Travis build status codecov R build status R-CMD-check

Multifear

Multifear is an R package designed to perform multiverse analyses for human conditioning data.

Installing and loading the package

You can install via CRAN with the following command:

install.packages("multifear")

For the development version, you can use the following commant:

# Install devtools package in case it is not yet installed
install.packages("devtools") 
devtools::install_github("AngelosPsy/multifear")

The package can be loaded with the following code:

library(multifear)

Basic Example

We will start with a basic example of how the package works. Before doing that, let’s load some additional packages that we need for our example.

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))

Now we will use some simulated data set that are included as example data in the package. In principle, you can use any data including conditioned responses (e.g., skin conductance). You can load the simulated data in your workspace as follows:

data("example_data")

From these data we are going to select only the 10 first lines – it saves a lot of time for computation for this example. Here are the first 10 rows of the data set:

head(example_data, 10)
#>    id       CSP1       CSP2       CSP3      CSP4      CSP5      CSP6      CSP7
#> 1   2 0.62905570 0.92988220  1.0415000 0.9330014 0.9743682 0.8855119 0.8418664
#> 2   3 7.07953400 4.97656500 12.7791100 8.2847610 4.9798520 8.8685450 8.2468480
#> 3   4 0.00000000 1.21569500  2.4367400 4.5100300 5.3372170 4.6831920 3.6484020
#> 4   5 1.43786800 0.97055850  0.3784756 1.4434960 0.4060977 1.6015840 1.5274500
#> 5   7 0.94540620 3.29359400  3.4376340 2.7078930 3.6439630 3.8878390 3.6174920
#> 6   8 3.23735900 2.34393600  2.3931960 2.2908990 1.9583950 2.5094320 2.4234050
#> 7   9 0.43832140 0.04669674  0.2307273 2.2448410 1.6178050 1.8630760 1.7384420
#> 8  10 0.03912846 0.20814220  0.4654428 0.5395534 0.4498870 0.5519411 0.4144870
#> 9  11 0.88479390 1.64638700  0.9605724 0.7427042 0.2084812 2.2864430 1.8098150
#> 10 12 2.61601700 2.23660600  2.5479610 1.8130030 2.6899810 2.0758690 3.1323380
#>         CSP8      CSP9     CSP10       CSM1      CSM2      CSM3       CSM4
#> 1  0.9821523 0.5790559 0.3824215  0.9857365 1.2673990 0.0000000 0.64031250
#> 2  0.7607041 1.7655060 2.1758810 13.6548600 0.9066070 0.0000000 2.91306300
#> 3  2.1018580 6.4756940 2.6422620  0.0000000 3.2380020 2.4289650 0.25262940
#> 4  1.1900760 0.3994079 0.6168466  1.3146440 0.0000000 0.6570014 1.37108400
#> 5  2.2854040 5.2819210 4.5153330  4.2762160 3.1962110 3.4280200 1.88772700
#> 6  2.7189870 3.7545760 0.5508313  2.7552620 2.2843320 0.1147742 0.42298280
#> 7  1.5976320 0.8726718 2.5473010  0.3066088 1.5306480 2.1478420 0.46613780
#> 8  0.3175979 0.4557406 0.3433352  0.2956061 0.1793028 0.2681102 0.05366129
#> 9  1.7349280 1.8654570 0.9060298  1.2088490 0.4465152 0.8923611 1.56732600
#> 10 3.2265350 2.5452310 1.8400320  3.1200790 1.4983390 1.4273640 0.24111750
#>          CSM5       CSM6      CSM7       CSM8       CSM9      CSM10 group
#> 1  0.05137117 0.03480838 0.0000000 0.00000000 0.29036070 0.31496240     1
#> 2  0.60658980 3.72999700 1.1069910 3.63702500 0.00000000 0.00000000     2
#> 3  0.00000000 2.51429900 0.0000000 0.18621060 0.52076760 0.95751230     1
#> 4  0.53106310 0.54313130 0.2875019 0.00000000 0.18795960 0.18725370     2
#> 5  3.06479700 2.91668000 2.7914400 1.22984300 3.37716300 2.70570100     1
#> 6  2.22446600 0.00000000 0.0000000 1.21598600 0.00000000 0.00000000     2
#> 7  0.16134580 0.91540300 0.0000000 0.30176180 0.08460228 0.09295772     1
#> 8  0.10903030 0.00000000 0.0000000 0.04329369 0.19495150 0.30379580     2
#> 9  0.02774107 0.39216860 0.1940482 1.33170800 0.41266960 0.00000000     1
#> 10 0.72851310 0.96242680 0.0000000 1.27084300 0.03120063 0.00000000     2

A bit of explanation of the column names. With the column name ‘id’ is the participant number. Columns that contain the conditioned responses for conditioned stimulus plus (CS+) are denoted with column names starting with ‘CSP’. The number next to this name (1, 2, …, 10) is the trial number. The same goes for columns starting with ‘CSM’ but this denotes conditioned responses in CS- trials. At this point the package only supports a single CS+ and a single CS-. Also, the package assumes that trials are following each – so trial 2 comes after trial 1 etc. Let’s see the data:

datmelt <- example_data %>%
  select(-id) %>%
  colMeans() %>%
  reshape2::melt(dat) %>%
  mutate(variable = rownames(.)) %>%
  mutate(cs = stringr::str_sub(variable, 1, 3),
  time = stringr::str_sub(variable, 4, 5))
  
  ggplot(data = datmelt, aes(x = time, y = value, group = cs)) +
  geom_line(aes(linetype = cs)) +
  geom_point(aes(shape = cs))

We see the basic learning pattern where CS+ responses end up being higher than CS- responses.

Now we need to analyse the data. For this we will use the multifear::universe_cs function. In order for this function to work, we need to provide the following arguments.

There are some other options in the function, such as defining the type of conditioning response. However, these are not necessary for now. So, let’s now run the function:

cs1 <- paste0("CSP", 1:10)
cs2 <- paste0("CSM", 1:10)
example_data <- example_data[1:10, ]
res <- multifear::universe_cs(cs1 = cs1, cs2 = cs2, data = example_data, 
                              subj = "id", group = NULL, phase = "acquisition", include_bayes = FALSE)
#> Registered S3 methods overwritten by 'lme4':
#>   method                          from
#>   cooks.distance.influence.merMod car 
#>   influence.merMod                car 
#>   dfbeta.influence.merMod         car 
#>   dfbetas.influence.merMod        car
#> Registered S3 method overwritten by 'parameters':
#>   method     from      
#>   ci.blavaan bayestestR

And here are the results

res
#> # A tibble: 4 x 18
#>   x     y     exclusion cut_off model controls method p.value effect.size
#>   <chr> <chr> <chr>     <chr>   <chr> <lgl>    <chr>    <dbl>       <dbl>
#> 1 cs    scr   full data full d… t-te… NA       great… 0.00244      0.577 
#> 2 cs    scr   full data full d… t-te… NA       two.s… 0.00488      0.577 
#> 3 cs:t… scr   full data full d… rep … NA       rep A… 0.0152       0.0296
#> 4 cs    scr   full data full d… rep … NA       rep A… 0.00488      0.147 
#> # … with 9 more variables: effect.size.ma <dbl>, effect.size.ma.lci <dbl>,
#> #   effect.size.ma.hci <dbl>, estimate <dbl>, statistic <dbl>, conf.low <dbl>,
#> #   conf.high <dbl>, framework <chr>, data_used <list>

Let’s go through each column separately

Now, we want to perform the same analyses but for different data reduction procedures (see below). We can do it simply by:


res_multi <- multifear::multiverse_cs(cs1 = cs1, cs2 = cs2, data = example_data, subj = "id", group = NULL, phase = "acquisition", include_bayes = TRUE, include_mixed = TRUE)
#> Skipping ANOVA due to the number of trials for the cs1 and/or cs2.
res_multi
#> # A tibble: 116 x 19
#>    x     y     exclusion cut_off model controls method   p.value effect.size
#>    <chr> <chr> <chr>     <chr>   <chr> <lgl>    <chr>      <dbl>       <dbl>
#>  1 cs    scr   full_data full d… t-te… NA       great…  2.44e- 3      0.577 
#>  2 cs    scr   full_data full d… t-te… NA       two.s…  4.88e- 3      0.577 
#>  3 cs    scr   full_data full d… Baye… NA       Bayes… NA            NA     
#>  4 cs    scr   full_data full d… Baye… NA       Bayes… NA            NA     
#>  5 cs:t… scr   full_data full d… rep … NA       rep A…  1.52e- 2      0.0296
#>  6 cs    scr   full_data full d… rep … NA       rep A…  4.88e- 3      0.147 
#>  7 cscs2 scr   full_data <NA>    mixe… NA       mixed…  1.80e-13     NA     
#>  8 cscs… scr   full_data <NA>    mixe… NA       mixed…  5.92e- 7     NA     
#>  9 cscs2 scr   full_data <NA>    mixe… NA       mixed…  1.82e- 5     NA     
#> 10 cscs… scr   full_data <NA>    mixe… NA       mixed…  2.16e- 2     NA     
#> # … with 106 more rows, and 10 more variables: effect.size.ma <dbl>,
#> #   effect.size.ma.lci <dbl>, effect.size.ma.hci <dbl>, estimate <dbl>,
#> #   statistic <dbl>, conf.low <dbl>, conf.high <dbl>, framework <chr>,
#> #   data_used <list>, efffect.size.ma <lgl>

In terms of calling the function, we see that we need exactly the same arguments as before. Internally, the function actually applies the multifear::universe_cs but now apart from the full data set, also for the data sets with different data inclusion procedures. Whether each line refers to the full data set or any of the exclusion criteria, we can see on the column exclusion criteria or in the data_used column, although there it is difficult to see what happened and it serves only reproduction criteria. So, the easiest thing to do is to see the exclusion column. Now, it has the following levels:

res_multi$exclusion %>% unique()
#> [1] "full_data"  "ten_per"    "min_first"  "th3_per"    "halves"    
#> [6] "fltrials"   "twenty_per" "fl2trials"  "per2trials"

The explanation of each level is the following:

  1. fl2trials: first and last two trials.

  2. fltrials: first and last trial

  3. full_data: full data set

  4. halves: use the first and last half of the trial. So, if you have 10 trials, you will have the first 5 and last 5 trials

  5. min_first: take all trials apart from the first one

  6. separate trials per 2

  7. separate trials per 10%

  8. separate trials per 33%

  9. separate trials per 20%

Inferences

This is the most challenging part. For now you can use the following function and you will get:

  1. A histogram will all the p value and a red line showing the significance limit – by default alpha = 0.05

  2. A histogram will all the Bayes factors and a red line showing the limit of inconclusive evidence – by default this is 0

  3. Mean and median p values

  4. the number of p values below the significance level

  5. Mean and median of Bayes factors

  6. the proportion of Bayes factors above 1

multifear::inference_cs(res_multi, na.rm = TRUE)
#>   mean_p_value median_p_value sd_p_value prop_p_value mean_bf_value
#> 1    0.1074323     0.00638261  0.2341194     82.35294      1958.082
#>   median_bf_value sd_bf_value prop_bf_value
#> 1        4.319848    10487.83      73.52941

And here we have a barplot of the results:

multifear::inference_plot(res_multi, add_line = FALSE)

#> TableGrob (1 x 2) "arrange": 2 grobs
#>   z     cells    name           grob
#> 1 1 (1-1,1-1) arrange gtable[layout]
#> 2 2 (1-1,2-2) arrange gtable[layout]

Lastly, to plot the effect sizes, you can use the following function

multifear::forestplot_mf(res_multi)