nnTensor
R package for Non-negative Tensor Decomposition
Installation
git clone https://github.com/rikenbit/nnTensor/
R CMD INSTALL nnTensor
or type the code below in the R console window ~~~~ library(devtools)
devtools::install_github(“rikenbit/nnTensor”) ~~~~
References
- Non-negative Matrix Factorization (NMF) :
Nonnegative Matrix and Tensor Factorizations, Andrzej CICHOCK, et. al.,
2009, A Study on Efficient Algorithms for Nonnegative Matrix/Tensor
Factorization, Keigo Kimura, 2017
- Projected NMF
- Nonnegative Hebbian Rule (NHR)
- Ding-Ti-Peg-Park (DTPP) algorithm
- (Column vector-wise) Orthogonal NMF
- Algorithms for Orthogonal Nonnegative Matrix Factorization, Seungjin
Choi, 2008
- (Column vector-wise) Orthogonality-regularized NMF
- Orthogonal matrix factorization enables integrative analysis of
multiple RNA binding proteins, Martin Stražar, Marinka Žitnik, Blaž
Zupan, Jernej Ule, Tomaž Curk, Bioinformatics, 15;32(10):1527-35,
2016
- Non-negative Matrix Tri-Factorization (NMTF) : Fast
Optimization of Non-Negative Matrix Tri-Factorization: Supporting
Information, Andrej Copar, et. al., PLOS ONE, 14(6), e0217994, 2019,
Co-clustering by Block Value Decomposition, Bo Long et al., SIGKDD’05,
2005
- Simultaneous Non-negative Matrix Factorization
(siNMF) : Extracting Gene Expression Profiles Common to Colon
and Pancreatic Adenocarcinoma using Simultaneous nonnegative matrix
factorization, Liviu Badea, Pacific Symposium on Biocomputing,
13:279-290, 2009, Discovery of multi-dimensional modules by integrative
analysis of cancer genomic data. Shihua Zhang, et al., Nucleic Acids
Research, 40(19), 9379-9391, 2012, Probabilistic Latent Tensor
Factorization, International Conference on Latent Variable Analysis and
Signal Separation, Y. Kenan Yilmaz et al., 346-353, 2010
- Joint Non-negative Matrix Factorization (jNMF) : A
non-negative matrix factorization method for detecting modules in
heterogeneous omics multi-modal data, Zi Yang, et al., Bioinformatics,
32(1), 1-8, 2016
- Non-negative CP Decomposition (NTF)
- α-Divergence (KL, Pearson, Hellinger, Neyman) / β-Divergence
(KL, Frobenius, IS) : Non-negative Tensor Factorization using Alpha
and Beta Divergence, Andrzej CICHOCKI et. al., 2007, TensorKPD.R (gist
of mathieubray)
- Fast HALS : Multi-way Nonnegative Tensor Factorization
Using Fast Hierarchical Alternating Least Squares Algorithm (HALS), Anh
Huy PHAN et. al., 2008
- α-HALS/β-HALS : Fast Local Algorithms for Large Scale
Nonnegative Matrix and Tensor Factorizations, Andrzej CICHOCKI et. al.,
2008
- Non-negative Tucker Decomposition (NTD)
- KL, Frobenius : Nonnegative Tucker Decomposition, Yong-Deok
Kim et. al., 2007
- α-Divergence (KL, Pearson, Hellinger, Neyman) / β-Divergence
(KL, Frobenius, IS) : Nonneegative Tucker Decomposition With
Alpha-Divergence, Yong-Deok Kim et. al., 2008, Fast and efficient
algorithms for nonnegative Tucker decomposition, Anh Huy Phan, 2008
- Fast HALS : Extended HALS algorithm for nonnegative Tucker
decomposition and its applications for multiway analysis and
classification, Anh Hyu Phan et. al., 2011
- Rank estimation of NMF
- Jean-Philippe Brunet. et. al., (2004). Metagenes and molecular
pattern discovery using matrix factorization. PNAS
- Xiaoxu Han. (2007). CANCER MOLECULAR PATTERN DISCOVERY BY SUBSPACE
CONSENSUS KERNEL CLASSIFICATION
- Attila Frigyesi. et. al., (2008). Non-Negative Matrix Factorization
for the Analysis of Complex Gene Expression Data: Identification of
Clinically Relevant Tumor Subtypes. Cancer Informatics
- Haesun Park. et. al., (2019). Lecture 3: Nonnegative Matrix
Factorization: Algorithms and Applications. SIAM Gene Golub Summer
School, Aussois France, June 18, 2019
- Chunxuan Shao. et. al., (2017). Robust classification of single-cell
transcriptome data by nonnegative matrix factorization.
Bioinformatics
- Paul Fogel (2013). Permuted NMF: A Simple Algorithm Intended to
Minimize the Volume of the Score Matrix
- Philip M. Kim. et. al., (2003). Subsystem Identification Through
Dimensionality Reduction of Large-Scale Gene Expression Data. Genome
Research
- Lucie N. Hutchins. et. al., (2008). Position-dependent motif
characterization using non-negative matrix factorization.
Bioinformatics
- Patrik O. Hoyer (2004). Non-negative Matrix Factorization with
Sparseness Constraints. Journal of Machine Learning 5
- N. Fujita et al., (2018) Biomarker discovery by integrated joint
non-negative matrix factorization and pathway signature analyses,
Scientific Report
- Art B. Owen et. al., (2009). Bi-Cross-Validation of the SVD and the
Nonnegative Matrix Factorization. The Annals of Applied Statistics
- Exponent term depending on Beta parameter
- M. Nakano et al., (2010). Convergence-guaranteed multiplicative
algorithms for nonnegative matrix factorization with Beta-divergence.
IEEE Workshop on Machine Learning for Signal Processing
License
Copyright (c) 2018 Koki Tsuyuzaki and Laboratory for Bioinformatics
Research, RIKEN Center for Biosystems Dynamics Reseach Released under
the Artistic
License 2.0.
Authors
- Koki Tsuyuzaki
- Manabu Ishii
- Itoshi Nikaido