Package 'mwTensor'

June 15, 2022

2 mwTensor-package

mwTe	nsor-package		M	ult	i-V	Va _.	y (Coi	mp	on	ıer	ıt .	Ar	ıal	ys	is										
Index																										16
	toyModel	 •														•					•			•		15
	plotTensor3Ds																									14
	mySVD																									14
	myNMF																									13
	myICA																									12
	myCX																									11

Description

For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md https://github.com/rikenbit/mwTensor, for details of the methods.

Details

The DESCRIPTION file:

Package: mwTensor Type: Package

Title: Multi-Way Component Analysis

Version: 0.99.6 Date: 2022-6-15

Authors@R: c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@hotmail.co.jp"))

Suggests: testthat Depends: R (>= 4.1.0)

Imports: methods, MASS, rTensor, nnTensor, ccTensor, iTensor, igraph

Description: For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension

License: Artistic-2.0

URL: https://github.com/rikenbit/mwTensor

Author: Koki Tsuyuzaki [aut, cre]

Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

Index of help topics:

CoupledMWCA Coupled Multi-way Component Analysis

(CoupledMWCA)

CoupledMWCAParams-class

Class "CoupledMWCAParams"

CoupledMWCAResult-class

Class "CoupledMWCAResult"

mwTensor-package 3

MWCA Multi-way Component Analysis (MWCA)

MWCAParams-class Class "MWCAParams" WCAResult-class Class "MWCAResult"

mwTensor-package Multi-Way Component Analysis

myALS_SVD Alternating Least Square Singular Value

Decomposition (ALS-SVD) as an example of

user-defined matrix decomposition.

myCX CX Decomposition as an example of user-defined

matrix decomposition.

myICA Independent Component Analysis (ICA) as an

example of user-defined matrix decomposition.

myNMF Independent Component Analysis (ICA) as an

example of user-defined matrix decomposition.

mySVD Singular Value Decomposition (SVD) as an

example of user-defined matrix decomposition.

plotTensor3Ds Plot function for visualization of tensor data

structure

toyModel Toy model of coupled tensor data

Author(s)

NA

Maintainer: NA

References

Andrzej Cichocki et al., (2016). Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions

Andrzej Cichocki et al., (2015). Tensor Decompositions for Signal Processing Applications, *IEEE SIGNAL PROCESSING MAGAZINE*

Gene H. Golub et al., (2012). Matrix Computation (Johns Hopkins Studies in the Mathematical Sciences), *Johns Hopkins University Press*

Madeleine Udell et al., (2016). Generalized Low Rank Models, *Foundations and Trends in Machine Learning*, 9(1).

Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations.

A. Hyvarinen. (1999). Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. *IEEE Transactions on Neural Networks*, 10(3), 626-634.

Petros Drineas et al., (2008). Relative-Error CUR Matrix Decompositions, *SIAM Journal on Matrix Analysis and Applications*, 30(2), 844-881.

See Also

mySVD, myALS_SVD, myNMF, myICA, myCX, MWCA, CoupledMWCA, plotTensor3Ds

Examples

ls("package:mwTensor")

4 CoupledMWCA

CoupledMWCA

Coupled Multi-way Component Analysis (CoupledMWCA)

Description

The input is assumed to be a CoupledMWCAParams object.

Usage

```
CoupledMWCA(params)
```

Arguments

params

CoupledMWCAParams object

Value

CoupledMWCAResult object.

Author(s)

Koki Tsuyuzaki

See Also

CoupledMWCAParams-class and CoupledMWCAResult-class.

```
if(interactive()){
# Test data (multiple arrays)
    Xs <- toyModel("coupled_CP_Easy")

params <- new("CoupledMWCAParams", Xs=Xs)
    out <- CoupledMWCA(params)
}</pre>
```

CoupledMWCAParams-class

Class "CoupledMWCAParams"

Description

The parameter object to be specified against CoupledMWCA function.

Objects from the Class

Objects can be created by calls of the form new("CoupledMWCAParams", ...).

Slots

MWCAParams has four settings as follows. For each setting, the list must have the same structure.

1. Data-wise setting Each item must be a list object that is as long as the number of data and is named after the data.

A list containing multiple high-dimensional arrays.

Mask: A list containing multiple high-dimensional arrays, in which 0 or 1 values are filled to specify the missing elements.

weights: A list containing multiple high-dimensional arrays, in which some numeric values are specified to weight each data.

2. Common Model setting Each item must be a nested list object that is as long as the number of data and is named after the data.

common_model: Each element of the list must be a list corresponding the dimention name of data and common factor matrices name.

3. Common Factor matrix-wise setting Each item must be a list object that is as long as the number of common factor matrices and is named after the factor matrices.

common_initial: The initial values of common factor matrices. If nothing is specified, random matrices are used.

common_algorithms: Algorithms used to decompose the matricised tensor in each mode.

common_iteration: The number of iterations.

common_decomp: If FALSE is specified, unit matrix is used as the common factor matrix.

common_fix: If TRUE is specified, the common factor matrix is not updated in the iteration.

common_dims: The lower dimension of each common factor matrix.

common_transpose: Whether the common factor matrix is transposed to calculate core tensor.

common_coretype: If "CP" is specified, all the core tensors become diagonal core tensors. If "Tucker" is specified, all the core tensors become dense core tensors.

4. Specific Model setting Each item must be a nested list object that is as long as the number of data and is named after the data.

- **specific_model:** Each element of the list must be a list corresponding the dimention name of data and data specific factor matrices name.
 - 5. Specific Factor matrix-wise setting Each item must be a list object that is as long as the number of data specific factor matrices and is named after the factor matrices.

specific_initial: The initial values of data specific factor matrices. If nothing is specified, random matrices are used.

specific_algorithms: Algorithms used to decompose the matricised tensor in each mode.

specific_iteration: The number of iterations.

specific_decomp: If FALSE is specified, unit matrix is used as the data specific factor matrix.

specific_fix: If TRUE is specified, the data specific factor matrix is not updated in the iteration.

specific_dims: The lower dimension of each data specific factor matrix.

specific_transpose: Whether the data specific factor matrix is transposed to calculate core tensor.

specific_coretype: If "CP" is specified, all the core tensors become diagonal core tensors. If "Tucker" is specified, all the core tensors become dense core tensors.

6. Other option Each item must to be a vector of length 1.

specific: Whether data specific factor matrices are also calculated.

thr: The threshold to stop the iteration. The higher the value, the faster the iteration will stop.

viz: Whether the output is visualized.

figdir: When viz=TRUE, whether the plot is output in the directory.

verbose: Whether the process is monitored by verbose messages.

Methods

CoupledMWCA Function to perform CoupledMWCA.

See Also

CoupledMWCAResult-class, CoupledMWCA

CoupledMWCAResult-class

Class "CoupledMWCAResult"

Description

The result object genarated by CoupledMWCA function.

Slots

weights: weights of CoupledMWCAParams. common_model: common_model of CoupledMWCAParams. common_initial: common_initial of CoupledMWCAParams. **common algorithms:** common algorithms of CoupledMWCAParams. **common_iteration:** common_iteration of CoupledMWCAParams. common_decomp: common_decomp of CoupledMWCAParams. **common_fix:** common_fix of CoupledMWCAParams. **common_dims:** common_dims of CoupledMWCAParams. **common_transpose:** common_transpose of CoupledMWCAParams. **common coretype:** common coretype of CoupledMWCAParams. **common factors:** Common factor matrices of CoupledMWCA. **common cores:** Common core tensors of CoupledMWCA. **specific_model:** specific_model of CoupledMWCAParams. **specific_initial:** specific_initial of CoupledMWCAParams. **specific_algorithms:** specific_algorithms of CoupledMWCAParams. **specific_iteration:** specific_iteration of CoupledMWCAParams. **specific_decomp:** specific_decomp of CoupledMWCAParams. **specific_fix:** specific_fix of CoupledMWCAParams. **specific_dims:** specific_dims of CoupledMWCAParams. **specific_transpose:** specific_transpose of CoupledMWCAParams. **specific coretype:** specific coretype of CoupledMWCAParams. **specific factors:** Data specific factor matrices of CoupledMWCA. **specific_cores:** Data specific core tensors of CoupledMWCA. specific: specific of CoupledMWCAParams. thr: thr of CoupledMWCAParams. viz: viz of CoupledMWCAParams. figdir: figdir of CoupledMWCAParams. **verbose:** verbose of CoupledMWCAParams. rec error: The reconstructed error. **train_error:** Training Error. train_error + test_error = rec_error. **test_error:** Test Error. train_error + test_error = rec_error. rel_change: The relative change of each iteration step.

See Also

CoupledMWCAParams-class, CoupledMWCA

8 MWCA

MWCA

Multi-way Component Analysis (MWCA)

Description

The input is assumed to be a MWCAParams object.

Usage

```
MWCA(params)
```

Arguments

params

MWCAParams object

Value

MWCAResult object.

Author(s)

Koki Tsuyuzaki

References

Andrzej Cichocki et al., (2016). Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions

Andrzej Cichocki et al., (2015). Tensor Decompositions for Signal Processing Applications, *IEEE SIGNAL PROCESSING MAGAZINE*

See Also

MWCAParams-class and MWCAResult-class.

```
if(interactive()){
  # Test data (single array)
  X <- nnTensor::toyModel("Tucker")@data
  params <- new("MWCAParams", X=X)
  out <- MWCA(params)
}</pre>
```

MWCAParams-class 9

MWCAParams-class

Class "MWCAParams"

Description

The parameter object to be specified against MWCA function.

Objects from the Class

Objects can be created by calls of the form new("MWCAParams", ...).

Slots

X: A high-dimensional array.

mask: A mask array having the same dimension of X.

algorithms: Algorithms used to decompose the matricised tensor in each mode.

dims: The lower dimension of each factor matrix.

transpose: Whether the factor matrix is transposed to calculate core tensor.

viz: Whether the output is visualized.

figdir: When viz=TRUE, whether the plot is output in the directory.

Methods

MWCA Function to peform MWCA.

See Also

MWCAResult-class, MWCA

MWCAResult-class

Class "MWCAResult"

Description

The result object genarated by MWCA function.

10 myALS_SVD

Slots

algorithms: algorithm of MWCAParams.

dims: dims of MWCAParams.

transpose: transpose of MWCAParams.

viz: viz of MWCAParams.figdir: figdir of MWCAParams.

factors: The factor matrices of MWCA.

core: The core tensor of MWCA. **rec_error:** The reconstructed error.

train_error: Training Error. train_error + test_error = rec_error.

test_error: Test Error. train_error + test_error = rec_error.

See Also

MWCAParams-class, MWCA

myALS_SVD Alternating Least Square Singular Value Decomposition (ALS-SVD)

as an example of user-defined matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "myALS_SVD", This function is called in MWCA and CoupledMWCA.

Usage

```
myALS_SVD(Xn, k, L2=1e-10, iter=30)
```

Arguments

Xn The input matrix which has N-rows and M-columns.

k The rank parameter $(k \le \min(N,M))$

L2 The regularization parameter (Default: 1e-10)

iter The number of iteration (Default: 30)

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

myCX

References

Madeleine Udell et al., (2016). Generalized Low Rank Models, *Foundations and Trends in Machine Learning*, 9(1).

Examples

```
if(interactive()){
    # Test data
    matdata <- matrix(runif(10*20), nrow=10, ncol=20)
    myALS_SVD(matdata, k=3, L2=0.1, iter=10)
}</pre>
```

 ${\sf myCX}$

CX Decomposition as an example of user-defined matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMW-CAParams are specified as "myCX", This function is called in MWCA and CoupledMWCA.

Usage

```
myCX(Xn, k)
```

Arguments

Xn The input matrix which has N-rows and M-columns.

k The rank parameter $(k \le \min(N,M))$

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

References

Petros Drineas et al., (2008). Relative-Error CUR Matrix Decompositions, *SIAM Journal on Matrix Analysis and Applications*, 30(2), 844-881.

```
if(interactive()){
    # Test data
    matdata <- matrix(runif(10*20), nrow=10, ncol=20)
    myCX(matdata, k=3)
}</pre>
```

myICA

myICA	Independent Component Analysis (ICA) as an example of user-defined
	matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMW-CAParams are specified as "myICA", This function is called in MWCA and CoupledMWCA.

Usage

```
myICA(Xn, k)
```

Arguments

Xn The input matrix which has N-rows and M-columns.

k The rank parameter $(k \le \min(N,M))$

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

References

A. Hyvarinen. (1999). Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. *IEEE Transactions on Neural Networks*, 10(3), 626-634.

```
if(interactive()){
    # Test data
    matdata <- matrix(runif(10*20), nrow=10, ncol=20)
    myICA(matdata, k=3)
}</pre>
```

myNMF

myNMF	Independent Component Analysis (ICA) as an example of user-defined matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMW-CAParams are specified as "myNMF", This function is called in MWCA and CoupledMWCA.

Usage

```
myNMF(Xn, k, L1=1e-10, L2=1e-10)
```

Arguments

Xn	The input matrix which has N-rows and M-columns.
k	The rank parameter $(k \le \min(N,M))$
L1	The regularization parameter to control the sparseness (Default: 1e-10)
L2	The regularization parameter to control the overfit (Default: 1e-10)

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

References

Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations.

```
if(interactive()){
    # Test data
    matdata <- matrix(runif(10*20), nrow=10, ncol=20)
    myNMF(matdata, k=3, L1=1e-1, L2=1e-2)
}</pre>
```

plotTensor3Ds

mySVD

Singular Value Decomposition (SVD) as an example of user-defined matrix decomposition.

Description

The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMW-CAParams are specified as "mySVD", This function is called in MWCA and CoupledMWCA.

Usage

```
mySVD(Xn, k)
```

Arguments

Xn The input matrix which has N-rows and M-columns.

k The rank parameter $(k \le \min(N,M))$

Value

The output matrix which has N-rows and k-columns.

Author(s)

Koki Tsuyuzaki

Examples

```
if(interactive()){
    # Test data
    matdata <- matrix(runif(10*20), nrow=10, ncol=20)
    mySVD(matdata, k=3)
}</pre>
```

plotTensor3Ds

Plot function for visualization of tensor data structure

Description

Multiple multi-dimensional arrays and matrices are visualized simultaneously.

Usage

```
plotTensor3Ds(Xs)
```

toyModel 15

Arguments

Xs

A List object containing multi-dimensional array (or matrix) in each element.

Author(s)

Koki Tsuyuzaki

See Also

```
plotTensor3D and plotTensor2D.
```

Examples

```
Xs <- toyModel(model = "coupled_CP_Easy")

tmp <- tempdir()

png(filename=paste0(tmp, "/couled_CP.png"))
plotTensor3Ds(Xs)
dev.off()</pre>
```

toyModel

Toy model of coupled tensor data

Description

A list object containing multiple arrays are generated.

Usage

```
toyModel(model = "coupled_CP_Easy", seeds=123)
```

Arguments

model

"coupled_CP_Easy", "coupled_CP_Hard", "coupled_Tucker_Easy", "coupled_Tucker_Hard",

"coupled_Complex_Easy", or "coupled_Complex_Hard" can be specified (De-

fault: "coupled_CP_Easy").

seeds

The seed of random number (Default: 123).

Author(s)

Koki Tsuyuzaki

```
Xs <- toyModel(model = "coupled_CP_Easy", seeds=123)</pre>
```

Index

```
* methods
    CoupledMWCA, 4
    MWCA, 8
    myALS_SVD, 10
    myCX, 11
    myICA, 12
    myNMF, 13
    mySVD, 14
    plotTensor3Ds, 14
    toyModel, 15
* package
    mwTensor-package, 2
CoupledMWCA, 3, 4, 6, 7
{\tt CoupledMWCA, CoupledMWCAParams-method}
        (CoupledMWCA), 4
CoupledMWCAParams-class, 5
CoupledMWCAResult-class, 6
MWCA, 3, 8, 9, 10
MWCA, MWCAParams-method (MWCA), 8
MWCAParams-class, 9
MWCAResult-class, 9
mwTensor (mwTensor-package), 2
mwTensor-package, 2
myALS_SVD, 3, 10
myCX, 3, 11
myICA, 3, 12
myNMF, 3, 13
mySVD, 3, 14
plotTensor2D, 15
plotTensor3D, 15
plotTensor3Ds, 3, 14
toyModel, 15
```