Package 'netCoin'

October 28, 2021

Type Package

Version 2.0.20
Date 2021-10-27
Title Interactive Analytic Networks
Description Create interactive analytic networks. It joins the data analysis power of R to obtain coincidences, co-occurrences and correlations, and the visualization libraries of 'JavaScript' in one package.

License GPL-2 I GPL-3
Depends R (>=3.5.0)
Imports rD3plot ($>=1.0 .0$), igraph ($>=1.0 .1$), Matrix ($>=1.2-4$), haven ($>=1.1 .0$)

Suggests knitr, rmarkdown, lavaan, shiny, htmltools
VignetteBuilder knitr
NeedsCompilation no
Maintainer Modesto Escobar modesto@usal.es

URL https://modesto-escobar.github.io/netCoin-2.x/
Encoding UTF-8
BugReports https://github.com/Modesto-Escobar/netCoin-2.x/issues
Author Modesto Escobar [cre, aut, cph]
(https://orcid.org/0000-0003-2072-6071),
David Barrios [aut],
Carlos Prieto [aut],
Luis Martinez-Uribe [aut] (https://orcid.org/0000-0002-7795-3972), Pablo Cabrera-Álvarez [aut]

Repository CRAN

Date/Publication 2021-10-28 17:20:05 UTC

R topics documented:

netCoin-package 3
allNet 5
asGallery 7
asNodes 7
barCoin 8
calCentr 10
coexist 11
coin 12
coocur 14
dice 15
dichotomize 16
distant 17
dyncohort 18
edgeList 19
ess 21
events 21
expectedList 22
families 23
finches 24
fromIgraph 24
Galapagos 25
gallery 26
glmCoin 27
incTime 29
layoutCircle 30
layoutGrid 30
links 31
lower 32
mobileEdges 33
multigraphCreate 34
netCoin 35
netCorr 38
pathCoin 39
propCoin 40
saveGhml 41
savePajek 42
shinyCoin 43
sim 44
sociologists 45
surCoin 46
surScat 48
timeCoin 50
toIgraph 51
works 52
Index 53

```
    netCoin-package The netCoin package.
```


Description

Create interactive networked coincidences. It joins the data analysis power of R to study coincidences and the visualization libraries of JavaScript in one package.

Details

Coincidence analysis detects what events, characters, objects, attributes, or characteristics tend to occur together within certain limits.
These given limits are call scenarios (S) and are considered to be the units of analysis, and as such they have to be placed in the rows of a matrix or data.frame.
In each i scenario, a series of J events X_{j}, which are to be represented as dichotomous variables X_{j} in columns, may occur (1) or may not occur (0). Scenarios and events constitute an incidence matrix (I).

Incidence matrix

$$
\begin{array}{rrrrlr}
& X_{1} & X_{2} & X_{3} & \ldots & X_{J} \\
S_{1} & 0 & 1 & 0 & \ldots & 1 \\
S_{2} & 1 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
S_{n} & 1 & 1 & 0 & \ldots & 1
\end{array}
$$

From this incidences matrix, a coincidence (\mathbf{C}) matrix can be obtained with the function coin. In this matrix the main diagonal represents frequencies of X_{j}, while the others elements are number of coincidences between two events.

Coincidence matrix

	X_{1}	X_{2}	X_{3}		X_{J}
X_{1}	2	1	1	\ldots	1
X_{2}	1	2	0	\ldots	2
X_{3}	1	0	1	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
X_{J}	1	2	0	\ldots	2

Once there is a coin object, a similarity matrix can be obtained. Similarity matrices available in netCoin are:

- Matching (m), Rogers $\backslash \&$ Tanimoto (t) Gower (g) Sneath (s) and Anderberg (and).
- Jaccard (j), dice (d), antiDice (a), Ochiai (o) and Kulczynski (k).
- Hamann (ham), Yule (y), Pearson (p), odds ratio (od) and Rusell (r).

Other measures that can be obtained from coin are:

- Relative frequencies (x), conditional frequencies (i) coincidence degree (cc) and probable degree of coincidence (cp).
- Haberman (h) and Z value of Haberman (z)

To obtain similarity and other measures matrices, the function sim elaborates a list of them.

Similarity matrix

	X_{1}	X_{2}	X_{3}		X_{J}
X_{1}	1.73	-.87	.87	\ldots	-.87
X_{2}	-.87	1.73	-1.73	\ldots	1.73
X_{3}	.87	-1.73	1.73	\ldots	-1.73
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
X_{J}	-.87	1.73	-1.73	\ldots	1.73

edgeList makes a collecion of edges composed by a list of similarity measures whenever a criterium (generally $\mathrm{p}(\mathrm{Z})<.50$) is met.

Edge list

	source	target	Haberman	$\mathrm{P}(\mathrm{z})$
1	X1	X3	0.8660254	0.22509243
2	X2	X4	1.7320508	0.09084506

In order to make a graph, two data frames are needed: a nodes data frames with names and other nodes attributes (see asNodes) and an edge data frame (see edgeList). For more information go to netCoin.

Author

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. (2009): "Redes Semanticas en Textos Periodisticos: Propuestas Tecnicas para su Representacion", en Empiria, 17, 13-39.

Escobar, M.(2015): "Studying Coincidences with Network Analysis and Other Multivariate Tools", in The Stata Journal, 15(4), 1118-1156.

Escobar, M. and J. Gomez Isla (2015): "The Expression of Identity through the Image: The Photographic Archives of Miguel de Unamuno and Joaquin Turina", en Revista Espanola de Investigaciones Sociologicas, 152, 23-46.

Description

allNet produces a network object of coincidences from a data frame or a matrix with dichotomous values.

Usage

allNet(incidences, weight $=$ NULL, subsample $=$ FALSE, pairwise $=$ FALSE, minimum=1, maximum = nrow(incidences), sort = FALSE, decreasing = TRUE, frequency $=$ FALSE, percentages $=$ TRUE, procedures = "Haberman", criteria = "Z", Bonferroni = FALSE, support $=-$ Inf, minL $=-$ Inf, maxL $=$ Inf, directed = FALSE, diagonal = FALSE,
sortL = NULL, decreasingL = TRUE,
igraph = FALSE, dir=NULL, ...)

Arguments

incidences an incidence matrix or data frame with only $0 / 1$ variables.
weight a vector of weights. Optimal for data.framed tables.
subsample retrict the analysis to scenarios with at least one event.
pairwise Pairwise mode of handling missing values if TRUE. Listwise by default.
minimum minimum frequency to be considered.
maximum maximum frequency to be considered.
sort sort the coincidence matrix according to frequency of events.
decreasing decreasing or increasing sort of the matrix.
frequency a logical value true if frequencies are to be shown. Default = FALSE.
percentages a logical value true if percentages are to be shown. Default = TRUE.
procedures a vector of statistics of similarity. See below.
criteria statistic to be use for selection criteria.
Bonferroni Bonferroni criterium of the signification test.
support minimum value of the frequency of the coincidence to be edged.
$\operatorname{minL} \quad$ minimum value of the statistic to include the edge in the list.
$\operatorname{maxL} \quad$ maximum value of the statistic to include the edge in the list.
directed includes same edges only once.
diagonal includes auto-links.
sortL sort the list according to the values of a statistic. See below.

decreasingL	order in a decreasing way.
igraph	Produces an igraph object instead of a netCoin object if TRUE.
dir	a "character" string representing the directory where the web files will be saved.
\ldots	Any netCoin argument.

Details

Possible measures in procedures are

- Frequencies (f), Relative frequencies (x), Conditional frequencies (i), Coincidence degree (cc), Probable degree (cp),
- Expected (e), Confidence interval (con)
- Matching (m), Rogers \& Tanimoto (t), Gower (g), Sneath (s), Anderberg (and),
- Jaccard (j), Dice (d), antiDice (a), Ochiai (o), Kulczynski (k),
- Hamann (ham), Yule (y), Pearson (p), odds ratio (od), Rusell (r),
- Haberman (h), Z value of Haberman (z),
- Hypergeometric p greater value (hyp).
- Convert a matrix into an edge list (shape).

Value

This function creates a netCoin object (or igraph) and, if stated, a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women",
    "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
allNet(data) # network object
```

```
asGallery Images in a grid gallery.
```


Description

asGallery produces a gallery_rd3 object.

Usage

asGallery (net)

Arguments

net is a network_rd3 object. See network_rd3

Value

Object of class gallery_rd3.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
data("Galapagos")
data("finches")
finches$species <- system.file("extdata", finches$species,
            package="netCoin") # copy path to the species field
Net <- allNet(Galapagos, nodes=finches, criteria="hyp", maxL=.05,
            image="species",
            main="Species coincidences in Galapagos Islands",
            note="Data source: Sanderson (2000)")
gallery <- asGallery(Net)
```

asNodes Nodes data frame.

Description

Nodes data frame from either an edge list or a coin object.

Usage

asNodes(C, frequency = TRUE, percentages = FALSE, language = c("en","es","ca"))

Arguments

C	has to be an edge list or, better, a coin object.
frequency	add frequency of nodes
percentages	add nodes percentages
language	a character vector (es=spanish; en=english; ca=catalan).

Value

A data frame with nodes' names and their frequency and/or percentages if the input is a coin object

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
# From a random incidence matrix I(25X4)
I <- matrix(rbinom(100, 1, .5), nrow = 25, ncol = 4,
    dimnames = list(NULL, c("A", "B", "C", "D")))
C <- coin(I)
asNodes(C)
```

```
barCoin Networked coincidences.
```


Description

barCoin produces a barCoin object.

Usage

barCoin(data, variables = colnames(data), commonlabel = NULL, dichotomies = c("_all","_none"), valueDicho = 1, weight = NULL, subsample = FALSE, sort = NULL, decreasing = TRUE, nodes = NULL, name $=$ NULL, select $=$ NULL, scalebar $=$ FALSE, note $=$ NULL, label = NULL, text = NULL, color = NULL, defaultColor = "\#1f77b4", expected $=$ FALSE, confidence $=$ FALSE, level $=$. 95 , significance $=$ FALSE, minimum = 1 , maximum = nrow(data), percentages = FALSE, criteria = c("Z","hyp"), Bonferroni = FALSE, support $=1$, minL $=-I n f, \operatorname{maxL}=1$, language = c("en","es","ca"), cex = 1.0, dir = NULL)

Arguments

data	a data frame
variables	a vector of variables included in the previous data frame
commonlabel	a vector of variables whose names are to be included in nodes labels
dichotomies	a vector of dichotomous variables to appear as just one categorie
valueDicho	value to be selected for dichotomous variables. Default is 1
weight	a vector of weights. Optimal for data.framed tables.
subsample	retrict the analysis to scenarios with at least one event.
sort	name of the vector in the nodes data frame to order the graph.
decreasing	decreasing or increasing sort of the graph order.
nodes	a data frame with at least two vectors of names and incidences.
name	name of the vector with names in the nodes data frame.
select	Name of the event (in nodes name column) to start the visualization.
scalebar	Should the bars fill the screen height? Default = FALSE.
note	lower title of the graph.
label	name of the vector with labels in the nodes data frame.
text	name of the vector with html text in the nodes data frame.
color	name of the vector with color variable in the nodes data frame.
defaultColor	a character vector giving a valid html color.
expected	name of the vector with expected coincidences in the links data frame.
confidence	name of the vector with confidence interval in the links data frame.
level	confidence level
significance	name of the vector with significance in the links data frame.
minimum	minimum frequency to be considered.
maximum	maximum frequency to be considered.
percentages	a logical value true if percentages are to be shown. Default $=$ TRUE .
criteria	statistic to be use for selection criteria.
Bonferroni	Bonferroni criterium of the signification test.
support	minimum value of the frequency of the coincidence to be edged.
minL	minimum value of the statistic to include the edge in the list.
maxL	maximum value of the statistic to include the edge in the list.
language	a character vector (es=spanish; en=english; ca=catalan).
cex	number indicating the amount by which plotting text should be scaled relative to the default. Default $=1$.
dir	a "character" string representing the directory where the web files will be saved.

Value

Object of class barCoin.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

\# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women", "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
barCoin(data,dichotomies="_all")
barCoin(data,dichotomies="_all", confidence=TRUE, percentages=TRUE)

calCentr Categorize a network

Description

This function calculates the centrality measures of a network.

Usage

calCentr (graph, measures = c("degree", "wdegree", "closeness", "betweenness", "eigen"), order = "")

Arguments

graph A netCoin object.
measures \quad Character vector of the measures to be calculated (See details).
order Sort the data.frame by the different measures.

Details

This function reproduces some of the most significant classic Social Network Theory's centrality measures. See Wasserman (1994), Freeman (1978), or Bonacich \& Lloyd (2001) to know more.
a) Degree $=$ Degree centrality is measured by the total amount of direct links with the other nodes.
b) Closeness $=$ Closeness centrality is meant to measure one node to the others nodes' sum distances
c) Betweenness $=$ Betweenness centrality measures one node undertaking "mediation" role in a network.
d) Eigen $=$ Eigenvector centrality measures a node's importance while giving consideration to the importance of its neighbors.
By default, measures = "all", thus all the measures will be calculated. The function can be applied to an igraph or a netCoin object. In case the graph is undirected, it will show the degree, weighted degree, closeness, betweeness and eigen degree. Moreover, if it us directed, it will show the indegree, windegree and outdegree, both weighted and unweighted (See example.).

Value

This function creates a list containing two elements: 1) a data.frame (nodes) with all the centrality measures applied to the graph and 2) another data.frame (graph) with this measures applied to the whole network.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

\# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women", "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
C <- coin(data) \# coincidence matrix
$\mathrm{N}<-\operatorname{asNodes}(\mathrm{C})$ \# node data frame
E <- edgeList(C) \# edge data frame
G <- netCoin(N, E, showArrows=TRUE) \# netCoin object
calCentr(G, "all")

```
coexist
```

coexist Interactive network of time coexistences of periods.

Description

coexist produces interactive graphs representing coexistence. Two periods or lifes coexist if they share a given number of years.

Usage

coexist(periods, name="name", start="start", end="end",
fields=names(periods), plusstart=0, minusend=0, igraph=FALSE, ...)

Arguments

periods	a data frame with at least three vectors with name, start and end of the periods.
name	name of the vector with names in the periods data frame.
start	name of the vector with starts in the periods data frame.
end	name of the vector with ends in the periods data frame.
fields	vector of the names of the periods data frame to be taken into account.
plusstart	number of years to be trimmed at the beginning of each period.
minusend	number of years to be trimmed at the end of each period.
igraph	produces an igraph object instead of a netCoin class.
\ldots	Any netCoin argument.

Details

Two periods coexists if they have at least one year in common. Periods can be trimmed at the begining or at the end.

Value

This function creates a netCoin object (or igraph) and, if plotted, a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.
A netCoin object has three elements:

nodes	A data frame with the periods.
links	A data frame with the events.
options	A list of options for the interactive graph.

Note

Periods could be the life of people, in whose case start is their birth and end their death year.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

See Also

timeCoin and dyncohort

Examples

```
# With sociologists data.
data(sociologists)
# Produce an igraph object:
coexist(sociologists, start="birth", end="death", igraph=TRUE)
# Omit as coexistence the 15 firts years of life:
sociologists$picture <- system.file("extdata", sociologists$picture,
        package="netCoin") # copy path to the picture field
coexist(sociologists, start="birth", end="death", plusstart=15, image="picture", imageName="name")
```

coin Coincidence matrix.

Description

A coincidence object consists of a list with two elements: 1) the number of scenarios (\$n), and 2) a coincidence matrix of events, whose main diagonal figures are the frequency of events and outside this diagonal there are conjoint frequencies of these events (\$f)
coin

Usage

coin(incidences, minimum = 1, maximum = nrow(incidences), sort = FALSE, decreasing = TRUE, total = FALSE, subsample = FALSE, weight $=$ NULL, pairwise $=$ FALSE)

Arguments

incidences an incidence matrix or data frame with only $0 / 1$ variables
minimum minimum frequency to be considered
maximum maximum frequency to be considered
sort sort the coincidence matrix according to frequency of events
decreasing decreasing or increasing sort of the matrix
total add one first row and column with total
subsample retrict the analysis to scenarios with at least one event
weight a vector of weights. Optimal for data.framed tables
pairwise Pairwise mode of handling missing values if TRUE. Listwise by default.

Details

Produce a matrix of coincidences from a matrix of incidences.

Value

An object of coin class
$\begin{array}{ll}\mathrm{n} & \text { Number of scenarios (rows of the incidence matrix) } \\ \mathrm{f} & \text { Coincidence matrix }\end{array}$

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
## Random incidence matrix: 25 scenarios, 4 events.
I <- matrix(rbinom(100, 1, .5), nrow = 25, ncol = 4,
    dimnames = list(NULL, c("A", "B", "C", "D")))
coin(I, sort = TRUE)
## Hair by Eye by Sex table from M. Friendly (2000)
```

```
data(HairEyeColor)
H<-as.data.frame(HairEyeColor)
W<-H$Freq
I<-dichotomize(H, c("Hair", "Eye","Sex"),add=FALSE)
coin(I,w=W)
```

coocur Coocurrence matrix.

Description

A coocurrence object consists of a matrix with the number of ocurrences in its main diagonal and the number of coocurrences outside this diagonal. Besides, this object has two attributes: 1) n is the total of the sum of the ocurrences in each row. 2) m is the sum of the maximum number of ocurrences in each row.

Usage

coocur(ocurrences, minimum $=1$, maximum $=$ Inf, sort = FALSE, decreasing = TRUE)

Arguments

ocurrences	an ocurrence matrix or data frame
minimum	minimum frequency to be considered
maximum	maximum frequency to be considered
sort	sort the coincidence matrix according to frequency of events
decreasing	decreasing or increasing sort of the matrix

Details

Produce a matrix of coocurrences from a matrix of occurences.

Value

An object of cooc class with a coocurrence matrix. It has two attributes:
$\mathrm{n} \quad$ Total sum of occurences)
m Sum of maximum occurences in each row of the ocurrence matrix

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
## Tossing two coins five times.
D<-data.frame(Head=c(2,1,1,0,2),Tail=c(0,1,1,2,0))
coocur(D)
```


Description

Data frame with events as result.

Usage

```
data("dice")
```


Format

A data frame with 100 observations (scenarios) on the following 11 variables (events):
dice : a numeric vector, representing dice results
1 : a dichotomous vector of the elemental event " 1 "
2 : a dichotomous vector of the elemental event " 2 "
3 : a dichotomous vector of the elemental event "3"
4 : a dichotomous vector of the elemental event "4"
5 : a dichotomous vector of the elemental event "5"
6 : a dichotomous vector of the elemental event " 6 "
odd : a dichotomous vector of odd events
even : a dichotomous vector of even events
small : a dichotomous vector of small number events
large : a dichotomous vector of large number events

Source

Random extraction via sample(1:6,100, replace=TRUE)

References

See events.

Examples

```
data(dice)
head(dice,10)
```

dichotomize Dichotomize.

Description

This converts factor(s) o character(s) column(s) of a data frame into a set of dichotomous columns. Their names will correspond to the labels or text of every category.

Usage

dichotomize(data, variables,
sep $=$ "", min $=1$, length $=0$, values $=$ NULL,
sparse $=$ FALSE, add $=$ TRUE, sort $=$ TRUE, nas $=$ "None")

Arguments

data	a data frame with a factor or textual column which can be simple (only one value for each scenario) or multiple if components are delinited with a separator.
variables	vector of column names that have to be converted into dichotomous vectors. vep vector of characters used to divide columns with multiple events. If this separa- frame's column. convert to dichotomous vectors only label or text that has a frequency less or
min	equal to the value of this parameter. If the value of min is between 0 and 1, its value is interpreted as a percentage
length	maximum number of dichotomous columns generated for every variable
values	vector of labels or texts selected to their conversion to dichotomous columns
sparse	produce a sparse matrix instead of a data.frame add
add the new columns to the input data.frame	

Value

A data frame composed by the original plus the added dichotmous columns.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca, and Luis Martinez Uribe, Fundacion Juan March. See https://sociocav. usal .es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
    \# A character column
    frame1 <- data.frame(A = c("Man", "Women", "Man", "Undet."))
    dichotomize(frame1, "A", sep = "; ")
    \# A character column (with separator)
    frame2 <- data.frame(A = c("Man; Women", "Women; Women",
                            "Man; Man", "Undet.; Women; Man"))
    dichotomize(frame2, "A", sep = "; ")
    \# A character column and another factor column (same sepatator)
    frame3 <- data.frame(A = c("Man; Women", "Women; Women",
                            "Man; Man", "Undet.; Women; Man"),
        C = factor (c(1:4), labels = c("Paris", "New York",
            "London; New York", "<NA>")))
dichotomize(frame3, c("A", "C"), sep = "; ")
\# A set of simple character or factor (same levels) variables.
\# In this case, you must use "C" separator.
frame4 <- data.frame(A = c("Man", "Women","Man", "Undet",NA),
                            B = c("Women", "Women", "Man", "Women", NA),
    \(C=c(N A, N A, N A, " M a n ", N A))\)
dichotomize(frame4,c("A","B","C"), sep="C")
```

distant Distance matrix.

Description

Convert a similarity matrix into a distance matrix.

Usage

distant(s, t = FALSE)

Arguments

s
a similarity matrix
t
return the same matrix if $\mathrm{t}=$ FALSE

Details

For better resultas, use the parameter distance in sim function.

Value

A distance matrix.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# From a random incidence matrix I(25X4)
I <- matrix(rbinom(100, 1, .5), nrow = 25, ncol = 4,
    dimnames = list(NULL, c("A", "B", "C", "D")))
J <- sim(I, "Jaccard")
distant(J, t = TRUE)
#Same results
sim(I, "Jaccard", distance = TRUE)
```

dyncohort Interactive graphs of dynamic cohorts.

Description

dyncohort produces interactive graphs representing dynamic cohorts. Two periods or lifes belongs to the same cohort if there are a difference of years in their start less or equal to a given number. In case of people's life, 15 or 25 are appropiate quantities to set. If year is equal to 0 , a cohort is defined a those periods or lifes that begin at the same year.

Usage

dyncohort(periods, name="name", start="start", fields=names(periods), years=0, igraph=FALSE, ...)

Arguments

periods	a data frame with at least two vectors with name and start of the periods or lives.
name	name of the vector with names in the data frame.
start	name of the vector with starts in the data frame.
fields	vector of the names of the periods data frame to be taken into account.
years	number of years to be considered as length of the cohort.
igraph	produces an igraph object instead of a netCoin class.
\ldots	Any netCoin argument.

Value

This function creates a timeCoin object (or igraph) and, if plotted, a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.
A netCoin object has three elements:
nodes A data frame with the periods.
links A data frame with the events.
options A list of options for the interactive graph.

Note

Periods could be the life of people, in whose case start is their birth year.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

See Also

timeCoin and coexist

Examples

```
# With sociologists data.
data(sociologists)
dyncohort(sociologists, start="birth")
# Condider 15 year dynamic cohort:
sociologists$picture <- system.file("extdata", sociologists$picture,
    package="netCoin") # copy path to the picture field
dyncohort(sociologists, start="birth", year=15, image="picture", imageName="name")
```

```
edgeList Edge list.
```


Description

Convert a coincidence/similarity/distance matrix into an edge list form.

Usage

edgeList(data, procedures="Haberman", criteria="Z", level=.95, Bonferroni=FALSE, min=-Inf, max=Inf, support=-Inf, directed=FALSE, diagonal=FALSE, sort=NULL, decreasing=TRUE, pairwise=FALSE)

Arguments

data a coin object, let's say an R matrix with frequencies and an attribute (n) giving the number of scenarios. In case of change of shape, data should be a matrix.
procedures a vector of statistics of similarity. See below.
criteria statistic to be use for selection criteria.

level	confidence level
Bonferroni	Bonferroni criterium of the signification test.
min	minimum value of the statistic to include the edge in the list.
max	maximum value of the statistic to include the edge in the list.
support	minimum value of the frequency of the coincidence to be edged
directed	includes same edges only once.
diagonal	includes auto-links
sort	sort the list according to the values of a statistic. See below
decreasing	order in a decreasing way.
pairwise	Pairwise mode of handling missing values if TRUE. Listwise by default.

Details

Possible measures in procedures are

- Frequencies (f), Relative frequencies (x), Conditional frequencies (i), Coincidence degree (cc), Probable degree (cp),
- Expected (e), Confidence interval (con)
- Matching (m), Rogers \& Tanimoto (t), Gower (g), Sneath (s), Anderberg (and),
- Jaccard (j), Dice (d), antiDice (a), Ochiai (o), Kulczynski (k),
- Hamann (ham), Yule (y), Pearson (p), odds ratio (od), Rusell (r),
- Haberman (h), Z value of Haberman (z),
- Hypergeometric p greater value (hyp).
- Convert a matrix into an edge list (shape).

Value

A data frame in which the two first columns are source and target. The rest of the columns are the different statistics explicited in funcs parameter.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
# From a random incidence matrix I(25X4)
I<-matrix(rbinom(100,1,.5),nrow=25,ncol=4,
dimnames=list(NULL,c("A","B","C","D")))
C<-coin(I)
edgeList(C)
```


Description

A sample size of 1,000 respondents from the European Social Survey, Round-8.

Usage
 data("ess")

Format

A data frame with 1000 cases (respondents) and 5 variables:
Gender Gender (factor vector): Female, Male.
Age Age (recoded factor vector): 15-29, 30-30, 40-49, 50-59, 60-69, 70 and +.
Social participation Social participation (factor vector): No, Yes.
Political participation Political participation (factor vector): No, Yes.
cweight cweight (numeric vector): Cases weight.

References

ESS Round 8: European Social Survey Round 8 Data (2016). Data file edition 2.1. NSD - Norwegian Centre for Research Data, Norway - Data Archive and distributor of ESS data for ESS ERIC. doi:10.21338/NSD-ESS8-2016.

Examples

data("ess")
head(ess,10)
events
Data: Attributes of the dice events.

Description

Data frame with the attributes of the events of dice.

Usage

```
data("events")
```


Format

A data frame with 10 observations on the following 4 variables:
name : a factor vector with 10 levels
label : a factor vector with 10 levels
frequency : a numeric vector
type : a factor vector with 2 levels

Source

data(dice); coin.dice<-coin(dice); asNodes(coin.dice)

References

See dice.

Examples

```
data(events)
```

events
expectedList Expected list.

Description

Converts a coin object to a links data frame with coincidences and expected values.

Usage

```
expectedList(data, names = NULL, min = 1, confidence=FALSE)
```


Arguments

data	is a coin object. See coin
names	a character vector.
min	minimum value of the statistic to include the edge in the list.
confidence	add the confidence interval if TRUE.

Value

A links data frame with coincidences and expected values.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women",
                            "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
C <- coin(data) # coincidence matrix
expectedList(C) # edge data frame
```

families Data: Italian families in the Renaissance.

Description

Data frame with the characteristics of powerful families of Renaissance Italy.

Usage

```
data("families")
```


Format

A data frame with 16 families (rows) and 6 characteristics.
name Family's name
f.Marriages number of marriage links
f.Business number of business links
wealth wealth's index
priorates number of priorates on control
seat At least priorate

Source

PADGETT, J. F. Y C. K. ANSELL (1993): "Robust Action and the Rise of the Medici, 1400-1434", in American Journal of Sociology, 98, 1259-1319. (http://www.jstor.org/stable/2781822)

Examples

```
data("families")
head(families)
```


Description

Data frame with events as result.

Usage

data("finches")

Format

A data frame with 13 observations (pinches) and 4 variables (name and characteristics):
name: Genus and species of the finche
frequency : number of islands where the finche can be found
type : Genus of the finche
species : name of the file containing the picture of the finche

References

Sanderson, James (2000). Testing Ecological Patterns: A Well-known Algorithm from Computer Science Aids the Evaluation of Species Distributions. American Scientist, 88, pp. 332-339.

Examples

```
data(finches)
head(finches,10)
```

fromIgraph Produce interactive networks from igraph objects.

Description

fromIgraph produce an interactive network from an igraph object.

Usage

fromIgraph (G, ...)

Arguments

G an igraph object.
... Any network_rd3 argument.

Value

This function returns a network_rd3 object. If the 'dir' attribute is specified, the function creates a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
g <- igraph::make_ring(10)
fromIgraph(g)
```

Galapagos Data: Finches' presence in Galapagos Islands.

Description

Data frame with absence(0) presence(1) of finches in the Galagos Islands.

Usage

data("Galapagos")

Format

A data frame with 17 localizations (islands) and 13 variables (Genus and species of the finches):
Geospiza magnirostris
Geospiza fortis
Geospiza fuliginosa
Geospiza difficilis
Geospiza scandens
Geospiza conirostris
Camarhynchus psitticula
Camarhynchus pauper
Camarhynchus parvulus
Platyspiza crassirostris

Cactospiza pallida
Cactospiza heliobates
Certhidea olivacea

References

Sanderson, James (2000). Testing Ecological Patterns: A Well-known Algorithm from Computer Science Aids the Evaluation of Species Distributions. American Scientist, 88, pp. 332-339.

Examples

data(Galapagos)
head(Galapagos,10)
gallery Images in a grid gallery.

Description

gallery produces a gallery_rd3 object.

Usage

gallery(nodes, name $=$ NULL, label $=$ NULL, color $=$ NULL, ntext $=$ NULL, info $=$ NULL, image $=$ NULL, zoom $=1$, itemsPerRow $=$ NULL, main $=$ NULL, note $=$ NULL, showLegend $=$ TRUE, frequencies $=$ FALSE, help = NULL, helpOn = FALSE, description = NULL, descriptionWidth $=$ NULL, roundedItems $=$ FALSE, controls = 1:2, cex = 1, language = c("en", "es", "ca"), dir = NULL)

Arguments

nodes a data frame with at least three columns of names, start and end.
name column name with image names in the nodes data frame.
label column name with image labels in the nodes data frame.
color column name with image background color variable in the nodes data frame.
ntext column name with html text in the nodes data frame.
info column name with information to display in a panel in the nodes data frame.
image column name which indicates the image paths in the nodes data frame.
zoom a number between 0.1 and 10 as initial displaying zoom.
itemsPerRow number of items in each row.
main upper title of the graph.
note lower title of the graph.

frequencies	a logical value true if barplots representing node attributes frequencies will be added to the final graph.
showLegend	a logical value true if the legend is to be shown. help a character string indicating a help text of the graph.
helpOn	Should the help be shown at the beginning?
description	a character string indicating a desription text for the graph.
descriptionWidth	
a percentage indicating a width for the description panel (25 by default).	

Value

Object of class gallery_rd3.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
data("finches")
finches$species <- system.file("extdata", finches$species,
    package="netCoin") # copy path to the species field
gallery(finches, image="species", main="Species in Galapagos Islands",
    note="Data source: Sanderson (2000)")
```

glmCoin Regression Graphs

Description

produces a netCoin object from a set of glm regressions.

Usage

$$
\begin{aligned}
& \text { glmCoin(formulas, data, weights=NULL, pmax=.05, } \\
& \text { twotail=FALSE, showArrows=TRUE, } \\
& \text { frequency = FALSE, percentage = TRUE, } \\
& \text { color="variable", lwidth="z.value", } \\
& \text { circle=NA, language=c("en","es","ca"), } \\
& \text { igraph=FALSE, ...) }
\end{aligned}
$$

Arguments

formulas	A set of formulas separated, folowed by the family and a return. For example: model <- "counts \sim outcome + treatment, poisson counts \sim outcome, poisson"
data	Data frame containing the variables in the model.
weights	Optional vector of weights to be used in the fitting process.
pmax	Selection of links with $\operatorname{Pr}(>\|z\|)$ less than p (one-tail by default).
twotail	Logical value indicating if twotail test must be appied. Defaul=FALSE.
showArrows	a logical value true if the directional arrows are to be shown. Default = FALSE.
frequency	a logical value true if frequencies are to be shown. Default=FALSE.
percentage	a logical value true if percentages are to be shown. Default=TRUE.
color	Nodes' attribute to be used for expressing color ("variable" by default).
lwidth	Nodes' attribute to be used for widht of arrows ("z.value" by default).
circle	Degre of rotation in case of fixed circled dependent variables.
language	Language of the graph controls.
igraph	Produces an igraph object instead of a netCoin object if TRUE.
\ldots	Any netCoin argument.

Value

This function creates a netCoin object (or igraph) and, if stated, a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
## Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20, 25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
Dobson <- data.frame(counts=counts, outcome=outcome, treatment=treatment)
model <- "counts ~ outcome + treatment, poisson"
glmCoin(model,Dobson)
```

incTime Time incidences.

Description

Convert a data frame with two numbers (normally a beginning year and end year) into an incidences matrix whose rows are the intermediate numbers, and whose columns are the content of the names column.

Usage

incTime(data, name = "name", beginning = "birth", end= "death")

Arguments

data a data frame a name and two numbers.
name Column with the names (default= "name").
beginning Column with the beginning number to include (default= "birth").
end Column with the end number to include (default= "death").

Value

A data frame in which the two first columns are source and target. The rest of the columns are sim. $=(1+$ threshold-real difference $)$ and dist. $=($ difference between numbers)

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

\# From sociologists data
data("sociologists")
head(incTime(sociologists))[,1:5]
layoutCircle Produce a circle layout of any number of nodes.

Description

layoutCircle produces a circle layout of any number of nodes.

Usage

layoutCircle(N, nodes=seq_len(nrow(N)), deg=0, name=NULL)

Arguments

N	a data frame of nodes.
nodes	a vector specifing nodes.
deg	degrees to rotate.
name	name of column with node names.

Value

This function returns the input data frame of nodes with the resulting layout applied.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

A <- data.frame(name=letters)
L <- layoutCircle(A, name="name")
netCoin(A, layout=L)
layoutGrid Produce a layout of any number of nodes.

Description

layoutGrid produces a grid layout of any number of nodes.

Usage

layoutGrid(N, string, name=NULL, byrow=FALSE)

Arguments

$N \quad$ a data frame of nodes.
string a character vector specifing grouped nodes.
name name of column with node names.
byrow logical. If 'FALSE' (the default) the layout is filled by columns, otherwise the layout is filled by rows.

Value

This function returns the input data frame of nodes with the resulting layout applied.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

A <- data.frame(name=letters)
L <- layoutGrid(A,"a,b,c,d,e.f,g,h,i,j.k,l,m,n,o,p.q,r,s,t,u.v,w,x,y,z","name")
netCoin(A, layout=L)
links
Data: Links between Italian families in the Renaissance.

Description

Data frame with the marriage and business links.

Usage

data("links")

Format

A data frame with 36 links (rows) amongst 16 Italian families in the Renaissance.
Albizzi
Acciaiuoli
Barbadori
Bischeri
Castellani
Guadagni

```
Lamberteschi
Medici
Pazzi
Peruzzi
Ridolfi
Salviati
Strozzi
Tornabuoni
Ginori
Pucci
link Type of link: marriage or business
```


Source

PADGETT, J. F. Y C. K. ANSELL (1993): "Robust Action and the Rise of the Medici, 1400-1434", in American Journal of Sociology, 98, 1259-1319. (http://www.jstor.org/stable/2781822)

Examples

```
data("links")
head(links)
```

lower Similarity/distance matrix display.

Description

Display the lower part of a matrix with a specified number of decimals.

Usage

lower(matrix, decimals = 3)

Arguments

matrix	a symmetric similarity/distance matrix
decimals	number of decimals to be displayed

Value

A data frame of characters.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# From a random incidence matrix I(25X4)
I <- matrix(rbinom(100, 1, .5), nrow = 25, ncol = 4,
    dimnames = list(NULL, c("A", "B", "C", "D")))
lower(sim(I, "Jaccard"), 2)
```

```
mobileEdges Mobile Edges.
```


Description

Convert a data frame with one number (normally a year) into an edge list form with those whose numbers (years) have a difference lower or equal to a quantity.

Usage

mobileEdges(data, name $=1$, number $=2$, difference=0)

Arguments

data a data frame with a name and a number (year).
name \quad Column with the names (default= first column).
number Column with the number (year) to compare (default= second column.
difference Minimum difference between numbers of every two pair of names to create the edge or link (default=15).

Value

A data frame in which the two first columns are source and target. The rest of the columns are sim. $=(1+$ threshold-real difference $)$ and dist. $=($ difference between numbers)

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# From a random incidence matrix I(25X4)
data("sociologists")
mobileEdges(sociologists)
```

```
multigraphCreate Produce interactive multi graphs.
```


Description

multigraphCreate produce an interactive multi graph.

Usage

```
multigraphCreate(..., mode = c("default","parallel","frame"),
                    frame = 0, speed = 50, dir = "MultiGraph", show = TRUE)
```


Arguments

.. rD3plot graphs (network_rd3, barplot_rd3, timeplot_rd3) objects or html "directories".
mode a string specifying the displaying mode. The "default" displays graphs one by one, "parallel" splits screen and "frame" allows dinamic graphs in time.
frame number of frame to start a dynamic network.
speed a percentage for frame speed in dynamic networks.
dir a "character" string representing the directory where the graph will be saved.
show a logical value true if the graph is to be shown. Default = TRUE.

Value

The function creates a folder in your computer with an HTML document named index.html which contains the graph. This file can be directly opened with your browser.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
## Not run:
# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women",
                            "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
C <- coin(data) # coincidence matrix
N <- asNodes(C) # node data frame
E <- edgeList(C,c("frequency","expected","haberman")) # edge data frame
bC<- barCoin(data,dichotomies="_all") # barCoin object
cC<- barCoin(data,dichotomies="_all",expected=TRUE) # barCoin object
nC<- netCoin(N,E) # netCoin object
multigraphCreate("Bar graph" = bC,
```

```
"Conditional bar graph" = cC,
"Net graph"=nC,
dir="./example") # See ./example/index.html file
```

\#\# End(Not run)
netCoin Networked coincidences.

Description

netCoin produces a netCoin object of coincidences. Its input has to be two data.frames: one of attributes of events or nodes, and the other of attributes of the edges or links.

Usage

```
netCoin(nodes \(=\) NULL, links \(=\) NULL, tree \(=\) NULL,
            community = NULL, layout = NULL,
    name \(=\) NULL, label = NULL, group = NULL, labelSize = NULL,
    size \(=\) NULL, color \(=\) NULL, shape \(=\) NULL, legend \(=\) NULL,
    sort \(=\) NULL, decreasing \(=\) FALSE, ntext \(=\) NULL, info \(=\) NULL,
    image = NULL, imageNames = NULL, centrality = NULL,
    nodeBipolar = FALSE, nodeFilter = NULL, degreeFilter = NULL,
    lwidth = NULL, lweight = NULL, lcolor = NULL, ltext = NULL,
    intensity = NULL, linkBipolar = FALSE, linkFilter = NULL,
    repulsion = 25, distance = 10, zoom = 1,
    fixed = showCoordinates, limits = NULL,
    main = NULL, note = NULL, showCoordinates = FALSE, showArrows = FALSE,
    showLegend = TRUE, frequencies = FALSE, showAxes = FALSE,
    axesLabels \(=\) NULL, scenarios \(=\) NULL, help \(=\) NULL, helpOn = FALSE,
    mode \(=c(" n e t w o r k ", " h e a t m a p "), ~ c o n t r o l s=1: 4\), cex \(=1\),
    background = NULL, defaultColor = "\#1f77b4",
    language = c("en","es","ca"), dir = NULL)
```


Arguments

nodes a data frame with at least one vector of names.
links a data frame with at least two vectors with source and target, including names of nodes.
tree a data frame with two vectors: source and target, describing relationships between nodes.
name name of the vector with names in the nodes data frame. By default, if language="en", name is "name".
label name of the vector with labels in the nodes data frame.
group name of the vector with groups in the nodes data frame.

community	algorithm to make communities: edge_betweenness("ed"), fast_greedy("fa"), label_prop("la"), leiden_eigen("le"), louvain("lo"), optimal("op"), spinglass("sp"), walktrap("wa")
centrality	calculates the centrality measures of a network. See calCentr.
labelSize	name of the vector with label size in the nodes data frame.
size	name of the vector with size in the nodes data frame.
color	name of the vector with color variable in the nodes data frame.
shape	name of the vector with shape variable in the nodes data frame.
legend	name of the vector with the variable to represent as a legend in the nodes data frame.
ntext	name of the vector with html text in the nodes data frame.
info	name of the vector with information to display in a panel in the nodes data frame.
sort	name of the vector with node order in the nodes data frame (only for heatmap).
decreasing	decreasing or increasing sort of the nodes (only for heatmap).
intensity	name of the vector with intensity variable in the links data frame (only for heatmap).
lwidth	name of the vector with width variable in the links data frame.
lweight	name of the vector with weight variable in the links data frame.
lcolor	name of the vector with color variable in the links data frame.
ltext	name of the vector with labels in the links data frame.
nodeFilter	condition for filtering nodes.
linkFilter	condition for filtering links.
degreeFilter	numeric vector to filter the resulting network by degree.
nodeBipolar	a logical value that polarizes negative and positive node values in the graphical representation. Default $=$ FALSE.
linkBipolar	a logical value that polarizes negative and positive link values in the graphical representation. Default $=$ FALSE.
defaultColor	a character vector giving a valid html color.
repulsion	a percentage for repulsion between nodes.
distance	a percentage for distance of links.
zoom	a number between 0.1 and 10 to start displaying zoom.
fixed	prevent nodes from being dragged.
scenarios	a note showing number of scenarios.
main	upper title of the graph.
note	lower title of the graph.
frequencies	a logical value true if the frequencies can be shown in barplots. Default $=$ FALSE.
help	help text of the graph.
helpOn	Should the help be shown at the beginning?

ba	background color or image of the graph.
layout	a matrix with two columns or an algorithm to elaborate the coordinates: davidson.harel drl("da"), circle("ci"), Force-Atlas-2("fo"), fruchterman.reingold("fr"), gem("ge"), grid("gr"), kamada.kawai("ka"), lgl("lg"), mds("md"), random("ra"), reingold.tilford("re"), star("sta"), sugiyama("sug")
limits	vector indicating size references to display layout, must be a numeric vector of length 4: x1, y1, x2, y2.
cex	number indicating the amount by which plotting text should be scaled relative to the default. Default $=1$.
controls	a numeric vector indicating which controls will be shown. $1=$ sidebar, $2=$ selection buttons, $3=$ export buttons, $4=$ nodes table, $5=$ links table. NULL hide all controls, negative values deny each control and 0 deny all.
mode	a character vector indicating the graph mode allowed: network, heatmap or both (both by default).
showCoordinates	
	a logical value true if the coordinates are to be shown in tables and axes. Default = FALSE .
showArrows	a logical value true if the directional arrows are to be shown. Default $=$ FALSE.
showLegend	a logical value true if the legend is to be shown. Default = TRUE.
showAxes	a logical value true if the axes are to be shown. Default = FALSE.
axesLabels	a character vector giving the axes names.
language	a character vector (es=spanish; en=english; ca=catalan).
image	name of the vector with image files in the nodes data frame.
imageNames	name of the vector with names for image files in the nodes data frame.
dir	a "character" string representing the directory where the web files will be saved.

Value

This function returns a netCoin object. If the 'dir' attribute is specified, the function creates a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Note

nodes and links arguments can be substituted by a netCoin object to add or change options to it.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

\# A character column (with separator)
frame <- data.frame ($\mathrm{A}=\mathrm{c}($ "Man; Women", "Women; Women",
"Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
C <- coin(data) \# coincidence matrix
N <- asNodes(C) \# node data frame
E <- edgeList(C) \# edge data frame
netCoin(N, E) \# netCoin object
netCorr Networked correlations.

Description

netCorr produces a network object of correlations. Its input has to be at least one set of quantitative variables.

Usage

```
netCorr(variables, weight=NULL, pairwise=FALSE,
    minimum=-Inf, maximum=Inf, sort=FALSE, decreasing=TRUE,
    frequency=FALSE, means=TRUE,
    method="pearson", criteria="p", Bonferroni=FALSE,
    minL=0, maxL=Inf,
    sortL=NULL, decreasingL=TRUE,
    igraph=FALSE, ...)
```


Arguments

variables	a data frame with at least two quantitative variables.		
weight	a vector of weights. Optimal for data.framed tables		
pairwise	Pairwise mode of handling missing values if TRUE. Listwise by default.		
minimum	minimum frequency to be considered		
maximum	maximum frequency to be considered		
sort	sort the correlation matrix according to the frequency of the events		
decreasing	decreasing or increasing sort of the matrix		
frequency	a logical value true if frequencies are to be shown. Default=FALSE. means		
method logical value true if means are to be shown. Default=TRUE.			
criteria	a vector of statistics of similarity. Pearson correlation by default. spearman and kendall are also possible		
Bonferroni	statistic to be use for selection criteria. BinL		minimum value of the statistic to include the edge in the list.
:---			

maxL	maximum value of the statistic to include the edge in the list.
sortL	sort the list according to the values of a statistic. See below
decreasingL	order in a decreasing way.
igraph	Produces an igraph object instead of a netCoin object if TRUE
\ldots	Any netCoin argument.

Value

The function creates a netCoin object and eventually a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# A character column (with separator)
data(iris)
netCorr(iris[,1:4],ltext="value",
    main="Correlations between measurements of Iris Species",
    note="Anderson, Edgar (1935) y Fisher, R. A. (1936)") # network object
```

pathCoin Structural Equation Models Graphs.

Description

pathCoin produces a netCoin object from a lavaan object, i.e., parameters of structural equation model.

Usage

pathCoin(model, estimates=c("b","se","z","pvalue","beta"), fitMeasures=c("chisq", "cfi", "rmsea"), ...)

Arguments

model
estimates A vector with at least one element amongst "b", "se", "z", "pvalue", "beta".
fitMeasures
Default values: "chisq", "df", "pvalue", "cfi", "rmsea"
Any netCoin argument.

Value

The function creates a netCoin object and eventually a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# Classic Wheaton et al. model
library(lavaan)
lower <- '
11.834
6.947 9.364
6.819 5.091 12.532
4.783 5.028 7.495 9.986
-3.839 -3.889 -3.841 -3.625 9.610
-21.899 -18.831-21.748-18.775 35.522 450.288 '
wheaton.cov <- getCov(lower,
                    names = c("anomia67", "powerless67","anomia71", "powerless71",
                                    "education", "sei"))
wheaton.model <- '
# latent variables
ses =~ education + sei
alien67 =~ anomia67 + powerless67
alien71 =~ anomia71 + powerless71
# regressions
alien71 ~ alien67 + ses
alien67 ~ ses
# correlated residuals
anomia67 ~~ anomia71
powerless67 ~~ powerless71
'
fit <- sem(wheaton.model, sample.cov = wheaton.cov, sample.nobs = 932)
pathCoin(fit)
```

propCoin

Express Coin Entries as Fraction of Marginal Table

Description

This is like 'prop.table' for 'coin' objects.

Usage

propCoin(x, margin= 0, decimals=1)

Arguments

X
margin
decimals
'coin' object.
index, or vector of indices to generate margin for.
integer indicating the number of decimal places to be used.

Value

Table like ' x ' expressed relative to 'margin'.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

\#\# Random incidence matrix: 25 scenarios, 4 events.
$\mathrm{I}<-\operatorname{matrix}($ rbinom(100, $1, .5)$, nrow $=25$, ncol $=4$,
dimnames = list(NULL, c("A", "B", "C", "D")))
$C<-\operatorname{coin}(I$, sort $=$ TRUE $)$
propCoin(C, 1)

saveGhml

Save a netCoin object as a .graphml file to be read in Gephi, Pajek, ...

Description

saveGhml produces a .graphml file from a netCoin object.

Usage

saveGhml(net, file="netCoin.graphml")

Arguments

net A netCoin object.
file The name of the file. If not extension, .gexf is used as default.

Value

The function creates a file with vertices and arcs or edges of a netCoin object.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
    ## Not run:
    # A character column (with separator)
    frame <- data.frame(A = c("Man; Women", "Women; Women",
                            "Man; Man", "Undet.; Women; Man"))
    data <- dichotomize(frame, "A", add=FALSE, sep = "; ")
    graph <- allNet(data, maxL=.5) # graph from an incidence matrix
    saveGhml(graph,"graph") # save graph.net file
    ## End(Not run)
```

 savePajek
 Save a netCoin object as a .net (.paj) file to be read in Pajek, Gephi, ...

Description

savePajek produces a .net (.paj) file from a netCoin object.

Usage

savePajek(net, file="file.net", arcs=NULL, edges=NULL, partitions=NULL, vectors=NULL)

Arguments

net	a netCoin object.
file	The name of the file without extension. It will be .net or .paj acoording to data. The default is file.net or file.paj
arcs	Names of netCoin\$links to be included and considered as arcs in the Pajek file..
edges	Names of netCoin\$links to be included and considered as edges in the Pajek file..
partitions	Names of netCoin\$nodes to be included and considered as partitions in the Pajek file.
vectors	Names of netCoin\$nodes to be included and considered as vectors in the Pajek file.

Value

The function creates a file with vertices and arcs or edges of a netCoin objetct. Vectors and partitions can be also included. .

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
## Not run:
# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women",
                                    "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", add=FALSE, sep = "; ")
graph <- allNet(data) # graph from an incidence matrix
savePajek(graph, "graph",edges="Haberman") # save graph.net file
## End(Not run)
```

shinyCoin

Include netCoin Plots in Shiny.

Description

Load a netCoin plot to display in shiny.

Usage

shinyCoin(x)

Arguments

x is a netCoin, barCoin or timeCoin object.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
## Not run:
# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women",
                            "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep="; ")[2:4]
C <- coin(data) # coincidence matrix
N <- asNodes(C) # node data frame
E <- edgeList(C) # edge data frame
net <- netCoin(N, E) # netCoin object
shinyCoin(net)
## End(Not run)
```


Description

It calculates a similarity/distance matrix from either an incidence data frame/matrix or a coin object.

Usage

sim(input, procedures="Jaccard", level=.95, distance=FALSE, minimum=1, maximum=Inf, sort=FALSE, decreasing=FALSE, weight $=$ NULL, pairwise $=$ FALSE)

Arguments

input a binary data frame or a coin object, let's say an R list composed by a number of scenarios ($\$ n$) and a coincidence matrix with frequencies ($\$ \mathrm{f}$).
procedures a vector of statistics of similarity. See details below.
level confidence level
distance convert the similarity matrix into a distance matrix
minimum minimum frequency to obtain a similarity/distance measure.
maximum maxium frequency to obtain a similarity/distance measure.
sort sort the list according to the values of a statistic. See details below
decreasing order in a decreasing way.
weight a vector of weights. Optimal for data.framed tables
pairwise Pairwise mode of handling missing values if TRUE. Listwise by default.

Details

Possible measures in procedures are

- Frequencies (f), Relative frequencies (x), Conditional frequencies (i), Coincidence degree (cc), Probable degree (cp),
- Expected (e), Confidence interval (con)
- Matching (m), Rogers \& Tanimoto (t), Gower (g), Sneath (s), Anderberg (and),
- Jaccard (j), Dice (d), antiDice (a), Ochiai (o), Kulczynski (k),
- Hamann (ham), Yule (y), Pearson (p), odds ratio (od), Rusell (r),
- Haberman (h), Z value of Haberman (z).
- Hypergeometric p greater value (hyp).

Value

A similarity/distance matrix.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# From a random incidence matrix I(25X4)
I<-matrix(rbinom(100,1,.5),nrow=25,ncol=4,
    dimnames=list(NULL, c("A", "B", "C", "D")))
sim(I)
#Same results
C<-coin(I)
sim(C)
```

sociologists

Data: Classical sociologists.

Description

Data frame with names, birth and death year data, birth country and movement.

Usage

data("sociologists")

Format

A data frame with life's period of 16 sociologists and the following 11 variables to study time coincidences:
name : name and last name of the sociologist.
birth : birth year.
death : death year.
birth_place : birth place.
birth_country : birth country.
death_place : death place.
death_country : death country.
label : combination of name, birth and death dates.
generation : generation (every 25 years) of the sociologists.
school : school of thought.
picture : name of the file where their picture is.

Source

Own elaboration from manuals of sociology.

References

See events.

Examples

```
data(sociologists)
head(sociologists, 10)
tail(sociologists, 10)
```

surCoin Networked coincidences from a data frame.

Description

surCoin produces a network object of coincidences from a data frame converting variables into dichotomies.

Usage

```
surCoin(data,variables=names(data), commonlabel=NULL,
    dichotomies=NULL, valueDicho=1, metric=NULL, exogenous=NULL,
    weight=NULL, subsample=FALSE, pairwise=FALSE,
    minimum=1, maximum=nrow(data), sort=FALSE, decreasing=TRUE,
    frequency=FALSE, percentages=TRUE,
    procedures="Haberman", criteria="Z", Bonferroni=FALSE,
    support=-Inf, minL=-Inf, maxL=Inf,
    directed=FALSE, diagonal=FALSE, sortL=NULL, decreasingL=TRUE,
    igraph=FALSE, coin=FALSE, dir=NULL, ...)
```


Arguments

data	a data frame.
variables	a vector of variables included in the previous data frame.
commonlabel	a vector of variables whose names are to be included in nodes labels. dichotomies a vector of dichotomous variables to appear as just one category.
valueDicho	value or list of values (not vector) to be selected for dichotomous variables. Default is 1.
metric	a vector of metrics. a vector of variables whose relations amongst them are of no interest. None by default.
weight	a vector of weights. Optimal for data.framed tables. subsample pairwise
retrict the analysis to scenarios with at least one event.	
minimum	Pairwise mode of handling missing values if TRUE. Listwise by default. minimum frequency to be considered.

maximum	maximum frequency to be considered.
sort	sort the coincidence matrix according to frequency of events.
decreasing	decreasing or increasing sort of the matrix.
frequency	a logical value true if frequencies are to be shown. Default=FALSE.
percentages	a logical value true if percentages are to be shown. Default=TRUE.
procedures	a vector of statistics of similarity. See below.
criteria	statistic to be use for selection criteria.
Bonferroni	Bonferroni criterium of the signification test.
support	minimum value of the frequency of the coincidence to be edged.
minL	minimum value of the statistic to include the edge in the list.
maxL	maximum value of the statistic to include the edge in the list. By default is +Inf, except if criteria="Z" or criteria="hyp", in which case it is .5. It is recommnended to change it to .05 if data has been sampled.
directed	includes same edges only once.
diagonal	includes auto-links.
sortL	sort the list according to the values of a statistic. See below.
decreasingL	order in a decreasing way.
igraph	Produces an igraph object instead of a netCoin object if TRUE.
coin	Only return the coincidences matrix if TRUE.
dir	a "character" string representing the directory where the web files will be saved.
	Any netCoin argument.

Details

Possible measures in procedures are

- Frequencies (f), Relative frequencies (x), Conditional frequencies (i), Coincidence degree (cc), Probable degree (cp),
- Expected (e), Confidence interval (con)
- Matching (m), Rogers \& Tanimoto (t), Gower (g), Sneath (s), Anderberg (and),
- Jaccard (j), Dice (d), antiDice (a), Ochiai (o), Kulczynski (k),
- Hamann (ham), Yule (y), Pearson (p), odds ratio (od), Rusell (r),
- Haberman (h), Z value of Haberman (z),
- Hypergeometric p greater value (hyp).
- Convert a matrix into an edge list (shape).

Value

This function creates a netCoin object (or igraph) and, if stated, a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.i11.

Examples

```
# A data frame with two variables Gender and Opinion
frame <- data.frame(Gender=c(rep("Man",3),rep("Woman",3)),
    Opinion=c("Yes", "Yes", "No", "No", "No", "Yes"))
surCoin(frame,commonlabel="") # network object
# A data frame with two variables (Gender and Hand) and nodes
input <- data.frame(
    Gender = c("Women", "Men", "Men", "Women", "Women", "Men",
                    "Men", "Men", "Women", "Women", "Men", "Women"),
    Hand = c("Right", "Left","Right", "Right", "Right", "Right",
                            "Left", "Right", "Right", "Left","Right", "Right"))
nodes <- data.frame(
    name = c("Gender:Men","Gender:Women", "Hand:Left", "Hand:Right"),
    label = c("Women(50\u25)","Men(50\u25)",
            "Left hand(25\u25)", "Right hand(75\u25)"))
G <- surCoin(input, nodes=nodes, proc=c("h","i"), label="label",
            ltext="i", showArrows=TRUE, maxL=.99)
```

surScat
Networked coincidences from a data frame.

Description

surScat produces a network object of coincidences from a data frame converting variables into dichotomies.

Usage

surScat(data, variables=names(data), active=variables, type=c("mca", "pca"), nclusters=2, $\operatorname{maxN}=2000, . .$.

Arguments

data a data frame.
variables
a vector of variables included in the previous data frame.
active a vector of variables actived in the previous data frame.
surScat

type	Factorial type: mca for qualitative active variables, pca for quantitative active variables.
nclusters	number of clusters.
maxN	Maximum number or rows.
\ldots	Any netCoin argument.

Details

Possible measures in procedures are

- Frequencies (f), Relative frequencies (x), Conditional frequencies (i), Coincidence degree (cc), Probable degree (cp),
- Expected (e), Confidence interval (con)
- Matching (m), Rogers \& Tanimoto (t), Gower (g), Sneath (s), Anderberg (and),
- Jaccard (j), Dice (d), antiDice (a), Ochiai (o), Kulczynski (k),
- Hamann (ham), Yule (y), Pearson (p), odds ratio (od), Rusell (r),
- Haberman (h), Z value of Haberman (z),
- Hypergeometric p greater value (hyp).
- Convert a matrix into an edge list (shape).

Value

This function creates a netCoin object (or igraph) and, if stated, a folder in the computer with an HTML document named index.html which contains the produced graph. This file can be directly opened with your browser and sent to a web server to work properly.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

References

Escobar, M. and Martinez-Uribe, L. (2020) Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93, 1-32. doi: 10.18637/jss.v093.111.

Examples

```
# A data frame with two variables Gender and Opinion
frame<-data.frame(Gender=c(rep("Man", 3), rep("Woman", 3)),
    Opinion=c("Yes", "Yes", "No", "No", "No", "Yes"))
surScat(frame) # network object
```

timeCoin Networked coincidences.

Description

timeCoin produces a timeCoin object.

Usage

```
timeCoin(periods, name = "name", start = "start", end = "end", group = NULL,
text = NULL, main = NULL, note = NULL, info = NULL,
    events = NULL, eventNames = "name", eventPeriod = "period",
    eventTime = "date", eventColor = NULL, eventShape = NULL,
    cex = 1, language = c("en","es","ca"), dir = NULL)
```


Arguments

periods a data frame with at least three vectors of name, start and end of the periods.
name name of the vector with names in the periods data frame.
start name of the vector with starts in the periods data frame.
end name of the vector with ends in the periods data frame.
group name of the vector with groups in the periods data frame.
text name of the vector with html text in the periods data frame.
main upper title of the graph.
note lower title of the graph.
info name of the vector with information to display in a panel in the periods data frame.
events a data frame of events included into the periods with three columns: event name, periodParent and eventTime
eventNames name of the vector with names in the events data frame.
eventPeriod name of the vector with period names in the events data frame.
eventTime name of the vector with time points in the events data frame.
eventColor name of the vector with color criteria in the events data frame.
eventShape name of the vector with shape criteria in the events data frame.
cex number indicating the amount by which plotting text should be scaled relative to the default. Default $=1$.
language a character vector (es=spanish; en=english; ca=catalan).
dir a "character" string representing the directory where the web files will be saved.

Value

Object of class timeCoin.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# Database of the classical sociologists.
# Only periods
data(sociologists)
timeCoin(sociologists, "name", "birth", "death", "school")
# Periods and events
data(works)
timeCoin(sociologists, "name", "birth", "death", "school",
        events=works, eventNames="label", eventPeriod="author", eventTime="date")
```

 toIgraph igraph object.

Description

igraph object from a network_rd3 object.

Usage

toIgraph(net)

Arguments

net is a network_rd3 object. See network_rd3

Value

An igraph object.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Examples

```
# A character column (with separator)
frame <- data.frame(A = c("Man; Women", "Women; Women",
                "Man; Man", "Undet.; Women; Man"))
data <- dichotomize(frame, "A", sep = "; ")[2:4]
C <- coin(data) # coincidence matrix
N <- asNodes(C) # node data frame
E <- edgeList(C)
```

```
net <- netCoin(N, E)
toIgraph(net) # conversion into a igraph object
```

 works Data: Classical sociological works.

Description

Data frame with classical sociological works writen by authors in the sociologists data frame.

Usage

data("sociologists")

Format

A data frame with 54 observations (events) and the following 4 variables to study coincidences in time:
name : name and last name of the author of the work.
label: abbreviation of the complete name.
works : work's name.
date : year of its first publication.

Author(s)

Modesto Escobar, Department of Sociology and Communication, University of Salamanca. See https://sociocav.usal.es/blog/modesto-escobar/

Source

Own elaboration from manuals of sociology.

References

See events.

Examples

```
data(works)
head(works, 10)
tail(works, 10)
```


Index

```
* datasets
    dice, 15
    ess, 21
    events,21
    families,23
    finches,24
    Galapagos, }2
    links, }3
    sociologists,45
    works, }5
allNet,5
asGallery,7
asNodes, 4, 7
barCoin, 8
calCentr, 10, 36
coexist, 11, 19
coin, 3, 12, 22
coocur, 14
dice, 15, 22
dichotomize,16
distant,17
dyncohort, 12, 18
edgeList, 4, 19
ess, 21
events, 15, 21, 46, 52
expectedList, 22
families, 23
finches,24
fromIgraph, 24
Galapagos, }2
gallery, 26
glmCoin,27
incTime, 29
```

layoutCircle, 30
layoutGrid, 30
links, 31
lower, 32
mobileEdges, 33
multigraphCreate, 34
netCoin, 4, 6, 10, 11, 18, 28, 35, 39, 47, 49
netCoin-package, 3
netCorr, 38
network_rd3, 7, 24, 51
pathCoin, 39
propCoin, 40
saveGhml, 41
savePajek, 42
shinyCoin, 43
sim, $4,17,44$
sociologists, 45
surCoin, 46
surScat, 48
timeCoin, 12, 19, 50
toIgraph, 51
works, 52

