = rnorm(n1 * n^2),
    x3 = rnorm(n1 * n2)
  )
D_regularized_fold(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold"
)$D
```

```
D_regularized_fold_out
```

Use separate data partitions for regularization and estimation across defined data folds.

Description

Use separate data partitions for regularization and estimation across defined data folds.

Usage

```
D_regularized_fold_out(
  data,
 mv.vars,
 group.var,
  group.values,
 alpha = 0.5,
  s = "lambda.min",
  type.measure = "deviance",
  rename.output = TRUE,
  size = NULL,
  fold.var,
  pcc = FALSE,
  auc = FALSE,
  pred.prob = FALSE,
  prob.cutoffs = seq(from = 0, to = 1, by = 0.2),
  append.data = FALSE
)
```

Arguments

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female)$ or $c(0,1)$).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = ridge regression$, 1 = lasso, $0.5 = elastic net (default)$.
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.1se".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
size	Integer. Size of regularization data per each group. Default 1/4 of cases.
fold.var	Name of the fold variable.

D_regularized_out

рсс	Logical. Include probabilities of correct classification? Default FALSE.
auc	Logical. Include area under the receiver operating characteristics? Default FALSE.
pred.prob	Logical. Include table of predicted probabilities? Default FALSE.
prob.cutoffs	Vector. Cutoffs for table of predicted probabilities. Default seq(0,1,0.20).
append.data	Logical. If TRUE, the testing data split is appended to the predicted variables.

Value

D	Multivariate descriptive statistics and differences.
pred.dat	A data.frame with predicted values.
cv.mod	Regularized regression model from cv.glmnet.
P.table	Table of predicted probabilities by cutoffs.

Examples

```
set.seed(34246)
n1 <- 100
n2 <- 10
d <-
  data.frame(
    sex = sample(c("male", "female"), n1 * n2, replace = TRUE),
    fold = sample(x = LETTERS[1:n2], size = n1 * n2, replace = TRUE),
    x1 = rnorm(n1 * n2),
    x2 = rnorm(n1 * n2),
    x3 = rnorm(n1 * n2)
  )
D_regularized_fold_out(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold",
  size = 17,
  pcc = TRUE
)$D
```

D_regularized_out Use separate data partition for regularization and estimation.

Description

Use separate data partition for regularization and estimation.

Usage

```
D_regularized_out(
 data,
 mv.vars,
 group.var,
 group.values,
 alpha = 0.5,
 nfolds = 10,
 s = "lambda.min",
 type.measure = "deviance",
 rename.output = TRUE,
 size = NULL,
 pcc = FALSE,
 auc = FALSE,
 pred.prob = FALSE,
 prob.cutoffs = seq(from = 0, to = 1, by = 0.2),
 append.data = FALSE
)
```

Arguments

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = ridge regression$, 1 = lasso, $0.5 = elastic net (default)$.
nfolds	Number of folds used for obtaining lambda (range from 3 to n-1, default 10).
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.lse".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
size	Integer. Size of regularization data per each group. Default 1/4 of cases.
рсс	Logical. Include probabilities of correct classification? Default FALSE.
auc	Logical. Include area under the receiver operating characteristics? Default FALSE.
pred.prob	Logical. Include table of predicted probabilities? Default FALSE.
prob.cutoffs	Vector. Cutoffs for table of predicted probabilities. Default $seq(0,1,0.20)$.
append.data	Logical. If TRUE, the testing data split is appended to the predicted variables.

Value

D	Multivariate descriptive statistics and differences.
pred.dat	A data.frame with predicted values.
cv.mod	Regularized regression model from cv.glmnet.
P.table	Table of predicted probabilities by cutoffs.

Examples

```
D_regularized_out(
  data = iris[iris$Species == "setosa" |
    iris$Species == "versicolor", ],
  mv.vars = c(
    "Sepal.Length", "Sepal.Width",
    "Petal.Length", "Petal.Width"
  ),
  group.var = "Species",
  group.values = c("setosa", "versicolor"),
  size = 40,
  pcc = TRUE
)$D
```

D_regularized_vanilla Use same data partition for regularization and estimation.

Description

Use same data partition for regularization and estimation.

Usage

```
D_regularized_vanilla(
   data,
   mv.vars,
   group.var,
   group.values,
   alpha = 0.5,
   nfolds = 10,
   s = "lambda.min",
   type.measure = "deviance",
   rename.output = TRUE,
   append.data = FALSE
)
```

Arguments

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female)$ or $c(0,1)$).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = ridge regression$, 1 = lasso, $0.5 = elastic net$ (default).
nfolds	Number of folds used for obtaining lambda (range from 3 to n-1, default 10).
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.1se".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
append.data	Logical. If TRUE, the original data is appended to the predicted variables.

Value

D	Multivariate descriptive statistics and differences.
pred.dat	A data.frame with predicted values.
cv.mod	Regularized regression model from cv.glmnet.

See Also

cv.glmnet

Examples

```
D_regularized(
  data = iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
  group.var = "Species", group.values = c("setosa", "versicolor")
)$D
```

ml_dadas

Predicting algebraic difference scores in multilevel model

Description

Decomposes difference score predictions to predictions of difference score components by probing simple effects at the levels of the binary moderator.

ml_dadas

Usage

```
ml_dadas(
   model,
   predictor,
   diff_var,
   diff_var_values,
   scaled_estimates = FALSE,
   re_cov_test = FALSE,
   var_boot_test = FALSE,
   nsim = NULL,
   level = 0.95,
   seed = NULL
)
```

Arguments

model	Multilevel model fitted with ImerTest.	
predictor	Character string. Variable name of independent variable predicting difference score.	
diff_var	Character string. A variable indicative of difference score components (two groups).	
diff_var_value	S	
	Vector. Values of the component score groups in diff_var.	
scaled_estimates		
	Logical. Are scaled estimates obtained? Does fit a reduced model for correct standard deviations. (Default FALSE)	
re_cov_test	Logical. Significance test for random effect covariation? Does fit a reduced model without the correlation. (Default FALSE)	
var_boot_test	Logical. Compare variance by lower-level groups at the upper-level in a reduced model with bootstrap? (Default FALSE)	
nsim	Numeric. Number of bootstrap simulations.	
level	Numeric. The confidence level required for the var_boot_test output (Default .95)	
seed	Numeric. Seed number for bootstrap simulations.	

Value

dadas	A data frame including regression coefficients for component scores and dadas.	
scaled_estimates		
	Scaled regression coefficients for difference score components and difference score.	
<pre>vpc_at_reduced</pre>	Variance partition coefficients in the model without the predictor and interac- tions.	
re_cov_test	Likelihood ratio significance test for random effect covariation.	
<pre>boot_var_diffs</pre>	List of different variance bootstrap tests.	

Examples

```
## Not run:
set.seed(95332)
n1 <- 10 # groups
n2 <- 10 # observations per group
dat <- data.frame(</pre>
  group = rep(c(LETTERS[1:n1]), each = n2),
  x = sample(c(-0.5, 0.5), n1 * n2, replace = TRUE),
  w = rep(sample(1:5, n1, replace = TRUE), each = n2),
  y = sample(1:5, n1 * n2, replace = TRUE)
)
library(lmerTest)
fit <- lmerTest::lmer(y ~ x * w + (x | group),
  data = dat
)
round(ml_dadas(fit,
  predictor = "w",
  diff_var = "x",
  diff_var_values = c(0.5, -0.5)
)$dadas, 3)
## End(Not run)
```

рсс

Returns probabilities of correct classification for both groups in independent data partition.

Description

Returns probabilities of correct classification for both groups in independent data partition.

Usage

```
pcc(data, pred.var, group.var, group.values)
```

Arguments

data	Data frame including predicted values (e.g., pred.dat from D_regularized_out).
pred.var	Character string. Variable name for predicted values.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).

Value

Vector of length 2. Probabilities of correct classification.

reliability_dms

Examples

```
D_out <- D_regularized_out(
    data = iris[iris$Species == "versicolor" | iris$Species == "virginica", ],
    mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
    group.var = "Species", group.values = c("versicolor", "virginica"),
    size = 15
)
pcc(
    data = D_out$pred.dat,
    pred.var = "pred",
    group.var = "group",
    group.values = c("versicolor", "virginica")
)</pre>
```

```
reliability_dms
```

Reliability calculation for difference score variable that is a difference between two mean variables calculated over upper-level units (e.g., sex differences across countries)

Description

Calculates reliability of difference score (Johns, 1981) based on two separate ICC2 values (Bliese, 2000), standard deviations of mean values over upper-level units, and correlations between the mean values across upper-level units.

Usage

```
reliability_dms(
  model = NULL,
  data = NULL,
  diff_var,
  diff_var_values,
  var,
  group_var
)
```

Arguments

model	Multilevel model fitted with lmer (default NULL)	
data	Long format data frame (default NULL)	
diff_var	Character string. A variable indicative of difference score components (two groups).	
diff_var_values		
	Vector. Values of the component score groups in diff_var.	
var	Character string. Name of the dependent variable or variable of which mean values are calculated.	
group_var	Character string. Upper-level clustering unit.	

Value

A vector including ICC2s (r11 and r22), SDs (sd1 and sd2), correlation between means (r12), and reliability of the mean difference variable.

References

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 349–381). Jossey-Bass.

Johns, G. (1981). Difference score measures of organizational behavior variables: A critique. Organizational Behavior and Human Performance, 27(3), 443–463. https://doi.org/10.1016/0030-5073(81)90033-7

Examples

```
set.seed(4317)
n2 <- 20
n1 <- 200
ri <- rnorm(n2, m = 0.5, sd = 0.2)
rs <- 0.5 * ri + rnorm(n2, m = 0.3, sd = 0.15)
d.list <- list()
for (i in 1:n2) {
  x \le rep(c(-0.5, 0.5), each = n1 / 2)
  y <- ri[i] + rs[i] * x + rnorm(n1)</pre>
  d.list[[i]] <- cbind(x, y, i)</pre>
}
d <- data.frame(do.call(rbind, d.list))</pre>
names(d) <- c("x", "y", "cntry")</pre>
reliability_dms(
  data = d, diff_var = "x",
  diff_var_values = c(-0.5, 0.5), var = "y", group_var = "cntry"
)
```

sem_dadas

Predicting algebraic difference scores in structural equation model

Description

Predicting algebraic difference scores in structural equation model

Usage

```
sem_dadas(
    data,
    var1,
    var2,
```

sem_dadas

```
center = FALSE,
scale = FALSE,
predictor,
covariates = NULL,
estimator = "MLR",
level = 0.95,
sampling.weights = NULL
)
```

Arguments

data	A data frame.
var1	Character string. Variable name of first component score of difference score (Y_1) .
var2	Character string. Variable name of second component score of difference score (Y_2) .
center	Logical. Are var1 and var2 centered around their grand mean? (Default FALSE)
scale	Logical. Are var1 and var2 scaled with their pooled sd? (Default FALSE)
predictor	Character string. Variable name of independent variable predicting difference score.
covariates	Character string or vector. Variable names of covariates (Default NULL).
estimator	Character string. Estimator used in SEM (Default "MLR").
level	Numeric. The confidence level required for the result output (Default .95)
sampling.weights	
	Character string. Name of sampling weights variable.

Value

descriptives	Means, standard deviations, and intercorrelations.	
parameter_estimates		
	Parameter estimates from the structural equation model.	
variance_test	Variances and covariances of component scores.	
transformed_data		
	Data frame with variables used in SEM.	
dadas	One sided dadas-test for positivity of abs(b_11-b_21)-abs(b_11+b_21).	
results	Summary of key results.	

References

Edwards, J. R. (1995). Alternatives to Difference Scores as Dependent Variables in the Study of Congruence in Organizational Research. Organizational Behavior and Human Decision Processes, 64(3), 307–324.

Examples

```
## Not run:
set.seed(342356)
d <- data.frame(
    var1 = rnorm(50),
    var2 = rnorm(50),
    x = rnorm(50)
)
sem_dadas(
    data = d, var1 = "var1", var2 = "var2",
    predictor = "x", center = TRUE, scale = TRUE
)$results
## End(Not run)
```

vpc_at

Variance partition coefficient calculated at different level-1 values

Description

Calculates variance estimates (level-2 Intercept variance) and variance partition coefficients (i.e., intra-class correlation) at selected values of predictor values in two-level linear models with random effects (intercept, slope, and their covariation).

Usage

```
vpc_at(model, lvl1.var, lvl1.values)
```

Arguments

model	Two-level model fitted with lme4. Must include random intercept, slope, and
	their covariation.
lvl1.var	Character string. Level 1 variable name to which random slope is also estimated.
lvl1.values	Level 1 variable values.

Value

Data frame of level 2 variance and std.dev. estimates at level 1 variable values, respective VPCs (ICC1s) and group-mean reliabilities (ICC2s) (Bliese, 2000).

References

Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning Variation in Multilevel Models. Understanding Statistics, 1(4), 223–231. https://doi.org/10.1207/S15328031US0104_02

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 349–381). Jossey-Bass.

vpc_at

Examples

```
fit <- lme4::lmer(Sepal.Length ~ Petal.Length +
  (Petal.Length | Species),
data = iris
)
lvl1.values <-
  c(
    mean(iris$Petal.Length) - stats::sd(iris$Petal.Length),
    mean(iris$Petal.Length),
    mean(iris$Petal.Length) + stats::sd(iris$Petal.Length)
  )
vpc_at(
  model = fit,
  lvl1.var = "Petal.Length",
  lvl1.values = lvl1.values
)</pre>
```

Index

 $vpc_{at}, 20$

```
colwise_pool, 2
cv.glmnet, 7, 9, 14
cvv, 3
cvv_manual, 4
d_pooled_sd, 4
D_regularized_fold, 8
D_regularized_fold_out, 10
D_regularized_out, 11
D_regularized_out, 11
D_regularized_vanilla, 13
ml_dadas, 14
pcc, 16
reliability_dms, 17
sem_dadas, 18
```