Package 'natural'

January 16, 2018

Type Package
Title Estimating the Error Variance in a High-Dimensional Linear Model
Version 0.9.0
Maintainer Guo Yu <gy63@cornell.edu>
Description Implementation of the two error variance estimation methods in high-dimensional linear models of Yu, Bien (2017) <arXiv:1712.02412>.
URL https://arxiv.org/abs/1712.02412
BugReports https://github.com/hugogogo/natural/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1

Date/Publication 2018-01-16 10:35:43 UTC R topics documented:

Imports Matrix, glmnet Suggests knitr, rmarkdown VignetteBuilder knitr NeedsCompilation yes Author Guo Yu [aut, cre]

Repository CRAN

getLam_olasso 2 getLam_slasso 2 make_sparse_model 3 natural 3 nlasso_cv 4 nlasso_path 5 olasso 7

getLam_slasso

olasso_cv	8
olasso_path	9
olasso_slow	10
plot.natural.cv	11
plot.natural.path	11
print.natural.path	12
standardize	12
	13

Index

getLam_olasso Get the two (theoretical) values of lambdas used in the organic lasso

Description

Get the two (theoretical) values of lambdas used in the organic lasso

Usage

getLam_olasso(x)

Arguments

х

design matrix

getLam_slasso Get the two (theoretical) values of lambdas used in scaled lasso

Description

Get the two (theoretical) values of lambdas used in scaled lasso

Usage

getLam_slasso(n, p)

n	number of observations
р	number of features

make_sparse_model Generate sparse linear model and random samples

Description

Generate design matrix and response following linear models $y = X\beta + \epsilon$, where $\epsilon N(0, \sigma^2)$, and $X N(0, \Sigma)$.

Usage

make_sparse_model(n, p, alpha, rho, snr, nsim)

Arguments

n	the sample size
р	the number of features
alpha	sparsity, i.e., n^{α} nonzeros in the true regression coefficient.
rho	pairwise correlation among features
snr	signal to noise ratio, defined as $\beta^T \Sigma \beta / \sigma^2$
nsim	the number of simulations

Value

A list object containing:

- x: The n by p design matrix
- y: The n by nsim matrix of response vector, each column representing one replication of the simulation
- beta: The true regression coefficient vector
- sigma: The true error standard deviation

na	tuı	ral

natural: Natural and Organic lasso estimates of error variance in high-dimensional linear models

Description

The package contains implementation of the two methods introduced in Yu, Bien (2017) https://arxiv.org/abs/1712.02412.

Details

The main functions are nlasso_cv, olasso_cv, and olasso.

nlasso_cv

Description

Provide natural lasso estimate (of the error standard deviation) using cross-validation to select the tuning parameter value The output also includes the cross-validation result of the naive estimate and the degree of freedom adjusted estimate of the error standard deviation.

Usage

```
nlasso_cv(x, y, lambda = NULL, intercept = TRUE, nlam = 100,
flmin = 0.01, nfold = 5, foldid = NULL, thresh = 1e-08,
glmnet_output = NULL)
```

Arguments

Х	An n by p design matrix. Each row is an observation of p features.
У	A response vector of size n.
lambda	A user specified list of tuning parameter. Default to be NULL, and the program will compute its own lambda path based on nlam and flmin.
intercept	Indicator of whether intercept should be fitted. Default to be TRUE.
nlam	The number of lambda values. Default value is 100.
flmin	The ratio of the smallest and the largest values in lambda. The largest value in lambda is usually the smallest value for which all coefficients are set to zero. Default to be 1e-2.
nfold	Number of folds in cross-validation. Default value is 5. If each fold gets too view observation, a warning is thrown and the minimal nfold = 3 is used.
foldid	A vector of length n representing which fold each observation belongs to. De- fault to be NULL, and the program will generate its own randomly.
thresh	Threshold value for underlying optimization algorithm to claim convergence. Default to be 1e-8.
glmnet_output	Should the estimate be computed using a user-specified output from cv.glmnet. If not NULL, it should be the output from cv.glmnet call with standardize = TRUE and keep = TRUE, and then the arguments lambda, intercept, nlam, flmin, nfold, foldid, and thresh will be ignored. Default to be NULL, in which case the function will call cv.glmnet internally.

Value

A list object containing:

n and p: The dimension of the problem.

lambda: The path of tuning parameter used.

- beta: Estimate of the regression coefficients, in the original scale, corresponding to the tuning parameter selected by cross-validation.
- a0: Estimate of intercept
- mat_mse: The estimated prediction error on the test sets in cross-validation. A matrix of size nlam by nfold. If glmnet_output is not NULL, then mat_mse will be NULL.
- cvm: The averaged estimated prediction error on the test sets over K folds.
- cvse: The standard error of the estimated prediction error on the test sets over K folds.
- ibest: The index in lambda that attains the minimal mean cross-validated error.
- foldid: Fold assignment. A vector of length n.
- nfold: The number of folds used in cross-validation.
- sig_obj: Natural lasso estimate of standard deviation of the error, with the optimal tuning parameter selected by cross-validation.
- sig_obj_path: Natural lasso estimates of standard deviation of the error. A vector of length nlam.
- sig_naive: Naive estimates of the error standard deviation based on lasso regression, i.e., $||y X\hat{\beta}||_2/\sqrt{n}$, selected by cross-validation.
- sig_naive_path: Naive estimate of standard deviation of the error based on lasso regression. A
 vector of length nlam.
- sig_df: Degree-of-freedom adjusted estimate of standard deviation of the error, selected by crossvalidation. See Reid, et, al (2016).
- type: whether the output is of a natural or an organic lasso.

See Also

nlasso_path

Examples

```
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
nl_cv <- nlasso_cv(x = sim$x, y = sim$y[, 1])</pre>
```

nlasso_path Fit a linear

Fit a linear model with natural lasso

Description

Calculate a solution path of the natural lasso estimate (of error standard deviation) with a list of tuning parameter values. In particular, this function solves the lasso problems and returns the lasso objective function values as estimates of the error variance: $\hat{\sigma}_{\lambda}^2 = \min_{\beta} ||y - X\beta||_2^2/n + 2\lambda ||\beta||_1$. The output also includes a path of naive estimates and a path of degree of freedom adjusted estimates of the error standard deviation.

Usage

```
nlasso_path(x, y, lambda = NULL, nlam = 100, flmin = 0.01,
    thresh = 1e-08, intercept = TRUE, glmnet_output = NULL)
```

Arguments

An n by p design matrix. Each row is an observation of p features.
A response vector of size n.
A user specified list of tuning parameter. Default to be NULL, and the program will compute its own lambda path based on nlam and flmin.
The number of lambda values. Default value is 100.
The ratio of the smallest and the largest values in lambda. The largest value in lambda is usually the smallest value for which all coefficients are set to zero. Default to be $1e-2$.
Threshold value for the underlying optimization algorithm to claim convergence. Default to be 1e-8.
Indicator of whether intercept should be fitted. Default to be TRUE.
Should the estimate be computed using a user-specified output from glmnet. If not NULL, it should be the output from glmnet call with standardize = TRUE, and then the arguments lambda, nlam, flmin, thresh, and intercept will be ignored. Default to be NULL, in which case the function will call glmnet internally.

Value

A list object containing:

n and p: The dimension of the problem.

- lambda: The path of tuning parameters used.
- beta: Matrix of estimates of the regression coefficients, in the original scale. The matrix is of size
 p by nlam. The j-th column represents the estimate of coefficient corresponding to the j-th
 tuning parameter in lambda.
- a0: Estimate of intercept. A vector of length nlam.
- sig_obj_path: Natural lasso estimates of the error standard deviation. A vector of length nlam.
- sig_naive_path: Naive estimates of the error standard deviation based on lasso regression, i.e., $||y X\hat{\beta}||_2/\sqrt{n}$. A vector of length nlam.
- sig_df_path: Degree-of-freedom adjusted estimate of standard deviation of the error. A vector of length nlam. See Reid, et, al (2016).
- type: whether the output is of a natural or an organic lasso.

See Also

nlasso_cv

olasso

Examples

```
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
nl_path <- nlasso_path(x = sim$x, y = sim$y[, 1])</pre>
```

olasso

Error standard deviation estimation using organic lasso

Description

Solve the organic lasso problem $\tilde{\sigma}_{\lambda}^2 = \min_{\beta} ||y - X\beta||_2^2/n + 2\lambda ||\beta||_1^2$ with two pre-specified values of tuning parameter: $\lambda_1 = logp/n$, and λ_2 , which is a Monte-Carlo estimate of $||X^T e||_{\infty}^2/n^2$, where e is n-dimensional standard normal.

Usage

olasso(x, y, intercept = TRUE, thresh = 1e-08)

Arguments

х	An n by p design matrix. Each row is an observation of p features.
У	A response vector of size n.
intercept	Indicator of whether intercept should be fitted. Default to be TRUE.
thresh	Threshold value for underlying optimization algorithm to claim convergence.
	Default to be 1e-8.

Value

A list object containing:

n and p: The dimension of the problem.

- lam_1, lam_2: log(p)/n, and an Monte-Carlo estimate of $||X^T e||_{\infty}^2/n^2$, where e is n-dimensional standard normal.
- a0_1, a0_2: Estimate of intercept, corresponding to lam_1 and lam_2.
- beta_1, beta_2: Organic lasso estimate of regression coefficients, corresponding to lam_1 and lam_2.
- sig_obj_1, sig_obj_2: Organic lasso estimate of the error standard deviation, corresponding to
 lam_1 and lam_2.

See Also

olasso_path, olasso_cv

Examples

```
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
ol <- olasso(x = sim$x, y = sim$y[, 1])</pre>
```

olasso_cv

Description

Provide organic lasso estimate (of the error standard deviation) using cross-validation to select the tuning parameter value

Usage

```
olasso_cv(x, y, lambda = NULL, intercept = TRUE, nlam = 100,
flmin = 0.01, nfold = 5, foldid = NULL, thresh = 1e-08)
```

Arguments

х	An n by p design matrix. Each row is an observation of p features.
У	A response vector of size n.
lambda	A user specified list of tuning parameter. Default to be NULL, and the program will compute its own lambda path based on nlam and flmin.
intercept	Indicator of whether intercept should be fitted. Default to be TRUE.
nlam	The number of lambda values. Default value is 100.
flmin	The ratio of the smallest and the largest values in lambda. The largest value in lambda is usually the smallest value for which all coefficients are set to zero. Default to be 1e-2.
nfold	Number of folds in cross-validation. Default value is 5. If each fold gets too view observation, a warning is thrown and the minimal $nfold = 3$ is used.
foldid	A vector of length n representing which fold each observation belongs to. De- fault to be NULL, and the program will generate its own randomly.
thresh	Threshold value for underlying optimization algorithm to claim convergence. Default to be 1e-8.

Value

A list object containing:

- n and p: The dimension of the problem.
- lambda: The path of tuning parameter used.
- beta: Estimate of the regression coefficients, in the original scale, corresponding to the tuning parameter selected by cross-validation.
- a0: Estimate of intercept
- cvm: The averaged estimated prediction error on the test sets over K folds.

olasso_path

cvse: The standard error of the estimated prediction error on the test sets over K folds.

ibest: The index in lambda that attains the minimal mean cross-validated error.

foldid: Fold assignment. A vector of length n.

nfold: The number of folds used in cross-validation.

sig_obj: Organic lasso estimate of the error standard deviation, selected by cross-validation.

sig_obj_path: Organic lasso estimates of the error standard deviation. A vector of length nlam.

type: whether the output is of a natural or an organic lasso.

See Also

olasso_path, olasso

Examples

```
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
ol_cv <- olasso_cv(x = sim$x, y = sim$y[, 1])</pre>
```

```
olasso_path
```

Fit a linear model with organic lasso

Description

Calculate a solution path of the organic lasso estimate (of error standard deviation) with a list of tuning parameter values. In particular, this function solves the squared-lasso problems and returns the objective function values as estimates of the error variance: $\tilde{\sigma}_{\lambda}^2 = \min_{\beta} ||y - X\beta||_2^2/n + 2\lambda ||\beta||_1^2$.

Usage

```
olasso_path(x, y, lambda = NULL, nlam = 100, flmin = 0.01,
    thresh = 1e-08, intercept = TRUE)
```

х	An n by p design matrix. Each row is an observation of p features.
У	A response vector of size n.
lambda	A user specified list of tuning parameter. Default to be NULL, and the program will compute its own lambda path based on nlam and flmin.
nlam	The number of lambda values. Default value is 100.
flmin	The ratio of the smallest and the largest values in lambda. The largest value in lambda is usually the smallest value for which all coefficients are set to zero. Default to be 1e-2.
thresh	Threshold value for underlying optimization algorithm to claim convergence. Default to be 1e-8.
intercept	Indicator of whether intercept should be fitted. Default to be FALSE.

Details

This package also includes the outputs of the naive and the degree-of-freedom adjusted estimates, in analogy to nlasso_path.

Value

A list object containing:

- n and p: The dimension of the problem.
- lambda: The path of tuning parameter used.
- a0: Estimate of intercept. A vector of length nlam.
- beta: Matrix of estimates of the regression coefficients, in the original scale. The matrix is of size p by nlam. The j-th column represents the estimate of coefficient corresponding to the j-th tuning parameter in lambda.
- sig_obj_path: Organic lasso estimates of the error standard deviation. A vector of length nlam.
- sig_naive: Naive estimate of the error standard deviation based on the squared-lasso regression. A vector of length nlam.
- sig_df: Degree-of-freedom adjusted estimate of the error standard deviation, based on the squaredlasso regression. A vector of length nlam.
- type: whether the output is of a natural or an organic lasso.

See Also

olasso, olasso_cv

Examples

```
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
ol_path <- olasso_path(x = sim$x, y = sim$y[, 1])</pre>
```

Solve organic lasso problem with a single value of lambda The lambda values are for slow rates, which could give less satisfying results

Description

Solve organic lasso problem with a single value of lambda The lambda values are for slow rates, which could give less satisfying results

Usage

 $olasso_slow(x, y, thresh = 1e-08)$

plot.natural.cv

Arguments

x	An n by p design matrix. Each row is an observation of p features.
У	A response vector of size n.
thresh	Threshold value for underlying optimization algorithm to claim convergence. Default to be 1e-8.

plot.natural.cv plot a natural.cv object

Description

This function is adapted from the **ggb** R package.

Usage

S3 method for class 'natural.cv'
plot(x, ...)

Arguments

х	an object of class natural.cv, as returned by nlasso_cv and olasso_cv
	additional argument(not used here, only for S3 generic/method consistency)

plot.natural.path plot a natural.path object

Description

This function is adapted from the **ggb** R package.

Usage

```
## S3 method for class 'natural.path'
plot(x, ...)
```

x	an object of class natural.path, as returned by nlasso_path and olasso_path
	additional argument(not used here, only for S3 generic/method consistency)

print.natural.path print a natural.path object

Description

This function is adapted from the **ggb** R package.

Usage

```
## S3 method for class 'natural.path'
print(x, ...)
```

Arguments

х	an object of class natural.path, as returned by <code>nlasso_path</code> and <code>olasso_path</code>
	additional argument(not used here, only for S3 generic/method consistency)

standardize	Standardize the n -by- p design matrix X to have column means zero
	and $ X_j _2^2 = n$ for all j

Description

Standardize the n -by- p design matrix X to have column means zero and $||X_j||_2^2 = n$ for all j

Usage

standardize(x, center = TRUE)

х	design matrix
center	should we set column means equal to zero

Index

getLam_olasso, 2
getLam_slasso, 2
make_sparse_model, 3
natural, 3
natural-package (natural), 3
nlasso_cv, 3, 4, 6, 11
nlasso_path, 5, 5, 10–12

olasso, *3*, *7*, *9*, olasso_cv, *3*, *7*, 8, *10*, olasso_path, *7*, *9*, 9, *11*, olasso_slow, 10

plot.natural.cv, 11
plot.natural.path, 11
print.natural.path, 12

standardize, 12