
Package ‘nestedcv’
July 7, 2022

Title Nested Cross-Validation with 'glmnet' and 'caret'

Version 0.2.3

Maintainer Myles Lewis <myles.lewis@qmul.ac.uk>

Description Implements nested k*l-fold cross-validation for lasso and elastic-net regularised lin-
ear models via the 'glmnet' package and other machine learning models via the 'caret' pack-
age. Cross-validation of 'glmnet' alpha mixing parameter and embedded fast filter func-
tions for feature selection are provided. Described as double cross-
validation by Stone (1977) <doi:10.1111/j.2517-6161.1977.tb01603.x>.

Language en-gb

License MIT + file LICENSE

Encoding UTF-8

Imports Boruta, caret, CORElearn, data.table, glmnet, hsstan,
matrixTests, methods, parallel, pROC, randomForest, RcppEigen,
Rfast

RoxygenNote 7.2.0

Suggests mda, rmarkdown, knitr

VignetteBuilder knitr

NeedsCompilation no

Author Myles Lewis [aut, cre] (<https://orcid.org/0000-0001-9365-5345>),
Athina Spiliopoulou [aut] (<https://orcid.org/0000-0002-5929-6585>),
Katriona Goldmann [aut] (<https://orcid.org/0000-0002-9073-6323>)

Repository CRAN

Date/Publication 2022-07-07 08:40:02 UTC

R topics documented:
anova_filter . 2
boruta_filter . 3
boxplot_model . 4
coef.nestcv.glmnet . 5
collinear . 5

1

https://doi.org/10.1111/j.2517-6161.1977.tb01603.x
https://orcid.org/0000-0001-9365-5345
https://orcid.org/0000-0002-5929-6585
https://orcid.org/0000-0002-9073-6323

2 anova_filter

combo_filter . 6
correls2 . 7
correl_filter . 7
cva.glmnet . 8
glmnet_coefs . 9
glmnet_filter . 9
innercv_roc . 10
lm_filter . 12
model.hsstan . 13
nestcv.glmnet . 15
nestcv.train . 17
outercv . 20
plot.cva.glmnet . 24
plot_alphas . 25
plot_caret . 26
plot_lambdas . 26
predict.hsstan . 27
predict.nestcv.glmnet . 28
predSummary . 28
relieff_filter . 29
rf_filter . 30
ttest_filter . 31
wilcoxon_filter . 32

Index 34

anova_filter ANOVA filter

Description

Simple univariate filter using anova (Welch’s F-test) using the Rfast package for speed.

Usage

anova_filter(
y,
x,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsq_cutoff = NULL,
type = c("index", "names", "full")

)

boruta_filter 3

Arguments

y Response vector

x Matrix of predictors

force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter Number of predictors to return. If NULL all predictors with p values < p_cutoff
are returned.

p_cutoff p value cut-off

rsq_cutoff r^2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on anova test. If 2 or more
predictors are collinear, the first ranked predictor by anova is retained, while the
other collinear predictors are removed. See collinear().

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" full output from Rfast::ftests is returned.

Examples

data(iris)
dt <- iris[, 1:4]
y3 <- iris[, 5]
anova_filter(y3, dt) # returns index of filtered predictors
anova_filter(y3, dt, type = "full") # shows names of predictors
anova_filter(y3, dt, type = "name") # full results table

boruta_filter Boruta filter

Description

Filter using Boruta algorithm.

Usage

boruta_filter(
y,
x,
select = c("Confirmed", "Tentative"),
type = c("index", "names", "full"),
...

)

4 boxplot_model

Arguments

y Response vector

x Matrix of predictors

select Which type of features to retain. Options include "Confirmed" and/or "Tenta-
tive".

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

... Other arguments passed to Boruta::Boruta

Details

Boruta works differently from other filters in that it does not rank variables by variable importance,
but tries to determine relevant features and divides features into Rejected, Tentative or Confirmed.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" full output from Boruta is returned.

boxplot_model Boxplot model predictors

Description

Boxplots to show range of model predictors to identify exceptional predictors with excessively low
or high values.

Usage

boxplot_model(x, data, scheme = NULL, palette = "Dark 3", ...)

Arguments

x Either a "nestedcv" object or a character vector of predictors to be plotted

data matrix of predictors

scheme colour scheme

palette palette name (one of hcl.pals()) which is passed to hcl.colors

... other arguments passed to boxplot.

Value

No return value

Author(s)

Myles Lewis

coef.nestcv.glmnet 5

See Also

nestcv.glmnet

coef.nestcv.glmnet Extract coefficients from nestcv.glmnet object

Description

Extracts coefficients from the final fit of a "nestcv.glmnet" object.

Usage

S3 method for class 'nestcv.glmnet'
coef(object, s = object$final_param["lambda"], ...)

Arguments

object Object of class "nestcv.glmnet"

s Value of penalty parameter lambda. Default is the mean of lambda values se-
lected across each outer fold.

... Other arguments passed to coef.glmnet

Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to
lowest.

collinear Filter to reduce collinearity in predictors

Description

This function identifies predictors with r^2 above a given cut-off and produces an index of predictors
to be removed. The function takes a matrix or data.frame of predictors, and the columns need to
be ordered in terms of importance - first column of any pair that are correlated is retained and
subsequent columns which correlate above the cut-off are flagged for removal.

Usage

collinear(x, rsq_cutoff = 0.9, verbose = FALSE)

6 combo_filter

Arguments

x A matrix or data.frame of values. The order of columns is used to determine
which columns to retain, so the columns in x should be sorted with the most
important columns first.

rsq_cutoff Value of cut-off for r-squared

verbose Boolean whether to print details

Value

Integer vector of the indices of columns in x to remove due to collinearity

combo_filter Combo filter

Description

Filter combining univariate (t-test or anova) filtering and reliefF filtering in equal measure.

Usage

combo_filter(y, x, nfilter, type = c("index", "names", "full"), ...)

Arguments

y Response vector

x Matrix of predictors

nfilter Number of predictors to return, using 1/2 from ttest_filter or anova_filter
and 1/2 from relieff_filter. Since unique is applied, the final number re-
turned may be less than nfilter.

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns full output.

... Optional arguments passed via relieff_filter to CORElearn::attrEval

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" a list containing full outputs from either
ttest_filter or anova_filter and relieff_filter is returned.

correls2 7

correls2 Correlation between a vector and a matrix

Description

Fast Pearson/Spearman correlation where y is vector, x is matrix, adapted from stats::cor.test.

Usage

correls2(y, x, method = "pearson", use = "complete.obs")

Arguments

y Numerical vector
x Matrix
method Type of correlation, either "pearson" or "spearman".
use Optional character string giving a method for computing covariances in the pres-

ence of missing values. See cor

Details

For speed, p-values for Spearman’s test are computed by asymptotic t approximation, equivalent to
cor.test with exact = FALSE.

Value

Matrix with columns containing the correlation statistic, either Pearson r or Spearman rho, and
p-values for each column of x correlated against vector y

correl_filter Correlation filter

Description

Filter using correlation (Pearson or Spearman) for ranking variables.

Usage

correl_filter(
y,
x,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
method = "pearson",
type = c("index", "names", "full"),
...

)

8 cva.glmnet

Arguments

y Response vector
x Matrix of predictors
force_vars Vector of column names within x which are always retained in the model (i.e.

not filtered). Default NULL means all predictors will be passed to filterFUN.
nfilter Number of predictors to return. If NULL all predictors with p values < p_cutoff

are returned.
p_cutoff p value cut-off
method Type of correlation, either "pearson" or "spearman".
type Type of vector returned. Default "index" returns indices, "names" returns pre-

dictor names, "full" returns a matrix of p-values.
... Further arguments passed to correls

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" full output from correls is returned.

cva.glmnet Cross-validation of alpha for glmnet

Description

Performs k-fold cross-validation for glmnet, including alpha mixing parameter.

Usage

cva.glmnet(x, y, nfolds = 10, alphaSet = seq(0.1, 1, 0.1), ...)

Arguments

x Matrix of predictors
y Response vector
nfolds Number of folds (default 10)
alphaSet Sequence of alpha values to cross-validate
... Other arguments passed to cv.glmnet

Value

Object of S3 class "cva.glmnet", which is a list of the cv.glmnet objects for each value of alpha and
alphaSet.

fits List of fitted cv.glmnet objects
alphaSet Sequence of alpha values used
alpha_cvm The mean cross-validated error - a vector of length length(alphaSet).
best_alpha Value of alpha giving lowest alpha_cvm.
which_alpha Index of alphaSet with lowest alpha_cvm

glmnet_coefs 9

Author(s)

Myles Lewis

See Also

cv.glmnet, glmnet

glmnet_coefs glmnet coefficients

Description

Convenience function for retrieving coefficients from a cv.glmnet model at a specified lambda.
Sparsity is removed and non-intercept coefficients are ranked by absolute value.

Usage

glmnet_coefs(fit, s, ...)

Arguments

fit A cv.glmnet fitted model object.
s Value of lambda. See coef.glmnet and predict.cv.glmnet
... Other arguments passed to coef.glmnet

Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to
lowest.

glmnet_filter glmnet filter

Description

Filter using properties of elastic net regression using glmnet to calculate variable importance.

Usage

glmnet_filter(
y,
x,
nfilter = NULL,
method = c("mean", "nonzero"),
type = c("index", "names", "full"),
...

)

10 innercv_roc

Arguments

y Response vector

x Matrix of predictors

nfilter Number of predictors to return

method String indicating method of determining variable importance. "mean" (the de-
fault) uses the mean absolute coefficients across the range of lambdas; "nonzero"
counts the number of times variables are retained in the model across all values
of lambda.

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns full output.

... Other arguments passed to glmnet

Details

The glmnet elastic net mixing parameter alpha can be varied to include a larger number of pre-
dictors. Default alpha = 1 is pure LASSO, resulting in greatest sparsity, while alpha = 0 is pure
ridge regression, retaining all predictors in the regression model. Note, the family argument is
commonly needed, see glmnet.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" a named vector of variable importance is
returned.

See Also

glmnet

innercv_roc Build ROC curve from left-out folds from inner CV

Description

Build ROC (receiver operating characteristic) curve from left-out folds from inner CV. Object can
be plotted using plot() or passed to functions auc() etc.

Usage

innercv_roc(x, ...)

S3 method for class 'nestcv.glmnet'
innercv_roc(x, direction = "<", ...)

S3 method for class 'nestcv.train'
innercv_roc(x, direction = "<", ...)

innercv_roc 11

Arguments

x Fitted nestedcv object

... Other arguments passed to pROC::roc

direction Set ROC directionality pROC::roc

Value

"roc" object, see pROC::roc

Examples

Example binary classification problem with P >> n
x <- matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(150, 1, 0.5)) # binary response

Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

Train glmnet on training set only using filtered predictor matrix
library(glmnet)
fit <- cv.glmnet(filx[trainSet,], y[trainSet], family = "binomial")
plot(fit)

Predict response on test partition
predy <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "class")
predy <- as.vector(predy)
predyp <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "response")
predyp <- as.vector(predyp)
output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

Results on test partition
shows bias since univariate filtering was applied to whole dataset
predSummary(output)

Nested CV
fit2 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1,

filterFUN = ttest_filter,
filter_options = list(nfilter = 100))

summary(fit2)

ROC plots
library(pROC)
testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)
plot(fit2$roc)
lines(inroc, col = 'blue')

12 lm_filter

lines(testroc, col = 'red')
legend('bottomright', legend = c("Nested CV", "Left-out inner CV folds",

"Test partition, non-nested filtering"),
col = c("black", "blue", "red"), lty = 1, lwd = 2, bty = "n")

lm_filter Linear model filter

Description

Linear models are fitted on each predictor, with inclusion of variable names listed in force_vars
in the model. Predictors are ranked by Akaike information criteria (AIC) value, or can be filtered
by the p-value on the estimate of the coefficient for that predictor in its model.

Usage

lm_filter(
y,
x,
force_vars = NULL,
nfilter = NULL,
p_cutoff = NULL,
rsq_cutoff = NULL,
type = c("index", "names", "full")

)

Arguments

y Numeric or integer response vector

x Matrix of predictors. If x is a data.frame it will be turned into a matrix. But
note that factors will be reduced to numeric values, but a full design matrix is
not generated, so if factors have 3 or more levels, it is recommended to convert
x into a design (model) matrix first.

force_vars Vector of column names x which are incorporated into the linear model.

nfilter Number of predictors to return. If NULL all predictors with p-values < p_cutoff
are returned.

p_cutoff p-value cut-off. P-values are calculated by t-statistic on the estimated coefficient
for the predictor being tested.

rsq_cutoff r^2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on AIC from a linear model. If
2 or more predictors are collinear, the first ranked predictor by AIC is retained,
while the other collinear predictors are removed. See collinear().

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

model.hsstan 13

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of linear model AIC. Any variables in force_vars which
are incorporated into all models are listed first. If type = "full" a matrix of AIC values, sigma, the
residual standard error (see summary.lm), t-statistic and p-values for the tested predictor is returned.

model.hsstan hsstan model for cross-validation

Description

This function applies a cross-validation (CV) procedure for training Bayesian models with hierar-
chical shrinkage priors using the hsstan package. The function allows the option of embedded
filtering of predictors for feature selection within the CV loop. Within each training fold, an op-
tional filtering of predictors is performed, followed by fitting of an hsstsan model. Predictions on
the testing folds are brought back together and error estimation/ accuracy determined. The default is
10-fold CV. The function is implemented within the nestedcv package. The hsstan models do not
require tuning of meta-parameters and therefore only a single CV procedure is needed to evaluate
performance. This is implemented using the outer CV procedure in the nestedcv package.

Usage

model.hsstan(y, x, unpenalized = NULL, ...)

Arguments

y Response vector. For classification this should be a factor.

x Matrix of predictors

unpenalized Vector of column names x which are always retained into the model (i.e. not
penalized). Default NULL means the parameters for all predictors will be drawn
from a hierarchical prior distribution, i.e. will be penalized. Note: if filtering of
predictors is specified, then the vector of unpenalized predictors should also be
passed to the filter function using the filter_options$force_vars argument.
Filters currently implementing this option are the partial_ttest_filter for
binary outcomes and the lm_filter for continuous outcomes.

... Optional arguments passed to hsstan

Value

An object of class hsstan

Author(s)

Athina Spiliopoulou

14 model.hsstan

Examples

Cross-validation is used to apply univariate filtering of predictors.
only one CV split is needed (outercv) as the Bayesian model does not
require learning of meta-parameters.

load iris dataset and simulate a continuous outcome
data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1", "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))
dt$outcome.cont <- -3 + 0.5 * dt$marker1 + 2 * dt$marker2 + rnorm(nrow(dt), 0, 2)

unpenalised covariates: always retain in the prediction model
uvars <- "marker1"
penalised covariates: coefficients are drawn from hierarchical shrinkage
prior
pvars <- c("marker2", "marker3", "marker4") # penalised covariates
run cross-validation with univariate filter and hsstan
dummy sampling for fast execution of example
recommend 4 chains, warmup 1000, iter 2000 in practice
oldopt <- options(mc.cores = 2)
res.cv.hsstan <- outercv(y = dt$outcome.cont, x = dt[, c(uvars, pvars)],

model = model.hsstan,
filterFUN = lm_filter,
filter_options = list(force_vars = uvars,

nfilter = 2,
p_cutoff = NULL,
rsq_cutoff = 0.9),

n_outer_folds = 3, chains = 2,
unpenalized = uvars, warmup = 100, iter = 200)

view prediction performance based on testing folds
res.cv.hsstan$summary
view coefficients for the final model
res.cv.hsstan$final_fit
view covariates selected by the univariate filter
res.cv.hsstan$final_vars

load hsstan package to examine the Bayesian model
library(hsstan)
sampler.stats(res.cv.hsstan$final_fit)
print(projsel(res.cv.hsstan$final_fit), digits = 4) # adding marker2
options(oldopt)

Here adding `marker2` improves the model fit: substantial decrease of
KL-divergence from the full model to the submodel. Adding `marker3` does
not improve the model fit: no decrease of KL-divergence from the full model
to the submodel.

nestcv.glmnet 15

nestcv.glmnet Nested cross-validation with glmnet

Description

This function enables nested cross-validation (CV) with glmnet including tuning of elastic net al-
pha parameter. The function also allows the option of embedded filtering of predictors for feature
selection nested within the outer loop of CV. Predictions on the outer test folds are brought back
together and error estimation/ accuracy determined. The default is 10x10 nested CV.

Usage

nestcv.glmnet(
y,
x,
family = c("gaussian", "binomial", "poisson", "multinomial", "cox", "mgaussian"),
filterFUN = NULL,
filter_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
n_inner_folds = 10,
outer_folds = NULL,
alphaSet = seq(0, 1, 0.1),
min_1se = 0,
keep = TRUE,
penalty.factor = rep(1, ncol(x)),
cv.cores = 1,
na.option = "omit",
...

)

Arguments

y Response vector

x Matrix of predictors. Dataframes will be coerced to a matrix.

family Either a character string representing one of the built-in families, or else a glm()
family object. Passed to cv.glmnet and glmnet

filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options List of additional arguments passed to the filter function specified by filterFUN.

outer_method String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCV) for the outer folds

n_outer_folds Number of outer CV folds

n_inner_folds Number of inner CV folds

16 nestcv.glmnet

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

alphaSet Vector of alphas to be tuned

min_1se Value from 0 to 1 specifying choice of optimal lambda from 0=lambda.min to
1=lambda.1se

keep Logical indicating whether inner CV predictions are retained for calculating left-
out inner CV fold accuracy etc. See argument keep in cv.glmnet.

penalty.factor Separate penalty factors can be applied to each coefficient. Can be 0 for some
variables, which implies no shrinkage, and that variable is always included in
the model. Default is 1 for all variables. See glmnet

cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel::parLapply on windows.

na.option Character value specifying how NAs are dealt with. "omit" (the default) is equiv-
alent to na.action = na.omit. "omitcol" removes cases if there are NA in ’y’,
but columns (predictors) containing NA are removed from ’x’ to preserve cases.
Any other value means that NA are ignored (a message is given).

... Optional arguments passed to cv.glmnet

Details

glmnet does not tolerate missing values, so na.option = "omit" is the default.

Value

An object with S3 class "nestcv.glmnet"

call the matched call

output Predictions on the left-out outer folds

outer_result List object of results from each outer fold containing predictions on left-out
outer folds, best lambda, best alpha, fitted glmnet coefficients, list object of
inner fitted cv.glmnet and number of filtered predictors at each fold.

outer_method the outer_method argument

n_inner_folds number of inner folds

outer_folds List of indices of outer test folds

dimx dimensions of x

final_param Final mean best lambda and alpha from each fold

final_fit Final fitted glmnet model

roc ROC AUC for binary classification where available.

summary Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.

Author(s)

Myles Lewis

nestcv.train 17

Examples

Example binary classification problem with P >> n
x <- matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(150, 1, 0.5)) # binary response

Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

Train glmnet on training set only using filtered predictor matrix
library(glmnet)
fit <- cv.glmnet(filx[trainSet,], y[trainSet], family = "binomial")
plot(fit)

Predict response on test partition
predy <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "class")
predy <- as.vector(predy)
predyp <- predict(fit, newx = filx[-trainSet,], s = "lambda.min", type = "response")
predyp <- as.vector(predyp)
output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

Results on test partition
shows bias since univariate filtering was applied to whole dataset
predSummary(output)

Nested CV
fit2 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1,

filterFUN = ttest_filter,
filter_options = list(nfilter = 100))

summary(fit2)
plot_lambdas(fit2, showLegend = "bottomright")

ROC plots
library(pROC)
testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)
plot(fit2$roc)
lines(inroc, col = 'blue')
lines(testroc, col = 'red')
legend('bottomright', legend = c("Nested CV", "Left-out inner CV folds",

"Test partition, non-nested filtering"),
col = c("black", "blue", "red"), lty = 1, lwd = 2, bty = "n")

nestcv.train Nested cross-validation for caret

18 nestcv.train

Description

This function applies nested cross-validation (CV) to training of models using the caret package.
The function also allows the option of embedded filtering of predictors for feature selection nested
within the outer loop of CV. Predictions on the outer test folds are brought back together and error
estimation/ accuracy determined. The default is 10x10 nested CV.

Usage

nestcv.train(
y,
x,
filterFUN = NULL,
filter_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
cv.cores = 1,
metric = ifelse(is.factor(y), "logLoss", "RMSE"),
trControl = NULL,
tuneGrid = NULL,
savePredictions = "final",
na.option = "pass",
...

)

Arguments

y Response vector. For classification this should be a factor.

x Matrix or dataframe of predictors

filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options List of additional arguments passed to the filter function specified by filterFUN.

outer_method String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCV) for the outer folds

n_outer_folds Number of outer CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel::parLapply on windows.

metric A string that specifies what summary metric will be used to select the optimal
model. By default, "logLoss" is used for classification and "RMSE" is used
for regression. Note this differs from the default setting in caret which uses
"Accuracy" for classification. See details.

nestcv.train 19

trControl A list of values generated by the caret function trainControl. This defines how
inner CV training through caret is performed. Default for the inner loop is 10-
fold CV. See http://topepo.github.io/caret/using-your-own-model-in-train.html.

tuneGrid Data frame of tuning values, see caret::train.
savePredictions

Indicates whether hold-out predictions for each inner CV fold should be saved
for ROC curves, accuracy etc see caret::trainControl. Default is "final" to
capture predictions for inner CV ROC.

na.option Character value specifying how NAs are dealt with. "omit" is equivalent to
na.action = na.omit. "omitcol" removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from ’x’ to preserve cases. Any
other value means that NA are ignored (a message is given).

... Arguments passed to caret::train

Details

Parallelisation is performed on the outer folds using mclapply. For classification metric defaults to
using ’logLoss’ with the trControl arguments classProbs = TRUE, summaryFunction = mnLogLoss,
rather than ’Accuracy’ which is the default classification metric in caret. See trainControl. LogLoss
is arguably more consistent than Accuracy for tuning parameters in datasets with small sample size.

Models can be fitted with a single set of fixed parameters, in which case trControl defaults to
trainControl(method = "none") which disables inner CV as it is unnecessary. See https://topepo.github.io/caret/model-
training-and-tuning.html#fitting-models-without-parameter-tuning

Value

An object with S3 class "nestcv.train"

call the matched call

output Predictions on the left-out outer folds

outer_result List object of results from each outer fold containing predictions on left-out
outer folds, caret result and number of filtered predictors at each fold.

dimx dimensions of x

outer_folds List of indices of outer test folds

final_fit Final fitted caret model using best tune parameters
final_vars Column names of filtered predictors entering final model

roc ROC AUC for binary classification where available.

trControl caret::trainControl object used for inner CV
bestTunes best tuned parameters from each outer fold

finalTune final parameters used for final model

summary Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.

Author(s)

Myles Lewis

20 outercv

Examples

sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

load iris dataset and simulate a binary outcome
data(iris)
x <- iris[, 1:4]
colnames(x) <- c("marker1", "marker2", "marker3", "marker4")
x <- as.data.frame(apply(x, 2, scale))
y2 <- sigmoid(0.5 * x$marker1 + 2 * x$marker2) > runif(nrow(x))
y2 <- factor(y2, labels = c("class1", "class2"))

Example using random forest with caret
cvrf <- nestcv.train(y2, x, method = "rf",

n_outer_folds = 3,
cv.cores = 2)

summary(cvrf)

Example of glmnet tuned using caret
set up small tuning grid for quick execution
length.out of 20-100 is usually recommended for lambda
and more alpha values ranging from 0-1
tg <- expand.grid(lambda = exp(seq(log(2e-3), log(1e0), length.out = 5)),

alpha = 1)

ncv <- nestcv.train(y = y2, x = x,
method = "glmnet",
n_outer_folds = 3,
tuneGrid = tg, cv.cores = 2)

summary(ncv)

plot tuning for outer fold #1
plot(ncv$outer_result[[1]]$fit, xTrans = log)

plot final ROC curve
plot(ncv$roc)

plot ROC for left-out inner folds
inroc <- innercv_roc(ncv)
plot(inroc)

outercv Outer cross-validation of selected models

Description

This is a convenience function designed to use a single loop of cross-validation to quickly evaluate
performance of specific models (random forest, naive Bayes, lm, glm) with fixed hyperparameters

outercv 21

and no tuning. If tuning of parameters on data is required, full nested CV with inner CV is needed
to tune model hyperparameters (see nestcv.train).

Usage

outercv(y, ...)

Default S3 method:
outercv(
y,
x,
model,
filterFUN = NULL,
filter_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
cv.cores = 1,
predict_type = "prob",
na.option = "pass",
...

)

S3 method for class 'formula'
outercv(
formula,
data,
model,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
cv.cores = 1,
predict_type = "prob",
...,
na.action = na.fail

)

Arguments

y Response vector

... Optional arguments passed to the function specified by model.

x Matrix or dataframe of predictors

model Model function to be fitted.

filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors. Not available if outercv is called with a formula.

filter_options List of additional arguments passed to the filter function specified by filterFUN.

22 outercv

outer_method String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCV) for the outer folds

n_outer_folds Number of outer CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel::parLapply on windows.

predict_type Only used with binary classification. Calculation of ROC AUC requires pre-
dicted class probabilities from fitted models. Most model functions use syn-
tax of the form predict(..., type = "prob"). However, some models re-
quire a different type to be specified, which can be passed to predict() via
predict_type.

na.option Character value specifying how NAs are dealt with. "omit" is equivalent to
na.action = na.omit. "omitcol" removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from ’x’ to preserve cases. Any
other value means that NA are ignored (a message is given).

formula A formula describing the model to be fitted

data A matrix or data frame containing variables in the model.

na.action Formula S3 method only: a function to specify the action to be taken if NAs are
found. The default action is for the procedure to fail. An alternative is na.omit,
which leads to rejection of cases with missing values on any required variable.
(NOTE: If given, this argument must be named.)

Details

Some predictive model functions do not have an x & y interface. If the function specified by model
requires a formula, x & y will be merged into a dataframe with model() called with a formula
equivalent to y ~ ..

The S3 formula method for outercv is not really recommended with large data sets - it is envisaged
to be primarily used to compare performance of more basic models e.g. lm() specified by formulae
for example incorporating interactions. NOTE: filtering is not available if outercv is called with a
formula - use the x-y interface instead.

An alternative method of tuning a single model with fixed parameters is to use nestcv.train with
tuneGrid set as a single row of a data.frame. The parameters which are needed for a specific model
can be identified using caret::modelLookup().

Note that in the case of model = lm, although additional arguments e.g. subset, weights, offset
are passed into the model function via "..." the scoping is known to go awry. Avoid using these
arguments with model = lm.

NA handling differs between the default S3 method and the formula S3 method. The na.option
argument takes a character string, while the more typical na.action argument takes a function.

Value

An object with S3 class "outercv"

call the matched call

outercv 23

output Predictions on the left-out outer folds

outer_result List object of results from each outer fold containing predictions on left-out
outer folds, model result and number of filtered predictors at each fold.

dimx vector of number of observations and number of predictors

outer_folds List of indices of outer test folds

final_fit Final fitted model on whole data

final_vars Column names of filtered predictors entering final model

roc ROC AUC for binary classification where available.

summary Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.

Examples

Classification example

sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

load iris dataset and simulate a binary outcome
data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1", "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))
x <- dt
y2 <- sigmoid(0.5 * dt$marker1 + 2 * dt$marker2) > runif(nrow(dt))
y2 <- factor(y2)

Random forest
library(randomForest)
cvfit <- outercv(y2, x, randomForest)
summary(cvfit)
plot(cvfit$roc)

Mixture discriminant analysis (MDA)
if (requireNamespace("mda", quietly = TRUE)) {

library(mda)
cvfit <- outercv(y2, x, mda, predict_type = "posterior")
summary(cvfit)

}

Example with continuous outcome
y <- -3 + 0.5 * dt$marker1 + 2 * dt$marker2 + rnorm(nrow(dt), 0, 2)
dt$outcome <- y

simple linear model - formula interface
cvfit <- outercv(outcome ~ ., data = dt, model = lm)
summary(cvfit)

24 plot.cva.glmnet

random forest for regression
cvfit <- outercv(y, x, randomForest)
summary(cvfit)

example with lm_filter() to reduce input predictors
cvfit <- outercv(y, x, randomForest, filterFUN = lm_filter,

filter_options = list(nfilter = 2))
summary(cvfit)

plot.cva.glmnet Plot lambda across range of alphas

Description

Different types of plot showing cross-validated tuning of alpha and lambda from elastic net regres-
sion via glmnet. If xaxis is set to "lambda", log lambda is on the x axis while the tuning metric (log
loss, deviance, accuracy, AUC etc) is on the y axis. Multiple alpha values are shown by different
colours. If xaxis is set to "alpha", alpha is on the x axis with the tuning metric on y, with error
bars showing metric SD. if xaxis is set to "nvar" the number of non-zero coefficients is shown on
x and how this relates to model deviance/ accuracy on y.

Usage

S3 method for class 'cva.glmnet'
plot(
x,
xaxis = c("lambda", "alpha", "nvar"),
errorBar = (xaxis == "alpha"),
errorWidth = 0.01,
min.pch = NULL,
scheme = NULL,
palette = "zissou",
showLegend = "bottomright",
...

)

Arguments

x Object of class ’cva.glmnet’

xaxis String specifying what is plotted on the x axis, either log lambda, alpha or the
number of non-zero coefficients.

errorBar Logical whether to show error bars for the standard deviation of model deviance.
Error bars are interleaved to avoid overlap.

errorWidth Width of error bars.

min.pch Plotting ’character’ for the minimum point of each curve. Not shown if set to
NULL. See points

plot_alphas 25

scheme Colour scheme

palette Palette name (one of hcl.pals()) which is passed to hcl.colors

showLegend Either a keyword to position the legend or NULL to hide the legend.

... Other arguments passed to plot. Use type = 'p' to plot a scatter plot instead of
a line plot.

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

plot_alphas Plot cross-validated glmnet alpha

Description

Plot of cross-validated glmnet alpha parameter against deviance.

Usage

plot_alphas(x, col = NULL, ...)

Arguments

x Fitted "nestcv.glmnet" object

col Optional vector of line colours for each fold

... other arguments passed to plot

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

26 plot_lambdas

plot_caret Plot caret tuning

Description

Plots the main tuning parameter in models built using caret::train

Usage

plot_caret(x, error.col = "darkgrey", ...)

Arguments

x Object of class ’train’ generated by caret function train
error.col Colour of error bars
... Other arguments passed to plot()

Value

No return value

plot_lambdas Plot cross-validated glmnet lambdas across outer folds

Description

Plot of cross-validated glmnet lambda parameter against deviance for each outer CV fold.

Usage

plot_lambdas(
x,
scheme = NULL,
palette = "Dark 3",
showLegend = if (x$outer_method == "cv") "topright" else NULL,
...

)

Arguments

x Fitted "nestcv.glmnet" object
scheme colour scheme
palette palette name (one of hcl.pals()) which is passed to hcl.colors
showLegend Either a keyword to position the legend or NULL to hide the legend.
... other arguments passed to plot. Use type = 'p' to plot a scatter plot instead of

a line plot.

predict.hsstan 27

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

predict.hsstan Predict from hsstan model fitted within cross-validation

Description

Draws from the posterior predictive distribution of the outcome.

Usage

S3 method for class 'hsstan'
predict(object, newdata = NULL, type = NULL, ...)

Arguments

object An object of class hsstan.

newdata Optional data frame containing the variables to use to predict. If NULL (default),
the model matrix is used. If specified, its continuous variables should be stan-
dardized, since the model coefficients are learnt on standardized data.

type Option for binary outcomes only. Default NULL will return a class with the high-
est probability for each sample. If set to probs, it will return the probabilities
for outcome = 0 and for outcome = 1 for each sample.

... Optional arguments passed to hsstan::posterior_predict

Value

For a binary outcome and type = NULL, a character vector with the name of the class that has the
highest probability for each sample. For a binary outcome and type = prob, a 2-dimensional matrix
with the probability of class 0 and of class 1 for each sample. For a continuous outcome a numeric
vector with the predicted value for each sample.

Author(s)

Athina Spiliopoulou

28 predSummary

predict.nestcv.glmnet Predict method for nestcv.glmnet fits

Description

Obtains predictions from the final fitted model from a nestcv.glmnet object.

Usage

S3 method for class 'nestcv.glmnet'
predict(object, newdata, s = object$final_param["lambda"], ...)

Arguments

object Fitted nestcv.glmnet object

newdata New data to predict outcome on

s Value of lambda for glmnet prediction

... Other arguments passed to predict.glmnet.

Value

Object returned depends on the ... argument passed to predict method for glmnet objects.

See Also

glmnet::glmnet

predSummary Summarise prediction performance metrics

Description

Quick function to calculate performance metrics: accuracy and balanced accuracy for classification;
ROC AUC for binary classification; RMSE for regression.

Usage

predSummary(output)

Arguments

output data.frame with columns testy containing observed response from test folds;
predy predicted response; predyp (optional) predicted probabilities for classifi-
cation to calculate ROC AUC

relieff_filter 29

Value

Vector containing accuracy and balanced accuracy for classification, ROC AUC for binary classifi-
cation, RMSE for regression.

relieff_filter ReliefF filter

Description

Uses ReliefF algorithm from the CORElearn package to rank predictors in order of importance.

Usage

relieff_filter(
y,
x,
nfilter = NULL,
estimator = "ReliefFequalK",
type = c("index", "names", "full"),
...

)

Arguments

y Response vector

x Matrix of predictors

nfilter Number of predictors to return. If NULL all predictors are returned.

estimator Type of algorithm used, see CORElearn::attrEval

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

... Other arguments passed to CORElearn::attrEval

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" a named vector of variable importance is
returned.

See Also

CORElearn::attrEval

30 rf_filter

rf_filter Random forest filter

Description

Fits a random forest model and ranks variables by variable importance.

Usage

rf_filter(
y,
x,
nfilter = NULL,
type = c("index", "names", "full"),
ntree = 1000,
mtry = ncol(x) * 0.2,
...

)

Arguments

y Response vector

x Matrix of predictors

nfilter Number of predictors to return. If NULL all predictors are returned.

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

ntree Number of trees to grow. See randomForest.

mtry Number of predictors randomly sampled as candidates at each split. See ran-
domForest.

... Optional arguments passed to randomForest.

Details

This filter uses the randomForest function from the randomForest package. Variable importance
is calculated using the importance function, specifying type 1 = mean decrease in accuracy. See
importance.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full" a named vector of variable importance is
returned.

ttest_filter 31

ttest_filter t-test filter

Description

Simple univariate filter using t-test using the Rfast package for speed. Can be applied to all or a
subset of predictors.

Usage

ttest_filter(
y,
x,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsq_cutoff = NULL,
type = c("index", "names", "full")

)

Arguments

y Response vector

x Matrix of predictors

force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter Number of predictors to return. If NULL all predictors with p-values < p_cutoff
are returned.

p_cutoff p value cut-off

rsq_cutoff r^2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on t-test. If 2 or more predic-
tors are collinear, the first ranked predictor by t-test is retained, while the other
collinear predictors are removed. See collinear().

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of t-test p-value. If type is "full" full output from
Rfast::ttests is returned.

32 wilcoxon_filter

Examples

sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

load iris dataset and simulate a binary outcome
data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1", "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))
y2 <- sigmoid(0.5 * dt$marker1 + 2 * dt$marker2) > runif(nrow(dt))
y2 <- factor(y2, labels = c("C1", "C2"))

ttest_filter(y2, dt) # returns index of filtered predictors
ttest_filter(y2, dt, type = "name") # shows names of predictors
ttest_filter(y2, dt, type = "full") # full results table

wilcoxon_filter Wilcoxon test filter

Description

Simple univariate filter using Wilcoxon (Mann-Whitney) test using the matrixTests package.

Usage

wilcoxon_filter(
y,
x,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsq_cutoff = NULL,
type = c("index", "names", "full"),
exact = FALSE,
...

)

Arguments

y Response vector

x Matrix of predictors

force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter Number of predictors to return. If NULL all predictors with p values < p_cutoff
are returned.

p_cutoff p value cut-off

wilcoxon_filter 33

rsq_cutoff r^2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on Wilcoxon test. If 2 or more
predictors are collinear, the first ranked predictor by Wilcoxon test is retained,
while the other collinear predictors are removed. See collinear().

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p-values.

exact Logical whether exact or approximate p-value is calculated. Default is FALSE
for speed.

... Further arguments passed to matrixTests::row_wilcoxon_twosample

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type =
"names") of filtered parameters. If type is "full" full output from matrixTests::row_wilcoxon_twosample
is returned.

Index

anova_filter, 2, 6
auc(), 10

Boruta::Boruta, 4
boruta_filter, 3
boxplot, 4
boxplot_model, 4

caret::modelLookup(), 22
caret::train, 19, 26
caret::trainControl, 19
coef.glmnet, 5, 9
coef.nestcv.glmnet, 5
collinear, 5
collinear(), 3, 12, 31, 33
combo_filter, 6
cor, 7
cor.test, 7
CORElearn::attrEval, 6, 29
correl_filter, 7
correls, 8
correls2, 7
cv.glmnet, 8, 9, 15, 16
cva.glmnet, 8

glmnet, 9, 10, 15, 16, 24
glmnet::glmnet, 28
glmnet_coefs, 9
glmnet_filter, 9

hcl.colors, 4, 25, 26

importance, 30
innercv_roc, 10

lm_filter, 12

matrixTests::row_wilcoxon_twosample,
33

model.hsstan, 13

nestcv.glmnet, 5, 15, 25, 27, 28
nestcv.train, 17, 21, 22

outercv, 20

plot, 25
plot(), 26
plot.cva.glmnet, 24
plot_alphas, 25
plot_caret, 26
plot_lambdas, 26
points, 24
predict.cv.glmnet, 9
predict.hsstan, 27
predict.nestcv.glmnet, 28
predSummary, 28
pROC::roc, 11

randomForest, 30
relieff_filter, 6, 15, 18, 21, 29
rf_filter, 30
Rfast::ftests, 3
Rfast::ttests, 31

stats::cor.test, 7
summary.lm, 13

train, 26
trainControl, 19
ttest_filter, 6, 15, 18, 21, 31

wilcoxon_filter, 32

34

	anova_filter
	boruta_filter
	boxplot_model
	coef.nestcv.glmnet
	collinear
	combo_filter
	correls2
	correl_filter
	cva.glmnet
	glmnet_coefs
	glmnet_filter
	innercv_roc
	lm_filter
	model.hsstan
	nestcv.glmnet
	nestcv.train
	outercv
	plot.cva.glmnet
	plot_alphas
	plot_caret
	plot_lambdas
	predict.hsstan
	predict.nestcv.glmnet
	predSummary
	relieff_filter
	rf_filter
	ttest_filter
	wilcoxon_filter
	Index

