
Package ‘nprcgenekeepr’
March 31, 2021

Type Package

Title Genetic Tools for Colony Management

Version 1.0.5

Description Provides genetic tools for colony management and is a derivation
of the work in Amanda Vinson and Michael J Raboin (2015)
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671785/> ``A Practical
Approach for Designing Breeding Groups to Maximize Genetic Diversity in a
Large Colony of Captive Rhesus Macaques ('Macaca' 'mulatto')''.
It provides a 'Shiny' application with an exposed API.
The application supports five groups of functions:
(1) Quality control of studbooks contained in text files or 'Excel'
workbooks and of pedigrees within 'LabKey' Electronic Health Records
(EHR);
(2) Creation of pedigrees from a list of animals using the 'LabKey' EHR
integration;
(3) Creation and display of an age by sex pyramid plot of the living
animals within the designated pedigree;
(4) Generation of genetic value analysis reports; and
(5) Creation of potential breeding groups with and without proscribed sex
ratios and defined maximum kinships.

URL https://rmsharp.github.io/nprcgenekeepr/,

https://github.com/rmsharp/nprcgenekeepr

BugReports https://github.com/rmsharp/nprcgenekeepr/issues

Depends R (>= 3.6.0)

Imports anytime, futile.logger, htmlTable, lubridate, Matrix, plotrix,
readxl, Rlabkey, rlang, shiny, stringi, utils, WriteXLS

Suggests covr, dplyr, ggplot2, grid, kableExtra, knitr, markdown,
pkgdown, png, rmarkdown, roxygen2 (>= 7.0.0), shinyBS,
shinyWidgets, testthat

Language en-US

Encoding UTF-8

License MIT + file LICENSE

1

https://rmsharp.github.io/nprcgenekeepr/
https://github.com/rmsharp/nprcgenekeepr
https://github.com/rmsharp/nprcgenekeepr/issues

2 R topics documented:

RoxygenNote 7.1.1

LazyData TRUE

VignetteBuilder knitr, rmarkdown

NeedsCompilation no

Author Michael Raboin [aut],
Terry Therneau [aut],
Amanda Vinson [aut, dtc],
R. Mark Sharp [aut, cre, cph, dtc]
(<https://orcid.org/0000-0002-6170-6942>),
Southwest National Primate Research Center NIH grant P51 RR13986 [fnd],
Oregon National Primate Research Center grant P51 OD011092 [fnd]

Maintainer R. Mark Sharp <rmsharp@me.com>

Repository CRAN

Date/Publication 2021-03-31 05:10:22 UTC

R topics documented:
addAnimalsWithNoRelative . 6
addBackSecondParents . 7
addErrTxt . 8
addGenotype . 8
addGroupOfUnusedAnimals . 9
addIdRecords . 10
addParents . 11
addSexAndAgeToGroup . 12
addUIds . 12
agePyramidPlot . 13
alleleFreq . 14
allTrueNoNA . 15
assignAlleles . 15
calcA . 16
calcAge . 17
calcFE . 18
calcFEFG . 19
calcFG . 20
calcGU . 21
calcRetention . 23
calculateSexRatio . 24
checkChangedColAndErrorLst . 25
checkChangedColsLst . 25
checkErrorLst . 26
checkGenotypeFile . 27
checkParentAge . 28
checkRequiredCols . 29
chooseAlleles . 29
chooseAllelesChar . 30

R topics documented: 3

chooseDate . 31
colChange . 32
convertAncestry . 32
convertDate . 33
convertFromCenter . 34
convertRelationships . 35
convertSexCodes . 36
convertStatusCodes . 37
correctParentSex . 38
countFirstOrder . 39
countLoops . 40
createExampleFiles . 41
createPedOne . 41
createPedSix . 42
createPedTree . 42
create_wkbk . 43
dataframe2string . 44
exampleNprcgenekeeprConfig . 45
examplePedigree . 45
fillBins . 46
fillGroupMembers . 47
fillGroupMembersWithSexRatio . 48
filterAge . 49
filterKinMatrix . 49
filterPairs . 50
filterReport . 51
filterThreshold . 52
finalRpt . 52
findGeneration . 53
findLoops . 54
findOffspring . 55
findPedigreeNumber . 56
fixColumnNames . 57
fixGenotypeCols . 57
focalAnimals . 58
geneDrop . 58
getAncestors . 60
getAnimalsWithHighKinship . 61
getChangedColsTab . 62
getConfigFileName . 63
getCurrentAge . 63
getDateColNames . 64
getDatedFilename . 64
getDateErrorsAndConvertDatesInPed . 65
getDemographics . 66
getEmptyErrorLst . 67
getErrorTab . 67
getFocalAnimalPed . 68

4 R topics documented:

getGenoDefinedParentGenotypes . 68
getGenotypes . 69
getGVGenotype . 70
getGVPopulation . 71
getIdsWithOneParent . 72
getIncludeColumns . 72
getIndianOriginStatus . 73
getLkDirectAncestors . 74
getLkDirectRelatives . 74
getLogo . 75
getMaxAx . 76
getMinParentAge . 76
getOffspring . 77
getParamDef . 77
getParents . 78
getPedigree . 78
getPedMaxAge . 79
getPossibleCols . 80
getPotentialSires . 81
getProbandPedigree . 82
getProductionStatus . 82
getProportionLow . 84
getPyramidAgeDist . 84
getPyramidPlot . 85
getRecordStatusIndex . 86
getRequiredCols . 86
getSexRatioWithAdditions . 87
getSiteInfo . 87
getTokenList . 88
getVersion . 89
get_and_or_list . 90
get_elapsed_time_str . 90
groupAddAssign . 91
groupMembersReturn . 93
hasBothParents . 94
hasGenotype . 95
headerDisplayNames . 95
initializeHaremGroups . 96
insertChangedColsTab . 97
insertErrorTab . 97
insertSeparators . 98
isEmpty . 98
is_valid_date_str . 99
kinMatrix2LongForm . 99
kinship . 100
lacy1989Ped . 102
lacy1989PedAlleles . 102
makeAvailable . 103

R topics documented: 5

makeCEPH . 104
makeExamplePedigreeFile . 105
makeGroupMembers . 106
makeGrpNum . 106
makeRelationClassesTable . 107
makeRoundUp . 108
makesLoop . 108
mapIdsToObfuscated . 109
meanKinship . 109
nprcgenekeepr . 110
obfuscateDate . 112
obfuscateId . 112
obfuscatePed . 113
offspringCounts . 114
orderReport . 115
ped1Alleles . 116
pedDuplicateIds . 116
pedFemaleSireMaleDam . 117
pedGood . 117
pedInvalidDates . 118
pedMissingBirth . 118
pedOne . 119
pedSameMaleIsSireAndDam . 119
pedSix . 120
pedWithGenotype . 120
pedWithGenotypeReport . 121
print.summary.nprcgenekeeprErr . 121
qcBreeders . 122
qcPed . 123
qcPedGvReport . 123
qcStudbook . 124
rankSubjects . 127
rbindFill . 127
readExcelPOSIXToCharacter . 128
removeDuplicates . 129
removeEarlyDates . 130
removeGroupIfNoAvailableAnimals . 130
removePotentialSires . 131
removeSelectedAnimalFromAvailableAnimals . 132
removeUninformativeFounders . 132
removeUnknownAnimals . 133
reportGV . 134
resetGroup . 135
rhesusGenotypes . 136
rhesusPedigree . 137
runGeneKeepR . 138
saveDataframesAsFiles . 138
setExit . 139

6 addAnimalsWithNoRelative

setPopulation . 140
set_seed . 140
smallPed . 141
smallPedTree . 142
str_detect_fixed_all . 142
summary.nprcgenekeeprErr . 143
toCharacter . 144
trimPedigree . 145
unknown2NA . 146
withinIntegerRange . 146

Index 148

addAnimalsWithNoRelative

Adds an NA value for all animals without a relative

Description

This allows kin to be used with setdiff when there are no relatives otherwise an error would
occur because kin[['animal_with_no_relative']] would not be found. See the following: in
groupAddAssign

Usage

addAnimalsWithNoRelative(kin, candidates)

Arguments

kin dataframe with kinship values

candidates character vector of IDs of the animals available for use in the group.

Details

available[[i]] <-setdiff(available[[i]],kin[[id]])

Value

A dataframe with kinships in long form after adding a row for each animal without a relative.

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
ped <- qcStudbook(examplePedigree, minParentAge = 2, reportChanges = FALSE,

reportErrors = FALSE)
kmat <- kinship(pedid, pedsire, peddam, pedgen, sparse = FALSE)
currentGroups <- list(1)
currentGroups[[1]] <- examplePedigree$id[1:3]

addBackSecondParents 7

candidates <- examplePedigree$id[examplePedigree$status == "ALIVE"]
threshold <- 0.015625
kin <- getAnimalsWithHighKinship(kmat, ped, threshold, currentGroups,

ignore = list(c("F", "F")), minAge = 1)
Filtering out candidates related to current group members
conflicts <- unique(c(unlist(kin[unlist(currentGroups)]),

unlist(currentGroups)))
candidates <- setdiff(candidates, conflicts)
kin <- addAnimalsWithNoRelative(kin, candidates)
length(kin) # should be 2416
kin[["1SPLS8"]] # should have 14 IDs

addBackSecondParents Add back single parents trimmed pedigree

Description

Uses the ped dataframe, which has full complement of parents and the uPed dataframe, which has
all uninformative parents removed to add back single parents to the uPed dataframe where one
parent is known. The parents are added back to the pedigree as an ID record with NA for both sire
and dam of the added back ID.

Usage

addBackSecondParents(uPed, ped)

Arguments

uPed a trimmed pedigree dataframe with uninformative founders removed.

ped a trimmed pedigree

Value

A dataframe with pedigree with single parents added.

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

probands <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &
is.na(breederPed$exit)]

ped <- getProbandPedigree(probands, breederPed)
nrow(ped)

8 addGenotype

p <- removeUninformativeFounders(ped)
nrow(p)
p <- addBackSecondParents(p, ped)
nrow(p)

addErrTxt Concatenates any errors from nprcgenekeeprErr into narrative form

Description

Concatenates any errors from nprcgenekeeprErr into narrative form

Usage

addErrTxt(txt, err, singularTxt, pluralTxt)

Arguments

txt character string with initial error description value

err ve from errorLst

singularTxt character string with text used when the length of err is 1

pluralTxt character string with text used when the length of err is greater than 1.

Value

Error from nprcgenekeepr

addGenotype Add genotype data to pedigree file

Description

Assumes genotype has been opened by checkGenotypeFile

Usage

addGenotype(ped, genotype)

Arguments

ped pedigree dataframe. ped is to be provided by qcStudbook so it is not checked.

genotype genotype dataframe. genotype is to be provided by checkGenotypeFile so it
is not checked.

addGroupOfUnusedAnimals 9

Value

A pedigree object with genotype data added.

Examples

library(nprcgenekeepr)
rhesusPedigree <- nprcgenekeepr::rhesusPedigree
rhesusGenotypes <- nprcgenekeepr::rhesusGenotypes
pedWithGenotypes <- addGenotype(ped = rhesusPedigree,

genotype = rhesusGenotypes)

addGroupOfUnusedAnimals

addGroupOfUnusedAnimals adds a group to the saved groups if
needed

Description

addGroupOfUnusedAnimals adds a group to the saved groups if needed

Usage

addGroupOfUnusedAnimals(savedGroupMembers, candidates, ped, minAge, harem)

Arguments

savedGroupMembers

list of groups of animals in the form of a vector of animal Ids.

candidates character vector of IDs of the animals available for use in the group.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

harem logical variable when set to TRUE, the formed groups have a single male at least
minAge old.

Value

A list of groups, which are each lists of animal Ids that are unused animals at the end of the iteration.

10 addIdRecords

addIdRecords addIdRecords Adds Ego records added having NAs for parent IDs

Description

addIdRecords Adds Ego records added having NAs for parent IDs

Usage

addIdRecords(ids, fullPed, partialPed)

Arguments

ids character vector of IDs to be added as Ego records having NAs for parent IDs

fullPed a trimmed pedigree

partialPed a trimmed pedigree dataframe with uninformative founders removed.

Value

Pedigree with Ego records added having NAs for parent IDs

Examples

uPedOne <- data.frame(id = c("d1", "s2", "d2", "o1", "o2", "o3", "o4"),
sire = c("s0", "s4", NA, "s1", "s1", "s2", "s2"),
dam = c("d0", "d4", NA, "d1", "d2", "d2", "d2"),
sex = c("F", "M", "F", "F", "F", "F", "M"),
stringsAsFactors = FALSE)

pedOne <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"),
sire = c(NA, "s0", "s4", NA, "s1", "s1", "s2", "s2"),
dam = c(NA, "d0", "d4", NA, "d1", "d2", "d2", "d2"),
sex = c("M", "F", "M", "F", "F", "F", "F", "M"),
stringsAsFactors = FALSE)

pedOne[!pedOne$id %in% uPedOne$id,]
newPed <- addIdRecords(ids = "s1", pedOne, uPedOne)
pedOne[!pedOne$id %in% newPed$id,]
newPed[newPed$id == "s1",]

addParents 11

addParents Add parents

Description

Pedigree curation function Given a pedigree, find any IDs listed in the "sire" or "dam" columns that
lack their own line entry and generate one.

Usage

addParents(ped)

Arguments

ped datatable that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

Details

This must be run after to addUIds since the IDs made there are used by addParents

Value

An updated pedigree with entries added as necessary. Entries have the id and sex specified; all
remaining columns are filled with NA.

Examples

pedTwo <- data.frame(id = c("d1", "s2", "d2", "o1", "o2", "o3", "o4"),
sire = c(NA, NA, NA, "s1", "s1", "s2", "s2"),
dam = c(NA, NA, NA, "d1", "d2", "d2", "d2"),
sex = c("F", "M", "F", "F", "F", "F", "M"),
stringsAsFactors = FALSE)

newPed <- addParents(pedTwo)
newPed

12 addUIds

addSexAndAgeToGroup Forms a dataframe with Id, Sex, and current Age given a list of Ids and
a pedigree

Description

Forms a dataframe with Id, Sex, and current Age given a list of Ids and a pedigree

Usage

addSexAndAgeToGroup(ids, ped)

Arguments

ids character vector of animal Ids

ped datatable that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

Value

Dataframe with Id, Sex, and Current Age

Examples

library(nprcgenekeepr)
data("qcBreeders")
data("qcPed")
df <- addSexAndAgeToGroup(ids = qcBreeders, ped = qcPed)
head(df)

addUIds Eliminates partial parentage situations by adding unique placeholder
IDs for the unknown parent.

Description

This must be run prior to addParents since the IDs made herein are used by addParents

Usage

addUIds(ped)

agePyramidPlot 13

Arguments

ped datatable that is the ‘Pedigree‘. It contains pedigree information. The fields
sire and dam are required.

Value

The updated pedigree with partial parentage removed.

Examples

pedTwo <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"),
sire = c(NA, "s0", "s4", NA, "s1", "s1", "s2", "s2"),
dam = c("d0", "d0", "d4", NA, "d1", "d2", "d2", "d2"),
sex = c("M", "F", "M", "F", "F", "F", "F", "M"),
stringsAsFactors = FALSE)

newPed <- addUIds(pedTwo)
newPed[newPed$id == "s1",]
pedThree <-

data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"),
sire = c("s0", "s0", "s4", NA, "s1", "s1", "s2", "s2"),
dam = c(NA, "d0", "d4", NA, "d1", "d2", "d2", "d2"),
sex = c("M", "F", "M", "F", "F", "F", "F", "M"),
stringsAsFactors = FALSE)

newPed <- addUIds(pedThree)
newPed[newPed$id == "s1",]

agePyramidPlot Form age pyramid plot

Description

Form age pyramid plot

Usage

agePyramidPlot(
males,
females,
ageLabels,
mcol,
fcol,
laxlab,
raxlab,
gap,
currentDate

)

14 alleleFreq

Arguments

males integer vector with the number of males in age groups corresponding to the
position in the vector

females integer vector with the number of females in age groups corresponding to the
position in the vector

ageLabels character vector of labels for the categories represented by each pair of bars.
There should be a label for each lx or rx value, even if empty. If labels is a
matrix or data frame, the first two columns will be used for the left and right
category labels respectively.

mcol color for the male (left) side of the plot

fcol color for the female (right) side of the plot

laxlab label for the male (left) side of the plot

raxlab label for the female (right) side of the plot

gap numeric value for one half of the space between the two sets of bars for the
ageLabels in user units

currentDate POSIXct date object indicating the date corresponding to the date the pedigree
census occurred.

Value

The return value of par("mar") when the function was called.

alleleFreq Calculates the count of each allele in the provided vector.

Description

Part of Genetic Value Analysis

Usage

alleleFreq(alleles, ids = NULL)

Arguments

alleles an integer vector of alleles in the population

ids character vector of IDs indicating to which animal each allele in alleles be-
longs.

Details

If ids are provided, the function will only count the unique alleles for an individual (homozygous
alleles will be counted as 1).

allTrueNoNA 15

Value

A data.frame with columns allele and freq. This is a table of allele counts within the population.

Examples

library(nprcgenekeepr)
data("ped1Alleles")
ids <- ped1Alleles$id
alleles <- ped1Alleles[, !(names(ped1Alleles) %in% c("id", "parent"))]
aF <- alleleFreq(alleles[[1]], ids = NULL)
aF[aF$freq >= 10,]

allTrueNoNA Returns TRUE if every member of the vector is TRUE.

Description

Part of Relations

Usage

allTrueNoNA(v)

Arguments

v logical vector

Details

Considers NA values the same as false

assignAlleles Assign parent alleles randomly

Description

Assign parent alleles randomly

Usage

assignAlleles(alleles, parentType, parent, id, n)

16 calcA

Arguments

alleles a list with a list alleles$alleles, which is a list of list containing the al-
leles for each individual’s sire and dam that have been assigned thus far and
alleles$counter that is the counter used to track the lists ofalleles$alleles.

parentType character vector of length one with value of "sire" or "dam".

parent either ped[id,"sire"] or ped[id,"dam"].

id character vector of length one containing the animal ID

n integer indicating the number of iterations to simulate. Default is 5000.

Value

The original list alleles passed into the function with newly randomly assigned alleles to each id
based on dam and sire genotypes.

Examples

alleles <- list(alleles = list(), counter = 1)
alleles <- assignAlleles(alleles, parentType = "sire", parent = NA,

id = "o1", n = 4)
alleles
alleles <- assignAlleles(alleles, parentType = "dam", parent = NA,

id = "o1", n = 4)
alleles

calcA Calculates a, the number of an individual’s alleles that are rare in
each simulation.

Description

Part of Genetic Value Analysis

Usage

calcA(alleles, threshold = 1, byID = FALSE)

Arguments

alleles a matrix with id, parent, V1 ... Vn providing the alleles an animal received
during each simulation. The first 2 columns provide the animal ID and the parent
the allele came from. Remaining columns provide alleles.

threshold an integer indicating the maximum number of copies of an allele that can be
present in the population for it to be considered rare. Default is 1.

calcAge 17

byID logical variable of length 1 that is passed through to eventually be used by
alleleFreq(), which calculates the count of each allele in the provided vec-
tor. If byID is TRUE and ids are provided, the function will only count the
unique alleles for an individual (homozygous alleles will be counted as 1).

Value

A matrix with named rows indicating the number of unique alleles an animal had during each round
of simulation (indicated in columns).

Examples

library(nprcgenekeepr)
rare <- calcA(nprcgenekeepr::ped1Alleles, threshold = 3, byID = FALSE)

calcAge Calculate animal ages.

Description

Part of Pedigree Curation

Usage

calcAge(birth, exit)

Arguments

birth Date vector of birth dates

exit Date vector of exit dates.

Details

Given vectors of birth and exit dates, calculate an individuals age. If no exit date is provided, the
calculation is based on the current date.

Value

A numeric vector (NA allowed) indicating age in decimal years from "birth" to "exit" or the current
date if "exit" is NA.

18 calcFE

Examples

library(nprcgenekeepr)
qcPed <- nprcgenekeepr::qcPed
originalAge <- qcPed$age ## ages calculated at time of data collection
currentAge <- calcAge(qcPed$birth, qcPed$exit) ## assumes no changes in

colony

calcFE Calculates founder Equivalents

Description

Part of the Genetic Value Analysis

Usage

calcFE(ped)

Arguments

ped the pedigree information in datatable format. Pedigree (req. fields: id, sire, dam,
gen, population).

Details

It is assumed that the pedigree has no partial parentage

Value

The founder equivalents FE = 1 / sum(p ^ 2), where p is average number of descendants and r is
the mean number of founder alleles retained in the gene dropping experiment.

Examples

Example from Analysis of Founder Representation in Pedigrees: Founder
Equivalents and Founder Genome Equivalents.
Zoo Biology 8:111-123, (1989) by Robert C. Lacy
library(nprcgenekeepr)
ped <- data.frame(
id = c("A", "B", "C", "D", "E", "F", "G"),
sire = c(NA, NA, "A", "A", NA, "D", "D"),
dam = c(NA, NA, "B", "B", NA, "E", "E"),
stringsAsFactors = FALSE
)
ped["gen"] <- findGeneration(pedid, pedsire, ped$dam)

calcFEFG 19

ped$population <- getGVPopulation(ped, NULL)
pedFactors <- data.frame(

id = c("A", "B", "C", "D", "E", "F", "G"),
sire = c(NA, NA, "A", "A", NA, "D", "D"),
dam = c(NA, NA, "B", "B", NA, "E", "E"),
stringsAsFactors = TRUE

)
pedFactors["gen"] <- findGeneration(pedFactors$id, pedFactors$sire,

pedFactors$dam)
pedFactors$population <- getGVPopulation(pedFactors, NULL)
fe <- calcFE(ped)
feFactors <- calcFE(pedFactors)

calcFEFG Calculates Founder Equivalents and Founder Genome Equivalents

Description

Part of the Genetic Value Analysis

Usage

calcFEFG(ped, alleles)

Arguments

ped the pedigree information in datatable format. Pedigree (req. fields: id, sire, dam,
gen, population).
It is assumed that the pedigree has no partial parentage

alleles dataframe contains an AlleleTable. This is a table of allele information pro-
duced by geneDrop().

Value

The list containing the founder equivalents, FE = 1 / sum(p ^ 2), and the founder genome equiva-
lents, FG = 1 / sum((p ^ 2) / r where p is average number of descendants and r is the mean number
of founder alleles retained in the gene dropping experiment.

Examples

data(lacy1989Ped)
Example from Analysis of Founder Representation in Pedigrees: Founder
Equivalents and Founder Genome Equivalents.
Zoo Biology 8:111-123, (1989) by Robert C. Lacy

library(nprcgenekeepr)

20 calcFG

ped <- nprcgenekeepr::lacy1989Ped
alleles <- lacy1989PedAlleles
pedFactors <- data.frame(

id = as.factor(ped$id),
sire = as.factor(ped$sire),
dam = as.factor(ped$dam),
gen = ped$gen,
population = ped$population,
stringsAsFactors = TRUE

)
allelesFactors <- geneDrop(pedFactors$id, pedFactors$sire, pedFactors$dam,

pedFactors$gen, genotype = NULL, n = 5000,
updateProgress = NULL)

feFg <- calcFEFG(ped, alleles)
feFgFactors <- calcFEFG(pedFactors, allelesFactors)

calcFG Calculates Founder Genome Equivalents

Description

Part of the Genetic Value Analysis

Usage

calcFG(ped, alleles)

Arguments

ped the pedigree information in datatable format. Pedigree (req. fields: id, sire, dam,
gen, population). It is assumed that the pedigree has no partial parentage

alleles dataframe contains an AlleleTable. This is a table of allele information pro-
duced by geneDrop().

Value

The founder genome equivalents, FG = 1 / sum((p ^ 2) / r where p is average number of descen-
dants and r is the mean number of founder alleles retained in the gene dropping experiment.

Examples

Example from Analysis of Founder Representation in Pedigrees: Founder
Equivalents and Founder Genome Equivalents.
Zoo Biology 8:111-123, (1989) by Robert C. Lacy

library(nprcgenekeepr)

calcGU 21

ped <- data.frame(
id = c("A", "B", "C", "D", "E", "F", "G"),
sire = c(NA, NA, "A", "A", NA, "D", "D"),
dam = c(NA, NA, "B", "B", NA, "E", "E"),
stringsAsFactors = FALSE
)
ped["gen"] <- findGeneration(pedid, pedsire, ped$dam)
ped$population <- getGVPopulation(ped, NULL)
pedFactors <- data.frame(

id = c("A", "B", "C", "D", "E", "F", "G"),
sire = c(NA, NA, "A", "A", NA, "D", "D"),
dam = c(NA, NA, "B", "B", NA, "E", "E"),
stringsAsFactors = TRUE

)
pedFactors["gen"] <- findGeneration(pedFactors$id, pedFactors$sire,

pedFactors$dam)
pedFactors$population <- getGVPopulation(pedFactors, NULL)
alleles <- geneDrop(pedid, pedsire, peddam, pedgen, genotype = NULL,

n = 5000, updateProgress = NULL)
allelesFactors <- geneDrop(pedFactors$id, pedFactors$sire, pedFactors$dam,

pedFactors$gen, genotype = NULL, n = 5000,
updateProgress = NULL)

fg <- calcFG(ped, alleles)
fgFactors <- calcFG(pedFactors, allelesFactors)

calcGU Calculates genome uniqueness for each ID that is part of the popula-
tion.

Description

Genome Uniqueness Functions

Usage

calcGU(alleles, threshold = 1, byID = FALSE, pop = NULL)

Arguments

alleles dataframe of containing an AlleleTable. This is a table of allele information
produced by geneDrop(). An AlleleTable contains information about alleles an
ego has inherited. It contains the following columns:

• id — A character vector of IDs for a set of animals.
• parent — A factor with levels of sire and dam.
• V1 — Unnamed integer column representing allele 1.
• V2 — Unnamed integer column representing allele 2.
• ... — Unnamed integer columns representing alleles.

22 calcGU

• Vn — Unnamed integer column representing the nth column.

threshold an integer indicating the maximum number of copies of an allele that can be
present in the population for it to be considered rare. Default is 1.

byID logical variable of length 1 that is passed through to eventually be used by
alleleFreq(), which calculates the count of each allele in the provided vec-
tor. If byID is TRUE and ids are provided, the function will only count the
unique alleles for an individual (homozygous alleles will be counted as 1).

pop character vector with animal IDs to consider as the population of interest, other-
wise all animals will be considered. The default is NULL.

Details

Part of Genetic Value Analysis

The following functions calculate genome uniqueness according to the equation described in Ballou
& Lacy.

It should be noted, however that this function differs slightly in that it does not distinguish between
founders and non-founders in calculating the statistic.

Ballou & Lacy describe genome uniqueness as "the proportion of simulations in which an individ-
ual receives the only copy of a founder allele." We have interpreted this as meaning that genome
uniqueness should only be calculated for living, non-founder animals. Alleles possessed by living
founders are not considered when calculating genome uniqueness.

We have a differing view on this, since a living founder can still contribute to the population. The
function below calculates genome uniqueness for all living animals and considers all alleles. It does
not ignore living founders and their alleles.

Our results for genome uniqueness will, therefore differ slightly from those returned by Pedscope.
Pedscope calculates genome uniqueness only for non-founders and ignores the contribution of any
founders in the population. This will cause Pedscope’s genome uniqueness estimates to possibly be
slightly higher for non-founders than what this function will calculate.

The estimates of genome uniqueness for founders within the population calculated by this function
should match the "founder genome uniqueness" measure calculated by Pedscope.

Value

Dataframe rows: id,col: gu A single-column table of genome uniqueness values as percentages.
Rownames are set to ’id’ values that are part of the population.

References

Ballou JD, Lacy RC. 1995. Identifying genetically important individuals for management of genetic
variation in pedigreed populations, p 77-111. In: Ballou JD, Gilpin M, Foose TJ, editors. Population
management for survival and recovery. New York (NY): Columbia University Press.

Examples

library(nprcgenekeepr)
ped1Alleles <- nprcgenekeepr::ped1Alleles

calcRetention 23

gu_1 <- calcGU(ped1Alleles, threshold = 1, byID = FALSE, pop = NULL)
gu_2 <- calcGU(ped1Alleles, threshold = 3, byID = FALSE, pop = NULL)
gu_3 <- calcGU(ped1Alleles, threshold = 3, byID = FALSE,

pop = ped1Alleles$id[20:60])

calcRetention Calculates Allelic Retention

Description

Part of Genetic Value Analysis

Usage

calcRetention(ped, alleles)

Arguments

ped the pedigree information in datatable format. Pedigree (req. fields: id, sire, dam,
gen, population).
It is assumed that the pedigree has no partial parentage

alleles dataframe of containing an AlleleTable. This is a table of allele information
produced by geneDrop().

Value

A vector of the mean number of founder alleles retained in the gene dropping simulation.

Examples

library(nprcgenekeepr)
data("lacy1989Ped")
data("lacy1989PedAlleles")
ped <- lacy1989Ped
alleles <- lacy1989PedAlleles
retention <- calcRetention(ped, alleles)

24 calculateSexRatio

calculateSexRatio Calculates the sex ratio (number of non-males / number of males)
given animal Ids and their pedigree

Description

The Males are counted when the ped$sex value is "M". When females are counted when the
ped$sex value is not "M". This means animals with ambiguous sex are counted with the females.

Usage

calculateSexRatio(ids, ped, additionalMales = 0, additionalFemales = 0)

Arguments

ids character vector of animal Ids

ped datatable that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

additionalMales

Integer value of males to add to those within the group when calculating the
ratio. Ignored if calculated ratio is 0 or Inf. Default is 0.

additionalFemales

Integer value of females to add to those within the group when calculating the
ratio. Ignored if calculated ratio is 0 or Inf. Default is 0.

Value

Numeric value of sex ratio of the animals provided.

Examples

library(nprcgenekeepr)
data("qcBreeders")
data("pedWithGenotype")
available <- c("JGPN6K", "8KM1MP", "I9TQ0T", "Q0RGP7", "VFS0XB", "CQC133",

"2KULR3", "HOYW0S", "FHV13N", "OUM6QF", "6Z7MD9", "CFPEEU",
"HLI95R", "RI0O7F", "7M51X5", "DR5GXB", "170ZTZ", "C1ICXL")

nonMales <- c("JGPN6K", "8KM1MP", "I9TQ0T", "Q0RGP7", "CQC133",
"2KULR3", "HOYW0S", "FHV13N", "OUM6QF", "6Z7MD9", "CFPEEU",
"HLI95R", "RI0O7F", "7M51X5", "DR5GXB", "170ZTZ", "C1ICXL")

male <- "VFS0XB"
calculateSexRatio(ids = male, ped = pedWithGenotype)
calculateSexRatio(ids = nonMales, ped = pedWithGenotype)
calculateSexRatio(ids = available, ped = pedWithGenotype)
calculateSexRatio(ids = available, ped = pedWithGenotype,

additionalMales = 1)
calculateSexRatio(ids = available, ped = pedWithGenotype,

checkChangedColAndErrorLst 25

additionalFemales = 1)
calculateSexRatio(ids = available, ped = pedWithGenotype,

additionalMales = 1, additionalFemales = 1)
calculateSexRatio(ids = nonMales, ped = pedWithGenotype,

additionalMales = 1, additionalFemales = 0)
calculateSexRatio(ids = character(0), ped = pedWithGenotype,

additionalMales = 1, additionalFemales = 0)

checkChangedColAndErrorLst

checkChangedColAndErrorLst examines errorLst for errors and er-
rorLst$changeCols non-empty fields

Description

checkChangedColAndErrorLst examines errorLst for errors and errorLst$changeCols non-empty
fields

Usage

checkChangedColAndErrorLst(errorLst)

Arguments

errorLst list with fields for each type of changed column and error detectable by qcStudbook.

Value

Returns NULL is all fields are empty else the entire list is returned.

checkChangedColsLst checkChangedColsLst examines list for non-empty fields

Description

checkChangedColsLst examines list for non-empty fields

Usage

checkChangedColsLst(changedCols)

Arguments

changedCols list with fields for each type of column change qcStudbook.

26 checkErrorLst

Value

Returns NULL if all fields are empty else the entire list is returned.

Examples

library(nprcgenekeepr)
library(lubridate)
pedOne <- data.frame(ego_id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3",

"o4"),
`si re` = c(NA, NA, NA, NA, "s1", "s1", "s2", "s2"),
dam_id = c(NA, NA, NA, NA, "d1", "d2", "d2", "d2"),
sex = c("F", "M", "M", "F", "F", "F", "F", "M"),
birth_date = mdy(

paste0(sample(1:12, 8, replace = TRUE), "-",
sample(1:28, 8, replace = TRUE), "-",
sample(seq(0, 15, by = 3), 8, replace = TRUE) +

2000)),
stringsAsFactors = FALSE, check.names = FALSE)

errorLst <- qcStudbook(pedOne, reportErrors = TRUE, reportChanges = TRUE)
checkChangedColsLst(errorLst$changedCols)

checkErrorLst checkErrorLst examines list for non-empty fields

Description

checkErrorLst examines list for non-empty fields

Usage

checkErrorLst(errorLst)

Arguments

errorLst list with fields for each type of error detectable by qcStudbook.

Value

Returns NULL is all fields are empty else the entire list is returned.

checkGenotypeFile 27

Examples

errorLst <- qcStudbook(nprcgenekeepr::pedFemaleSireMaleDam,
reportErrors = TRUE)

checkErrorLst(errorLst)

checkGenotypeFile Check genotype file

Description

Checks to ensure the content and structure are appropriate for a genotype file. These checks are
simply based on expected columns and legal domains.

Usage

checkGenotypeFile(genotype)

Arguments

genotype dataframe with genotype data

Value

A genotype file that has been checked to ensure the column types and number required are present.
The returned genotype file has the first column name forced to "id".

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::qcPed
ped <- ped[order(ped$id),]
genotype <- data.frame(id = ped$id[50 + 1:20],

first_name = paste0("first_name", 1:20),
second_name = paste0("second_name", 1:20),
stringsAsFactors = FALSE)

checkGenotypeFile disallows dataframe with < 3 columns
tryCatch({

checkGenotypeFile(genotype[, c("id", "first_name")])
}, warning = function(w) {
cat("Warning produced")

}, error = function(e) {
cat("Error produced")

})

28 checkParentAge

checkParentAge Check parent ages to be at least minParentAge

Description

Ensure parents are sufficiently older than offspring

Usage

checkParentAge(sb, minParentAge = 2, reportErrors = FALSE)

Arguments

sb A dataframe containing a table of pedigree and demographic information.

minParentAge numeric values to set the minimum age in years for an animal to have an off-
spring. Defaults to 2 years. The check is not performed for animals with missing
birth dates.

reportErrors logical value if TRUE will scan the entire file and make a list of all errors found.
The errors will be returned in a list of list where each sublist is a type of error
found.

Value

A dataframe containing rows for each animal where one or more parent was less than minParentAge.
It contains all of the columns in the original sb dataframe with the following added columns:

1. sireBirth sire’s birth date

2. sireAge age of sire in years on the date indicated by birth.

3. damBirth dam’s birth date damAge age of dam in years on the date indicated by birth.

Examples

library(nprcgenekeepr)
qcPed <- nprcgenekeepr::qcPed
checkParentAge(qcPed, minParentAge = 2)
checkParentAge(qcPed, minParentAge = 3)
checkParentAge(qcPed, minParentAge = 5)
checkParentAge(qcPed, minParentAge = 6)
checkParentAge(qcPed, minParentAge = 10)

checkRequiredCols 29

checkRequiredCols Examines column names, cols for required column names

Description

Examines column names, cols for required column names

Usage

checkRequiredCols(cols, reportErrors)

Arguments

cols character vector of column names

reportErrors logical value when TRUE and missing columns are found the errorLst object is
updated with the names of the missing columns and returned and when FALSE
and missing columns are found the program is stopped.

Value

NULL is returned if all required columns are present. See description of reportErrors for return
values when required columns are missing.

Examples

library(nprcgenekeepr)
requiredCols <- getRequiredCols()
cols <-

paste0("id,sire,siretype,dam,damtype,sex,numberofparentsknown,birth,",
"arrivalatcenter,death,departure,status,ancestry,fromcenter?,",
"origin")

all(requiredCols %in% checkRequiredCols(cols, reportErrors = TRUE))

chooseAlleles Combines two vectors of alleles by randomly selecting one allele or
the other at each position.

Description

Combines two vectors of alleles by randomly selecting one allele or the other at each position.

Usage

chooseAlleles(a1, a2)

30 chooseAllelesChar

Arguments

a1 integer vector with first allele for each individual

a2 integer vector with second allele for each individual a1 and a2 are equal length
vectors of alleles for one individual

Value

An integer vector with the result of sampling from a1 and a2 according to Mendelian inheritance.

Examples

chooseAlleles(0:4, 5:9)

chooseAllelesChar Combines two vectors of alleles when alleles are character vectors.

Description

Combines two vectors by randomly selecting one allele or the other at each position. Alleles may
be of any class that does not require attributes as the vectors are combined with c().

Usage

chooseAllelesChar(a1, a2)

Arguments

a1 vector with first parent alleles for each individual

a2 vector with second parent alleles for each individual a1 and a2 are equal length
vectors of alleles for one individual

Details

The current implementation is slower than the one using integer vectors (chooseAlleles).

Value

An integer vector with the result of sampling from a1 and a2 according to Mendelian inheritance.

chooseDate 31

chooseDate Choose date based on earlier flag.

Description

Part of Pedigree Curation

Usage

chooseDate(d1, d2, earlier = TRUE)

Arguments

d1 Date vector with the first of two dates to compare.

d2 Date vector with the second of two dates to compare.

earlier logical variable with TRUE if the earlier of the two dates is to be returned, other-
wise the later is returned. Default is TRUE.

Details

Given two dates, one is selected to be returned based on whether it occurred earlier or later than the
other. NAs are ignored if possible.

Value

Date vector of chosen dates or NA where neither is provided

Examples

library(nprcgenekeepr)
someDates <- lubridate::mdy(paste0(sample(1:12, 2, replace = TRUE), "-",

sample(1:28, 2, replace = TRUE), "-",
sample(seq(0, 15, by = 3), 2,

replace = TRUE) + 2000))
someDates
chooseDate(someDates[1], someDates[2], earlier = TRUE)
chooseDate(someDates[1], someDates[2], earlier = FALSE)

32 convertAncestry

colChange colChange internal function to describe column names transformation

Description

colChange internal function to describe column names transformation

Usage

colChange(orgCols, cols)

Arguments

orgCols character vector with column names to be transformed if needed.

cols character vector with transformed column names

Value

Description of column name changes

convertAncestry Converts the ancestry information to a standardized code

Description

Part of Pedigree Curation

Usage

convertAncestry(ancestry)

Arguments

ancestry character vector or NA with free-form text providing information about the ge-
ographic population of origin.

Value

A factor vector of standardized designators specifying if an animal is a Chinese rhesus, Indian rhe-
sus, Chinese-Indian hybrid rhesus, or Japanese macaque. Levels: CHINESE, INDIAN, HYBRID,
JAPANESE, OTHER, UNKNOWN.

convertDate 33

Examples

original <- c("china", "india", "hybridized", NA, "human", "gorilla")
convertAncestry(original)

convertDate Converts date columns formatted as characters to be of type datetime

Description

Part of Pedigree Curation

Usage

convertDate(ped, time.origin = as.Date("1970-01-01"), reportErrors = FALSE)

Arguments

ped a dataframe of pedigree information that may contain birth, death, departure, or
exit dates. The fields are optional, but will be used if present.(optional fields:
birth, death, departure, and exit).

time.origin date object used by as.Date to set origin.

reportErrors logical value if TRUE will scan the entire file and make a list of all errors found.
The errors will be returned in a list of list where each sublist is a type of error
found.

Value

A dataframe with an updated table with date columns converted from character data type to Date
data type. Values that do not conform to the format

Examples

library(lubridate)
set_seed(10)
someBirthDates <- paste0(sample(seq(0, 15, by = 3), 10,

replace = TRUE) + 2000, "-",
sample(1:12, 10, replace = TRUE), "-",
sample(1:28, 10, replace = TRUE))

someBadBirthDates <- paste0(sample(1:12, 10, replace = TRUE), "-",
sample(1:28, 10, replace = TRUE), "-",
sample(seq(0, 15, by = 3), 10,

replace = TRUE) + 2000)
someDeathDates <- sample(someBirthDates, length(someBirthDates),

replace = FALSE)

34 convertFromCenter

someDepartureDates <- sample(someBirthDates, length(someBirthDates),
replace = FALSE)

ped1 <- data.frame(birth = someBadBirthDates, death = someDeathDates,
departure = someDepartureDates)

someDates <- ymd(someBirthDates)
ped2 <- data.frame(birth = someDates, death = someDeathDates,

departure = someDepartureDates)
ped3 <- data.frame(birth = someBirthDates, death = someDeathDates,

departure = someDepartureDates)
someNADeathDates <- someDeathDates
someNADeathDates[c(1, 3, 5)] <- ""
someNABirthDates <- someDates
someNABirthDates[c(2, 4, 6)] <- NA
ped4 <- data.frame(birth = someNABirthDates, death = someNADeathDates,

departure = someDepartureDates)

convertDate identifies bad dates
result = tryCatch({

convertDate(ped1)
}, warning = function(w) {

print("Warning in date")
}, error = function(e) {

print("Error in date")
})

convertDate with error flag returns error list and not an error
convertDate(ped1, reportErrors = TRUE)

convertDate recognizes good dates
all(is.Date(convertDate(ped2)$birth))
all(is.Date(convertDate(ped3)$birth))

convertDate handles NA and empty character string values correctly
convertDate(ped4)

convertFromCenter Converts the fromCenter information to a standardized code

Description

Part of Pedigree Curation

Usage

convertFromCenter(fromCenter)

convertRelationships 35

Arguments

fromCenter character or logical vector or NA indicating whether or not the animal is from
the center.

Value

A logical vector specifying TRUE if an animal is from the center otherwise FALSE.

Examples

original <- c("y", "yes", "Y", "Yes", "YES", "n", "N", "No", "NO", "no",
"t", "T", "True", "true", "TRUE", "f", "F", "false", "False",
"FALSE")

convertFromCenter(original)

convertRelationships Converts pairwise kinship values to a relationship category descriptor.

Description

Part of Relations

Usage

convertRelationships(kmat, ped, ids = NULL, updateProgress = NULL)

Arguments

kmat a numeric matrix of pairwise kinship coefficients. Rows and columns should be
named with IDs.

ped the pedigree information in datatable format with required colnames id, sire,
and dam.

ids character vector of IDs or NULL to which the analysis should be restricted. If
provided, only relationships between these IDs will be converted to relation-
ships.

updateProgress function or NULL. If this function is defined, it will be called during each itera-
tion to update a shiny::Progress object.

Value

A dataframe with columns id1, id2, kinship, relation. It is a long-form table of pairwise kin-
ships, with relationship categories included for each pair.

36 convertSexCodes

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::smallPed
kmat <- kinship(pedid, pedsire, peddam, pedgen, sparse = FALSE)
ids <- c("A", "B", "D", "E", "F", "G", "I", "J", "L", "M", "O", "P")
relIds <- convertRelationships(kmat, ped, ids)
rel <- convertRelationships(kmat, ped, updateProgress = function() {})
head(rel)
ped <- nprcgenekeepr::qcPed
bkmat <- kinship(pedid, pedsire, peddam, pedgen,

sparse = FALSE)
relBIds <- convertRelationships(bkmat, ped, c("4LFS70", "DD1U77"))
relBIds

convertSexCodes Converts sex indicator for an individual to a standardized codes.

Description

Part of Pedigree Curation

Usage

convertSexCodes(sex, ignoreHerm = TRUE)

Arguments

sex factor with levels: "M", "F", "U". Sex specifier for an individual.

ignoreHerm logical flag indicating if hermaphrodites should be treated as unknown sex ("U"),
default is TRUE.

Details

Standard sex codes are

• F – replacing "FEMALE" or "2"

• M – replacing "MALE" or "1"

• H – replacing "HERMAPHRODITE" or "4", if ignore.herm == FALSE

• U – replacing "HERMAPHRODITE" or "4", if ignore.herm == TRUE

• U – replacing "UNKNOWN" or "3"

Value

A vector of factors representing standardized sex codes after transformation from non-standard
codes.

convertStatusCodes 37

Examples

library(nprcgenekeepr)
original <- c("m", "male", "1", "MALE", "M", "F", "f", "female",

"FemAle", "U", "Unknown", "H", "hermaphrodite",
"U", "Unknown", "3", "4")

sexCodes <- convertSexCodes(original)
sexCodes

convertStatusCodes Converts status indicators to a Standardized code

Description

Part of Pedigree Curation

Usage

convertStatusCodes(status)

Arguments

status character vector or NA. Flag indicating an individual’s status as alive, dead, sold,
etc.

Value

A factor vector of the standardized status codes with levels: ‘ALIVE‘, ‘DECEASED‘, ‘SHIPPED‘,
and ‘UNKNOWN‘.

Examples

library(nprcgenekeepr)
original <- c("A", "alive", "Alive", "1", "S", "Sale", "sold", "shipped",

"D", "d", "dead", "died", "deceased", "2",
"shiped", "3", "U", "4", "unknown", NA,
"Unknown", "H", "hermaphrodite", "U", "Unknown", "4")

convertStatusCodes(original)

38 correctParentSex

correctParentSex Sets sex for animals listed as either a sire or dam.

Description

Part of Pedigree Curation

Usage

correctParentSex(id, sire, dam, sex, recordStatus, reportErrors = FALSE)

Arguments

id character vector with unique identifier for an individual

sire character vector with unique identifier for an individual’s father (NA if unknown).

dam character vector with unique identifier for an individual’s mother (NA if un-
known).

sex factor with levels: "M", "F", "U". Sex specifier for an individual.

recordStatus character vector with value of "added" or "original", which indicates whether
an animal was added or an original animal.

reportErrors logical value if TRUE will scan the entire file and make a list of all errors found.
The errors will be returned in a list of list where each sublist is a type of error
found.

Value

A factor with levels: "M", "F", "H", and "U" representing the sex codes for the ids provided

Examples

library(nprcgenekeepr)
pedOne <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"),

sire = c(NA, "s0", "s4", NA, "s1", "s1", "s2", "s2"),
dam = c(NA, "d0", "d4", NA, "d1", "d2", "d2", "d2"),
sex = c("F", "F", "M", "F", "F", "F", "F", "M"),
recordStatus = rep("original", 8),
stringsAsFactors = FALSE)

pedTwo <- data.frame(id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"),
sire = c(NA, "s0", "s4", NA, "s1", "s1", "s2", "s2"),
dam = c("d0", "d0", "d4", NA, "d1", "d2", "d2", "d2"),
sex = c("M", "M", "M", "F", "F", "F", "F", "M"),
recordStatus = rep("original", 8),
stringsAsFactors = FALSE)

pedOneCorrected <- pedOne
pedOneCorrected$sex <- correctParentSex(pedOne$id, pedOne$sire, pedOne$dam,

pedOne$sex, pedOne$recordStatus)

countFirstOrder 39

pedOne[pedOne$sex != pedOneCorrected$sex,]
pedOneCorrected[pedOne$sex != pedOneCorrected$sex,]

pedTwoCorrected <- pedTwo
pedTwoCorrected$sex <- correctParentSex(pedTwo$id, pedTwo$sire, pedTwo$dam,

pedTwo$sex, pedOne$recordStatus)
pedTwo[pedTwo$sex != pedTwoCorrected$sex,]
pedTwoCorrected[pedTwo$sex != pedTwoCorrected$sex,]

countFirstOrder Count first-order relatives.

Description

Part of Relations

Usage

countFirstOrder(ped, ids = NULL)

Arguments

ped : ‘Pedigree‘ Standardized pedigree information in a table.

ids character vector of IDs or NULL These are the IDs to which the analysis should
be restricted. First-order relationships will only be tallied for the listed IDs and
will only consider relationships within the subset. If NULL, the analysis will
include all IDs in the pedigree.

Details

Tallies the number of first-order relatives for each member of the provided pedigree. If ’ids’ is
provided, the analysis is restricted to only the specified subset.

Value

A dataframe with column id, parents, offspring, siblings, and total. A table of first-order
relationship counts, broken down to indicate the number of parents, offspring, and siblings that are
part of the subset under consideration.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
ids <- c("B", "D", "E", "F", "G")
countIds <- countFirstOrder(ped, ids)
countIds

40 countLoops

count <- countFirstOrder(ped, NULL)
count

countLoops Count the number of loops in a pedigree tree.

Description

Part of Pedigree Sampling From PedigreeSampling.R 2016-01-28

Usage

countLoops(loops, ptree)

Arguments

loops a named list of logical values where each named element is named with an id
from ptree. The value of the list element is set to TRUE if the id has a loop
in the pedigree. Loops occur when an animal’s sire and dam have a common
ancestor.

ptree a list of lists forming a pedigree tree as constructed by createPedTree(ped)
where ped is a standard pedigree dataframe.

Details

Contains functions to build pedigrees from sub-samples of genotyped individuals.

The goal of sampling is to reduce the number of inbreeding loops in the resulting pedigree, and thus,
reduce the amount of time required to perform calculations with SIMWALK2 or similar programs.

Uses the loops data structure and the list of all ancestors for each individual to calculate the number
of loops for each individual.

Value

A list indexed with each ID in the pedigree tree (ptree) containing the number of loops for each
individual.

Examples

library(nprcgenekeepr)
exampleTree <- createPedTree(nprcgenekeepr::examplePedigree)
exampleLoops <- findLoops(exampleTree)
You can count how many animals are in loops with the following code.
length(exampleLoops[exampleLoops == TRUE])
You can count how many loops you have with the following code.
nLoops <- countLoops(exampleLoops, exampleTree)

createExampleFiles 41

sum(unlist(nLoops[nLoops > 0]))
You can list the first 10 sets of ids, sires and dams in loops with
the following line of code:
examplePedigree[exampleLoops == TRUE, c("id", "sire", "dam")][1:10,]

createExampleFiles Creates a folder with CSV files containing example pedigrees and ID
lists used to demonstrate the package.

Description

Creates a folder named ~/tmp/ExamplePedigrees if it does not already exist. It then proceeds to
write each example pedigree into a CSV file named based on the name of the example pedigree.

Usage

createExampleFiles()

Value

A vector of the names of the files written.

Examples

library(nprcgenekeepr)
files <- createExampleFiles()

createPedOne createPedOne makes the pedOne data object

Description

createPedOne makes the pedOne data object

Usage

createPedOne(savePed = TRUE)

Arguments

savePed logical value if TRUE the pedigree is saved into the packages data directory

42 createPedTree

createPedSix createPedSix makes the pedSix data object

Description

createPedSix makes the pedSix data object

Usage

createPedSix(savePed = TRUE)

Arguments

savePed logical value if TRUE the pedigree is saved into the packages data directory

createPedTree Create a pedigree tree (PedTree).

Description

The PedTree is a list containing sire and dam information for an individual.

Usage

createPedTree(ped)

Arguments

ped dataframe of pedigree and demographic information potentially containing columns
indicating the birth and death dates of an individual. The table may also contain
dates of sale (departure). Optional columns are birth, death, departure.

Details

Part of Pedigree Sampling From PedigreeSampling.R 2016-01-28

Contains functions to build pedigrees from sub-samples of genotyped individuals.

The goal of sampling is to reduce the number of inbreeding loops in the resulting pedigree, and thus,
reduce the amount of time required to perform calculations with SIMWALK2 or similar programs.

This function uses only id, sire, and dam columns.

Value

A list of named lists forming a pedigree tree (PedTree or ptree). Each sublist represents an ID in
the pedigree and contains the sire ID and the dam ID as named elements.

create_wkbk 43

Examples

library(nprcgenekeepr)
exampleTree <- createPedTree(nprcgenekeepr::examplePedigree)
exampleLoops <- findLoops(exampleTree)

create_wkbk Creates an Excel workbook with worksheets.

Description

Creates an Excel workbook with worksheets.

Usage

create_wkbk(file, df_list, sheetnames, replace = FALSE)

Arguments

file filename of workbook to be created

df_list list of data frames to be added as worksheets to workbook

sheetnames character vector of worksheet names

replace Specifies if the file should be replaced if it already exist (default is FALSE).

Value

TRUE if the Excel file was successfully created. FALSE if any errors occurred.

Examples

library(nprcgenekeepr)

make_df_list <- function(size) {
df_list <- list(size)
if (size <= 0)

return(df_list)
for (i in seq_len(size)) {

n <- sample(2:10, 2, replace = TRUE)
df <- data.frame(matrix(data = rnorm(n[1] * n[2]), ncol = n[1]))
df_list[[i]] <- df

}
names(df_list) <- paste0("A", seq_len(size))
df_list

}
df_list <- make_df_list(3)

44 dataframe2string

sheetnames <- names(df_list)
create_wkbk(file = file.path(tempdir(), "example_excel_wkbk.xlsx"),

df_list = df_list,
sheetnames = sheetnames, replace = FALSE)

dataframe2string dataframe2string converts a data.frame object to a character vector

Description

Adapted from print.data.frame

Usage

dataframe2string(object, ..., digits = NULL, row.names = TRUE)

Arguments

object dataframe

... optional arguments to print or plot methods.

digits the minimum number of significant digits to be used: see print.default.

row.names logical (or character vector), indicating whether (or what) row names should be
printed.

Value

A character vector representation of the data.frame provided to the function.

Examples

library(nprcgenekeepr)
dataframe2string(nprcgenekeepr::pedOne)

exampleNprcgenekeeprConfig 45

exampleNprcgenekeeprConfig

exampleNprcgenekeeprConfig is a loadable version of the example
configuration file example_nprcgenekeepr_config

Description

It contains a working version of a nprcgenekeepr configuration file created the SNPRC. Users of
LabKey’s EHR can adapt it to their systems and put it in their home directory. Instructions are
embedded as comments within the file.

Usage

exampleNprcgenekeeprConfig

Format

An object of class character of length 34.

Examples

library(nprcgenekeepr)
data("exampleNprcgenekeeprConfig")
head(exampleNprcgenekeeprConfig)

examplePedigree examplePedigree is a pedigree object created by qcStudbook

Description

Represents pedigree from ExamplePedigree.csv.

id – character column of animal IDs

sire – the male parent of the animal indicated by the id column. Unknown sires are indicated with
NA

dam – the female parent of the animal indicated by the id column.Unknown dams are indicated
with NA

sex – factor with levels: "M", "F", "U". Sex specifier for an individual.

gen – generation number (integers beginning with 0 for the founder generation) of the animal
indicated by the id column.

birth – Date vector of birth dates

exit – Date vector of exit dates

46 fillBins

age – numerical vector of age in years

ancestry – character vector or NA with free-form text providing information about the geographic
population of origin.

origin – character vector or NA (optional) that indicates the name of the facility that the individual
was imported from if other than local.

status – character vector or NA. Flag indicating an individual’s status as alive, dead, sold, etc.
Transformed to factor levels: ALIVE, DECEASED, SHIPPED, UNKNOWN. Vector of stan-
dardized status codes with the possible values ALIVE, DECEASED, SHIPPED, or UNKNOWN

recordStats – character vector with value of "added" or "original".

Usage

examplePedigree

Format

An object of class data.frame with 3694 rows and 12 columns.

Examples

library(nprcgenekeepr)
data("examplePedigree")
exampleTree <- createPedTree(examplePedigree)
exampleLoops <- findLoops(exampleTree)

fillBins fillBins Fill bins represented by list of two lists males and females.

Description

fillBins Fill bins represented by list of two lists males and females.

Usage

fillBins(ageDist, lowerAges, upperAges = NULL)

Arguments

ageDist dataframe with sex and age columns

lowerAges integer vector of lower age boundaries; must be the same length as upperAges

upperAges integer vector of upper age boundaries; must be the same length as lowerAges

fillGroupMembers 47

fillGroupMembers Forms and fills list of animals groups based on provided constraints

Description

Forms and fills list of animals groups based on provided constraints

Usage

fillGroupMembers(
candidates,
currentGroups,
kin,
ped,
harem,
minAge,
numGp,
sexRatio

)

Arguments

candidates character vector of IDs of the animals available for use in the group.

currentGroups list of character vectors of IDs of animals currently assigned to the group. De-
faults to character(0) assuming no groups are existent.

kin list of animals and those animals who are related above a threshold value.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

harem logical variable when set to TRUE, the formed groups have a single male at least
minAge old.

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

numGp integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

sexRatio numeric value indicating the ratio of females to males x (from 0.5 to 20 by
increments of 0.5 within the accompanying Shiny application. A sex ratio of 0
ignores sex in making up groups.

Value

A list of animal groups and their member animals

48 fillGroupMembersWithSexRatio

fillGroupMembersWithSexRatio

Forms breeding group(s) with an effort to match a specified sex ratio

Description

The sex ratio is the ratio of females to males.

Usage

fillGroupMembersWithSexRatio(
candidates,
groupMembers,
grpNum,
kin,
ped,
minAge,
numGp,
sexRatio

)

Arguments

candidates character vector of IDs of the animals available for use in the group.

groupMembers list initialized and ready to receive groups with the desired sex ratios that are
created within this function

grpNum is a list numGp long with each member an integer vector of 1:numGp.

kin list of animals and those animals who are related above a threshold value.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

numGp integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

sexRatio numeric value indicating the ratio of females to males x from 0.5 to 20 by incre-
ments of 0.5.

filterAge 49

filterAge Removes kinship values where an animal is less than the minAge

Description

Part of Group Formation

Usage

filterAge(kin, ped, minAge = 1)

Arguments

kin a dataframe with columns id1, id2, and kinship. This is the kinship data
reformatted from a matrix, to a long-format table.

ped dataframe of pedigree information including the IDs listed in "candidates".

minAge numeric value representing minimum years of age of animals to retain.

filterKinMatrix Filters a kinship matrix to include only the egos listed in ’ids’

Description

Filters a kinship matrix to include only the egos listed in ’ids’

Usage

filterKinMatrix(ids, kmat)

Arguments

ids character vector containing the IDs of interest. The kinship matrix should be
reduced to only include these rows and columns.

kmat a numeric matrix of pairwise kinship coefficients. Rows and columns should be
named with IDs.

Value

A numeric matrix that is the reduced kinship matrix with named rows and columns (row and col
names are ’ids’).

50 filterPairs

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::qcPed
ped$gen <- findGeneration(pedid, pedsire, ped$dam)
kmat <- kinship(pedid, pedsire, peddam, pedgen,

sparse = FALSE)
ids <- ped$id[c(189, 192, 194, 195)]
ncol(kmat)
nrow(kmat)
kmatFiltered <- filterKinMatrix(ids, kmat)
ncol(kmatFiltered)
nrow(kmatFiltered)

filterPairs Filters kinship values from a long-format kinship table based on the
sexes of the two animals involved.

Description

Part of Group Formation

Usage

filterPairs(kin, ped, ignore = list(c("F", "F")))

Arguments

kin a dataframe with columns id1, id2, and kinship. This is the kinship data
reformatted from a matrix, to a long-format table.

ped Dataframe of pedigree information including the IDs listed in candidates.

ignore a list containing zero or more character vectors of length 2 indicating which sex
pairs should be ignored with regard to kinship. Defaults to list(c("F","F")).

Value

A dataframe representing a filtered long-format kinship table.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
ped$gen <- findGeneration(pedid, pedsire, ped$dam)
kmat <- kinship(pedid, pedsire, peddam, pedgen)
kin <- kinMatrix2LongForm(kmat, rm.dups = FALSE)

filterReport 51

threshold <- 0.1
kin <- filterThreshold(kin, threshold = threshold)
ped$sex <- c("M", "F", "M", "M", "F", "F", "M")
kinNull <- filterPairs(kin, ped, ignore = NULL)
kinMM <- filterPairs(kin, ped, ignore = list(c("M", "M")))
ped
kin[kin$id1 == "C",]
kinMM[kinMM$id1 == "C",]

filterReport Filters a genetic value report down to only the specified animals

Description

Filters a genetic value report down to only the specified animals

Usage

filterReport(ids, rpt)

Arguments

ids character vector of animal IDs

rpt a dataframe with required colnames id, gu, zScores, import, totalOffspring,
which is a data.frame of results from a genetic value analysis.

Value

A copy of report specific to the specified animals.

Examples

library(nprcgenekeepr)
rpt <- nprcgenekeepr::pedWithGenotypeReport$report
rpt1 <- filterReport(c("GHH9LB", "BD41WW"), rpt)

52 finalRpt

filterThreshold Filters kinship to remove rows with kinship values less than the speci-
fied threshold

Description

Part of Group Formation Filters kinship values less than the specified threshold from a long-format
table of kinship values.

Usage

filterThreshold(kin, threshold = 0.015625)

Arguments

kin a dataframe with columns id1, id2, and kinship. This is the kinship data
reformatted from a matrix, to a long-format table.

threshold numeric value representing the minimum kinship level to be considered in group
formation. Pairwise kinship below this level will be ignored.

Value

The kinship matrix with all kinship relationships below the threshold value removed.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
ped$gen <- findGeneration(pedid, pedsire, ped$dam)
kmat <- kinship(pedid, pedsire, peddam, pedgen)
kin <- kinMatrix2LongForm(kmat, rm.dups = FALSE)
kinFiltered_0.3 <- filterThreshold(kin, threshold = 0.3)
kinFiltered_0.1 <- filterThreshold(kin, threshold = 0.1)

finalRpt finalRpt is a list object created from the list object rpt prepared by
reportGV. It is created inside orderReport. This version is at the
state just prior to calling rankSubjects inside orderReport.

Description

finalRpt is a list object created from the list object rpt prepared by reportGV. It is created inside
orderReport. This version is at the state just prior to calling rankSubjects inside orderReport.

findGeneration 53

Usage

finalRpt

Format

An object of class list of length 3.

Examples

library(nprcgenekeepr)
data("finalRpt")
finalRpt <- rankSubjects(finalRpt)

findGeneration Determines the generation number for each id.

Description

This loops through the entire pedigree one generation at a time. It finds the zeroth generation
during first loop. The first time through this loop no sire or dam is in parents. This means that the
animals without a sire and without a dam are assigned to generation 0 and become the first parental
generation. The second time through this loop finds all of the animals that do not have a sire or
do not have a dam and at least one parent is in the vector of parents defined the first time through.
The ids that were not assigned as parents in the previous loop are given the incremented generation
number.

Subsequent trips in the loop repeat what was done the second time through until no further animals
can be added to the nextGen vector.

This does not work if the pedigree does not have all parent IDs as ego IDs.

Usage

findGeneration(id, sire, dam)

Arguments

id character vector with unique identifier for an individual

sire character vector with unique identifier for an individual’s father (NA if unknown).

dam character vector with unique identifier for an individual’s mother (NA if un-
known).

Value

An integer vector indication the generation numbers for each id, starting at 0 for individuals lacking
IDs for both parents.

54 findLoops

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped[, c("id", "sire", "dam")]
ped$gen <- findGeneration(pedid, pedsire, ped$dam)
ped

findLoops Find loops in a pedigree tree

Description

Part of Pedigree Sampling From PedigreeSampling.R 2016-01-28

Usage

findLoops(ptree)

Arguments

ptree a list of lists forming a pedigree tree as constructed by createPedTree(ped)
where ped is a standard pedigree dataframe.

Details

Contains functions to build pedigrees from sub-samples of genotyped individuals.

The goal of sampling is to reduce the number of inbreeding loops in the resulting pedigree, and thus,
reduce the amount of time required to perform calculations with SIMWALK2 or similar programs.

Value

A named list of logical values where each named element is named with an id from ptree. The
value of the list element is set to TRUE if the id has a loop in the pedigree. Loops occur when an
animal’s sire and dam have a common ancestor.

Examples

data("examplePedigree")
exampleTree <- createPedTree(examplePedigree)
exampleLoops <- findLoops(exampleTree)

findOffspring 55

findOffspring Finds the number of total offspring for each animal in the provided
pedigree.

Description

Part of Genetic Value Analysis

Usage

findOffspring(probands, ped)

Arguments

probands character vector of egos for which offspring should be counted and returned.

ped the pedigree information in datatable format. Pedigree (req. fields: id, sire, dam,
gen, population). This requires complete pedigree information.

Value

A named vector containing the offspring counts for each animal in probands. Rownames are set to
the IDs from probands.

Examples

library(nprcgenekeepr)
examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]
ped <- setPopulation(ped = breederPed, ids = focalAnimals)
trimmedPed <- trimPedigree(focalAnimals, breederPed)
probands <- ped$id[ped$population]
totalOffspring <- findOffspring(probands, ped)

56 findPedigreeNumber

findPedigreeNumber Determines the generation number for each id.

Description

One of Pedigree Curation functions

Usage

findPedigreeNumber(id, sire, dam)

Arguments

id character vector with unique identifier for an individual

sire character vector with unique identifier for an individual’s father (NA if unknown).

dam character vector with unique identifier for an individual’s mother (NA if un-
known).

Value

Integer vector indicating generation numbers for each id, starting at 0 for individuals lacking IDs
for both parents.

Examples

library(nprcgenekeepr)
library(stringi)
ped <- nprcgenekeepr::lacy1989Ped
ped$gen <- NULL
ped$population <- NULL
ped2 <- ped
ped2$id <- stri_c(ped$id, "2")
ped2$sire <- stri_c(ped$sire, "2")
ped2$dam <- stri_c(ped$dam, "2")
ped3 <- ped
ped3$id <- stri_c(ped$id, "3")
ped3$sire <- stri_c(ped$sire, "3")
ped3$dam <- stri_c(ped$dam, "3")
ped <- rbind(ped, ped2)
ped <- rbind(ped, ped3)
ped$pedigree <- findPedigreeNumber(pedid, pedsire, ped$dam)
ped

fixColumnNames 57

fixColumnNames fixColumnNames changes original column names and into standard-
ized names.

Description

fixColumnNames changes original column names and into standardized names.

Usage

fixColumnNames(orgCols, errorLst)

Arguments

orgCols character vector with ordered list of column names found in a pedigree file.

errorLst list object with places to store the various column name changes.

Value

A list object with newColNames and errorLst with a record of all changes made.

Examples

library(nprcgenekeepr)
fixColumnNames(c("Sire_ID", "EGO", "DAM", "Id", "birth_date"),

errorLst = getEmptyErrorLst())

fixGenotypeCols Reformat names of observed genotype columns

Description

This is not a good fix. A better solution is to avoid the problem. Currently qcStudbook() blindly
changes all of the column names by removing the underscores.

Usage

fixGenotypeCols(ped)

Arguments

ped the pedigree information in datatable format

58 geneDrop

focalAnimals focalAnimals is a dataframe with one column (_id_) containing the of
animal Ids from the __examplePedigree__ pedigree.

Description

They can be used to illustrate the identification of a population of interest as is shown in the example
below.

Usage

focalAnimals

Format

An object of class data.frame with 327 rows and 1 columns.

Examples

library(nprcgenekeepr)
data("focalAnimals")
data("examplePedigree")
any(names(examplePedigree) == "population")
nrow(examplePedigree)
examplePedigree <- setPopulation(ped = examplePedigree,

ids = focalAnimals$id)
any(names(examplePedigree) == "population")
nrow(examplePedigree)
nrow(examplePedigree[examplePedigree$population,])

geneDrop Gene drop simulation based on the provided pedigree information

Description

Part of Genetic Value Analysis

Usage

geneDrop(
ids,
sires,
dams,
gen,
genotype = NULL,

geneDrop 59

n = 5000,
updateProgress = NULL

)

Arguments

ids A character vector of IDs for a set of animals.

sires A character vector with IDS of the sires for the set of animals. NA is used for
missing sires.

dams A character vector with IDS of the dams for the set of animals. NA is used for
missing dams.

gen An integer vector indicating the generation number for each animal.

genotype A dataframe containing known genotypes. It has three columns: id, first,
and second. The second and third columns contain the integers indicating the
observed genotypes.
The gene dropping method from Pedigree analysis by computer simulation by
Jean W MacCluer, John L Vandeberg, and Oliver A Ryder (1986) <doi:10.1002/zoo.1430050209>
is used in the genetic value calculations.
Currently there is no means of handling knowing only one haplotype. It will
be easy to add another column to handle situations where only one allele is
observed and it is not known to be homozygous or heterozygous. The new
fourth column could have a frequency for homozygosity that could be used in
the gene dropping algorithm.
The genotypes are using indirection (integer instead of character) to indicate the
genes because the manipulation of character strings was found to take 20-35
times longer to perform.
Adding additional columns to genotype does not significantly affect the time
require. Thus, it is convenient to add the corresponding haplotype names to the
dataframe using first_name and second_name.

n integer indicating the number of iterations to simulate. Default is 5000.

updateProgress function or NULL. If this function is defined, it will be called during each itera-
tion to update a shiny::Progress object.

Value

A data.frame id,parent,V1 ... Vn A data.frame providing the maternal and paternal alleles for
an animal for each iteration. The first two columns provide the animal’s ID and whether the allele
came from the sire or dam. These are followed by n columns indicating the allele for that iteration.

Examples

We usually defined `n` to be >= 5000
library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
allelesNew <- geneDrop(pedid, pedsire, peddam, pedgen,

genotype = NULL, n = 50, updateProgress = NULL)

60 getAncestors

genotype <- data.frame(id = ped$id,
first_allele = c(NA, NA, "A001_B001", "A001_B002",

NA, "A001_B002", "A001_B001"),
second_allele = c(NA, NA, "A010_B001", "A001_B001",

NA, NA, NA),
stringsAsFactors = FALSE)

pedWithGenotype <- addGenotype(ped, genotype)
pedGenotype <- getGVGenotype(pedWithGenotype)
allelesNewGen <- geneDrop(pedid, pedsire, peddam, pedgen,

genotype = pedGenotype,
n = 5, updateProgress = NULL)

getAncestors Recursively create a character vector of ancestors for an individual
ID.

Description

Part of Pedigree Sampling From PedigreeSampling.R 2016-01-28

Usage

getAncestors(id, ptree)

Arguments

id character vector of length 1 having the ID of interest

ptree a list of lists forming a pedigree tree as constructed by createPedTree(ped)
where ped is a standard pedigree dataframe.

Details

Contains functions to build pedigrees from sub-samples of genotyped individuals.

The goal of sampling is to reduce the number of inbreeding loops in the resulting pedigree, and thus,
reduce the amount of time required to perform calculations with SIMWALK2 or similar programs.

Value

A character vector of ancestors for an individual ID.

getAnimalsWithHighKinship 61

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::qcPed
ped <- qcStudbook(ped, minParentAge = 0)
pedTree <- createPedTree(ped)
pedLoops <- findLoops(pedTree)
ids <- names(pedTree)
allAncestors <- list()

for (i in seq_along(ids)) {
id <- ids[[i]]
anc <- getAncestors(id, pedTree)
allAncestors[[id]] <- anc

}
head(allAncestors)
countOfAncestors <- unlist(lapply(allAncestors, length))
idsWithMostAncestors <-

names(allAncestors)[countOfAncestors == max(countOfAncestors)]
allAncestors[idsWithMostAncestors]

getAnimalsWithHighKinship

Forms a list of animal Ids and animals related to them

Description

Forms a list of animal Ids and animals related to them

Usage

getAnimalsWithHighKinship(kmat, ped, threshold, currentGroups, ignore, minAge)

Arguments

kmat numeric matrix of pairwise kinship values. Rows and columns are named with
animal IDs.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

threshold numeric value indicating the minimum kinship level to be considered in group
formation. Pairwise kinship below this level will be ignored.

currentGroups list of character vectors of IDs of animals currently assigned to the group. De-
faults to character(0) assuming no groups are existent.

ignore list of character vectors representing the sex combinations to be ignored. If
provided, the vectors in the list specify if pairwise kinship should be ignored
between certain sexes. Default is to ignore all pairwise kinship between females.

62 getChangedColsTab

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

Value

A list of named character vectors where each name is an animal Id and the character vectors are
made up of animals sharing a kinship value greater than our equal to the threshold value.

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
ped <- qcStudbook(examplePedigree, minParentAge = 2, reportChanges = FALSE,

reportErrors = FALSE)
kmat <- kinship(pedid, pedsire, peddam, pedgen, sparse = FALSE)
currentGroups <- list(1)
currentGroups[[1]] <- examplePedigree$id[1:3]
candidates <- examplePedigree$id[examplePedigree$status == "ALIVE"]
threshold <- 0.015625
kin <- getAnimalsWithHighKinship(kmat, ped, threshold, currentGroups,

ignore = list(c("F", "F")), minAge = 1)
length(kin) # should be 2412
kin[["1SPLS8"]] # should have 14 IDs

getChangedColsTab getChangedColsTab skeleton of list of errors

Description

getChangedColsTab skeleton of list of errors

Usage

getChangedColsTab(errorLst, pedigreeFileName)

Arguments

errorLst list of errors and changes made by qcStudbook

pedigreeFileName

name of file provided by user on Input tab

Value

HTML formatted error list

getConfigFileName 63

getConfigFileName getConfigFileName returns the configuration file name appropriate for
the system.

Description

getConfigFileName returns the configuration file name appropriate for the system.

Usage

getConfigFileName(sysInfo)

Arguments

sysInfo object returned by Sys.info()

Value

Character vector with expected configuration file

Examples

library(nprcgenekeepr)
sysInfo <- Sys.info()
config <- getConfigFileName(sysInfo)

getCurrentAge Age in years using the provided birthdate.

Description

Assumes current date for calculating age.

Usage

getCurrentAge(birth)

Arguments

birth birth date(s)

Value

Age in years using the provided birthdate.

64 getDatedFilename

Examples

library(nprcgenekeepr)
age <- getCurrentAge(birth = as.Date("06/02/2000", format = "%m/%d/%Y"))

getDateColNames Vector of date column names

Description

Vector of date column names

Usage

getDateColNames()

Value

Vector of column names in a standardized pedigree object that are dates.

getDatedFilename Returns a character vector with an file name having the date
prepended.

Description

Returns a character vector with an file name having the date prepended.

Usage

getDatedFilename(filename)

Arguments

filename character vector with name to use in file name

Value

A character string with a file name prepended with the date and time in YYYY-MM-DD_hh_mm_ss_basename
format.

getDateErrorsAndConvertDatesInPed 65

Examples

library(nprcgenekeepr)
getDatedFilename("testName")

getDateErrorsAndConvertDatesInPed

Converts columns of dates in text form to Date object columns

Description

Finds date errors in columns defined in convertDate as dates and converts date strings to Date
objects.

Usage

getDateErrorsAndConvertDatesInPed(sb, errorLst)

Arguments

sb A dataframe containing a table of pedigree and demographic information.
errorLst object with placeholders for error types found in a pedigree file by qcStudbook

through the functions it calls.

Details

If there are no errors that prevent the calculation of exit dates, they are calculated and added to the
pedigree otherwise the pedigree is not updated.

Value

A list with the pedigree, sb, and the errorLst with invalid date rows (errorLst$invalidDateRows)

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::pedInvalidDates
ped
errorLst <- getEmptyErrorLst()
colNamesAndErrors <- fixColumnNames(names(ped), errorLst)
names(ped) <- colNamesAndErrors$newColNames
pedAndErrors <- getDateErrorsAndConvertDatesInPed(ped, errorLst)
pedAndErrors$sb
pedAndErrors$errorLst

66 getDemographics

getDemographics Get demographic data

Description

This is a thin wrapper around labkey.selectRows().

Usage

getDemographics(colSelect = NULL)

Arguments

colSelect (optional) a vector of comma separated strings specifying which columns of a
dataset or view to import

Value

A data.frame containing LabKey demographic data with the columns specified in the single param-
eter provided.

Examples

library(nprcgenekeepr)
siteInfo <- getSiteInfo()
colSet <- siteInfo$lkPedColumns
source <- " generated by getDemographics: "
pedSourceDf <- tryCatch(getDemographics(colSelect = colSet),

warning = function(wCond) {
cat(paste0("Warning", source, wCond),

name = "nprcgenekeepr")
return(NULL)},

error = function(eCond) {
cat(paste0("Error", source, eCond),

name = "nprcgenekeepr")
return(NULL)}

)

getEmptyErrorLst 67

getEmptyErrorLst Creates a empty errorLst object

Description

Creates a empty errorLst object

Usage

getEmptyErrorLst()

Value

An errorLst object with placeholders for error types found in a pedigree file by qcStudbook.

Examples

library(nprcgenekeepr)
getEmptyErrorLst()

getErrorTab getErrorTab skeleton of list of errors

Description

getErrorTab skeleton of list of errors

Usage

getErrorTab(errorLst, pedigreeFileName)

Arguments

errorLst list of errors and changes made by qcStudbook

pedigreeFileName

name of file provided by user on Input tab

Value

HTML formatted error list

68 getGenoDefinedParentGenotypes

getFocalAnimalPed Get pedigree based on list of focal animals

Description

Get pedigree based on list of focal animals

Usage

getFocalAnimalPed(fileName, sep = ",")

Arguments

fileName character vector of temporary file path.

sep column separator in CSV file

Value

A pedigree file compatible with others in this package.

Examples

library(nprcgenekeepr)
siteInfo <- getSiteInfo()
source <- " generated by getFocalAnimalPed: "
tryCatch(getFocalAnimalPed(fileName = "breeding file.csv"),

warning = function(wCond) {
cat(paste0("Warning", source, wCond),

name = "nprcgenekeepr")
return(NULL)},

error = function(eCond) {
cat(paste0("Error", source, eCond),

name = "nprcgenekeepr")
return(NULL)}

)

getGenoDefinedParentGenotypes

Assigns parental genotype contributions to an IDs genotype by at-
tributing alleles to sire or dam

Description

Assigns parental genotype contributions to an IDs genotype by attributing alleles to sire or dam

getGenotypes 69

Usage

getGenoDefinedParentGenotypes(alleles, genotype, id, sire, dam, n)

Arguments

alleles data.frame id,parent,V1 ... Vn A data.frame providing the maternal and pa-
ternal alleles for an animal for each iteration. The first two columns provide
the animal’s ID and whether the allele came from the sire or dam. These are
followed by n columns indicating the allele for that iteration.

genotype A dataframe containing known genotypes. It has three columns: id, first,
and second. The second and third columns contain the integers indicating the
observed genotypes.

id A character vector of length one having the ID of interest

sire character vector with unique identifier for an individual’s father (NA if unknown).

dam character vector with unique identifier for an individual’s mother (NA if un-
known).

n integer indicating the number of iterations to simulate.

Value

data.frame id,parent,V1 ... Vn A data.frame providing the maternal and paternal alleles for an
animal for each iteration. The first two columns provide the animal’s ID and whether the allele
came from the sire or dam. These are followed by n columns indicating the allele for that iteration.

This is not correct for situations where one haplotype is not known.

getGenotypes Get genotypes from file

Description

Get genotypes from file

Usage

getGenotypes(fileName, sep = ",")

Arguments

fileName character vector of temporary file path.

sep column separator in CSV file

Value

A genotype file compatible with others in this package.

70 getGVGenotype

Examples

library(nprcgenekeepr)
pedCsv <- getGenotypes(fileName = system.file("testdata", "qcPed.csv",

package="nprcgenekeepr"))

getGVGenotype Get Genetic Value Genotype data structure for reportGV function.

Description

Extracts genotype data if available otherwise NULL is returned.

Usage

getGVGenotype(ped)

Arguments

ped the pedigree information in datatable format

Value

A data.frame with the columns id, first, and second extracted from a pedigree object (a data.frame)
containing genotypic data. If the pedigree object does not contain genotypic data the NULL is re-
turned.

Examples

We usually defined `n` to be >= 5000
library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
allelesNew <- geneDrop(pedid, pedsire, peddam, pedgen,

genotype = NULL, n = 50, updateProgress = NULL)
genotype <- data.frame(id = ped$id,

first_allele = c(NA, NA, "A001_B001", "A001_B002",
NA, "A001_B002", "A001_B001"),

second_allele = c(NA, NA, "A010_B001", "A001_B001",
NA, NA, NA),

stringsAsFactors = FALSE)
pedWithGenotype <- addGenotype(ped, genotype)
pedGenotype <- getGVGenotype(pedWithGenotype)
allelesNewGen <- geneDrop(pedid, pedsire, peddam, pedgen,

genotype = pedGenotype,
n = 5, updateProgress = NULL)

getGVPopulation 71

getGVPopulation Get the population of interest for the Genetic Value analysis.

Description

If user has limited the population of interest by defining pop, that information is incorporated via
the ped$population column.

Usage

getGVPopulation(ped, pop)

Arguments

ped the pedigree information in datatable format

pop character vector with animal IDs to consider as the population of interest. The
default is NULL.

Value

A logical vector corresponding to the IDs in the vector of animal IDs provided to the function in
pop.

Examples

Example from Analysis of Founder Representation in Pedigrees: Founder
Equivalents and Founder Genome Equivalents.
Zoo Biology 8:111-123, (1989) by Robert C. Lacy
library(nprcgenekeepr)
ped <- data.frame(
id = c("A", "B", "C", "D", "E", "F", "G"),
sire = c(NA, NA, "A", "A", NA, "D", "D"),
dam = c(NA, NA, "B", "B", NA, "E", "E"),
stringsAsFactors = FALSE
)
ped["gen"] <- findGeneration(pedid, pedsire, ped$dam)
ped$population <- getGVPopulation(ped, NULL)

72 getIncludeColumns

getIdsWithOneParent getIdsWithOneParent extracts IDs of animals pedigree without either
a sire or a dam

Description

getIdsWithOneParent extracts IDs of animals pedigree without either a sire or a dam

Usage

getIdsWithOneParent(uPed)

Arguments

uPed a trimmed pedigree dataframe with uninformative founders removed.

Value

Character vector of all single parents

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

probands <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &
is.na(breederPed$exit)]

ped <- getProbandPedigree(probands, breederPed)
nrow(ped)
p <- removeUninformativeFounders(ped)
nrow(p)
p <- addBackSecondParents(p, ped)
nrow(p)

getIncludeColumns Get the superset of columns that can be in a pedigree file.

Description

Part of Genetic Value Functions

Usage

getIncludeColumns()

getIndianOriginStatus 73

Details

Replaces INCLUDE.COLUMNS data statement.

Value

Superset of columns that can be in a pedigree file.

Examples

getIncludeColumns()

getIndianOriginStatus Get Indian-origin status of group

Description

Get Indian-origin status of group

Usage

getIndianOriginStatus(origin)

Arguments

origin character vector of the animal origins. This vector is to have already been filtered
to remove animals that should not be included in the calculation.

Value

ancestry list of number of Chinese animals (chinese), number of hybrid (hybrid), number of
borderline hybrid animals (borderline), number of Indian ancestry animals (indian), and the
dashboard color (color) to be assigned based on the number of animals of each type counted.

74 getLkDirectRelatives

getLkDirectAncestors Get the direct ancestors of selected animals

Description

Gets direct ancestors from labkey study schema and demographics table.

Usage

getLkDirectAncestors(ids)

Arguments

ids character vector with Ids.

Value

data.frame with pedigree structure having all of the direct ancestors for the Ids provided.

Examples

library(nprcgenekeepr)
Have to a vector of focal animals
focalAnimals <- c("1X2701", "1X0101")
suppressWarnings(getLkDirectAncestors(ids = focalAnimals))

getLkDirectRelatives Get the direct ancestors of selected animals

Description

Gets direct ancestors from labkey study schema and demographics table.

Usage

getLkDirectRelatives(ids, unrelatedParents = FALSE)

Arguments

ids character vector with Ids.
unrelatedParents

logical vector when FALSE the unrelated parents of offspring do not get a record
as an ego; when TRUE a place holder record where parent (sire, dam) IDs are
set to NA.

getLogo 75

Value

A data.frame with pedigree structure having all of the direct ancestors for the Ids provided.

Examples

library(nprcgenekeepr)
Have to a vector of focal animals
focalAnimals <- c("1X2701", "1X0101")
suppressWarnings(getLkDirectRelatives(ids = focalAnimals))

getLogo Get Logo file name

Description

Get Logo file name

Usage

getLogo()

Value

A character vector of length one having the name of the logo file used in the Input tab. A warning
is returned if the configuration file is not found.

Examples

result = tryCatch({
getLogo()

}, warning = function(w) {
print(paste0("Warning in getLogo: ", w, ". File is to be ",

suppressWarnings(getLogo())$file))
}, error = function(e) {
print(paste0("Error in in getLogo: ", e))
})

76 getMinParentAge

getMaxAx Get the maximum of the absolute values of the negative (males) and
positive (female) animal counts.

Description

This is used to scale the pyramid plot symmetrically.

Usage

getMaxAx(bins, axModulus)

Arguments

bins integer vector with numbers of individuals in each bin

axModulus integer value used in the modulus function to determine the interval between
possible maxAx values.

getMinParentAge Get minimum parent age.

Description

This can be set to anything greater than or equal to 0.

Usage

getMinParentAge(input)

Arguments

input shiny’s input

Details

Set to 0 if you do not want to enforce parents being sexually mature by age. Animals that do not
have an age are ignored.

getOffspring 77

getOffspring Get offspring to corresponding animal IDs provided

Description

Get offspring to corresponding animal IDs provided

Usage

getOffspring(pedSourceDf, ids)

Arguments

pedSourceDf dataframe with pedigree structure having at least the columns id, sire, and dam.

ids character vector of animal IDs

Value

A character vector containing all of the ancestor IDs for all of the IDs provided in the second
argument ids. All ancestors are combined and duplicates are removed.

Examples

library(nprcgenekeepr)

pedOne <- nprcgenekeepr::pedOne
names(pedOne) <- c("id", "sire", "dam", "sex", "birth")
getOffspring(pedOne, c("s1", "d2"))

getParamDef Get parameter definitions from tokens found in configuration file.

Description

Get parameter definitions from tokens found in configuration file.

Usage

getParamDef(tokenList, param)

Arguments

tokenList list of parameters and their definitions, which are character vectors

param character vector representing the parameter being defined.

78 getPedigree

getParents Get parents to corresponding animal IDs provided

Description

Get parents to corresponding animal IDs provided

Usage

getParents(pedSourceDf, ids)

Arguments

pedSourceDf dataframe with pedigree structure having at least the columns id, sire, and dam.

ids character vector of animal IDs

Value

A character vector with the IDs of the parents of the provided ID list.

Examples

library(nprcgenekeepr)

pedOne <- nprcgenekeepr::pedOne
names(pedOne) <- c("id", "sire", "dam", "sex", "birth")
getParents(pedOne, c("o1", "d4"))

getPedigree Get pedigree from file

Description

Get pedigree from file

Usage

getPedigree(fileName, sep = ",")

Arguments

fileName character vector of temporary file path.

sep column separator in CSV file

getPedMaxAge 79

Value

A pedigree file compatible with others in this package.

Examples

library(nprcgenekeepr)
ped <- getPedigree(fileName = system.file("testdata", "qcPed.csv",

package="nprcgenekeepr"))

getPedMaxAge Get the maximum age of live animals in the pedigree.

Description

Get the maximum age of live animals in the pedigree.

Usage

getPedMaxAge(ped)

Arguments

ped dataframe with pedigree

Value

Numeric value representing the maximum age of animals in the pedigree.

Examples

library(nprcgenekeepr)
examplePedigree <- nprcgenekeepr::examplePedigree
ped <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

getPedMaxAge(ped)

80 getPossibleCols

getPossibleCols Get possible column names for a studbook.

Description

Pedigree curation function

Usage

getPossibleCols()

Details

@return A character vector of the possible columns that can be in a studbook. The possible columns
are as follows:

• id – character vector with unique identifier for an individual

• sire – character vector with unique identifier for an individual’s father (NA if unknown).

• dam – character vector with unique identifier for an individual’s mother (NA if unknown).

• sex – factor levels: "M", "F", "U" Sex specifier for an individual

• gen – integer vector with the generation number of the individual

• birth – Date or NA (optional) with the individual’s birth date

• exit – Date or NA (optional) with the individual’s exit date (death, or departure if applicable)

• ancestry – character vector or NA (optional) that indicates the geographic population to which
the individual belongs.

• age – numeric or NA (optional) indicating the individual’s current age or age at exit.

• population – an optional logical argument indicating whether or not the id is part of the extant
population.

• origin – character vector or NA (optional) that indicates the name of the facility that the indi-
vidual was imported from. NA indicates the individual was not imported.

• status – an optional factor indicating the status of an individual with levels ALIVE, DEAD, and
SHIPPED.

• condition – character vector or NA (optional) that indicates the restricted status of an animal.
"Nonrestricted" animals are generally assumed to be naive.

• spf – character vector or NA (optional) indicating the specific pathogen-free status of an indi-
vidual.

• vasxOvx – character vector indicating the vasectomy/ovariectomy status of an animal where
NA indicates an intact animal and all other values indicate surgical alteration.

• pedNum – integer vector indicating generation numbers for each id, starting at 0 for individu-
als lacking IDs for both parents.

getPotentialSires 81

Examples

library(nprcgenekeepr)
getPossibleCols()

getPotentialSires Provides list of potential sires

Description

Provides list of potential sires

Usage

getPotentialSires(ids, minAge = 1, ped)

Arguments

ids character vector of IDs of the animals

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

Value

A character vector of potential sire Ids

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::pedWithGenotype
ids <- nprcgenekeepr::qcBreeders
getPotentialSires(ids, minAge = 1, ped)

82 getProductionStatus

getProbandPedigree Gets pedigree to ancestors of provided group leaving uninformative
ancestors.

Description

Filters a pedigree down to only the ancestors of the provided group, removing unnecessary indi-
viduals from the studbook. This version builds the pedigree back in time starting from a group of
probands. This will include all ancestors of the probands, even ones that might be uninformative.

Usage

getProbandPedigree(probands, ped)

Arguments

probands a character vector with the list of animals whose ancestors should be included
in the final pedigree.

ped datatable that is the ‘Pedigree‘. It contains pedigree information. The fields
sire and dam are required.

Value

A reduced pedigree.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::pedWithGenotype
ids <- nprcgenekeepr::qcBreeders
sires <- getPotentialSires(ids, minAge = 1, ped)
head(getProbandPedigree(probands = sires, ped = ped))

getProductionStatus Get production status of group

Description

Get production status of group

getProductionStatus 83

Usage

getProductionStatus(
ped,
minParentAge = 3,
maxOffspringAge = NULL,
housing = "shelter_pens",
currentDate = Sys.Date()

)

Arguments

ped Dataframe that is the ‘Pedigree‘. It contains pedigree information. The id, dam,
sex and age (in years) columns are required.

minParentAge Numeric values to set the minimum age in years for an animal to have an off-
spring. Defaults to 2 years. The check is not performed for animals with missing
birth dates.

maxOffspringAge

Numeric values to set the maximum age in years for an animal to be counted as
birth in calculation of production status ratio.

housing character vector of length 1 having the housing type, which is either "shel-
ter_pens" or "corral".

currentDate Date to be used for calculating age. Defaults to Sys.Date().

Details

Description of how Production and Production Status (color) is calculated.

1. The Production Status is calculated on September 09, 2019, Births = count of all animals in
group born since January 1, 2017 through December 31, 2018, that lived at least 30 days.

2. Dams = count of all females in group that have a birth date on or prior to September 09, 2016.

3. Production = Births / Dams

4. Production Status (color)

(a) Shelter and pens
i. Production < 0.6; Red

ii. Production >= 0.6 and Production <= 0.63; Yellow
iii. Production > 0.63; Green

(b) Corrals
i. Production < 0.5; Red

ii. Production >= 0.5 and Production <= 0.53; Yellow
iii. Production > 0.53; Green

This code may need to be modified to allow the user to supply a list of IDs to include as group
members. Currently each animal in the provided pedigree (ped) is considered to be a member of
the group.

84 getPyramidAgeDist

Value

production – Ratio of the number of births that live >30 days to the number of females >= 3 years
of age.

getProportionLow Get proportion of Low genetic value animals

Description

Get proportion of Low genetic value animals

Usage

getProportionLow(geneticValues)

Arguments

geneticValues character vector of the genetic values. This vector is to have already been filtered
to remove animals that should not be included in the calculation.

Value

List of the proportion of Low genetic value animals and the dashboard color to be assigned base on
that proportion.

getPyramidAgeDist Get the age distribution for the pedigree

Description

Forms a dataframe with columns id, birth, sex, and age for those animals with a status of Alive
in the pedigree.

Usage

getPyramidAgeDist(ped = NULL)

Arguments

ped dataframe with pedigree

Details

The lubridate package is used here because of the way the modern Gregorian calendar is con-
structed, there is no straightforward arithmetic method that produces a person’s age, stated accord-
ing to common usage — common usage meaning that a person’s age should always be an integer
that increases exactly on a birthday.

getPyramidPlot 85

Value

A pedigree with status column added, which describes the animal as ALIVE or DECEASED and a
age column added, which has the animal’s age in years or NA if it cannot be calculated. The exit
column values have been remapped to valid dates or NA.

Examples

library(nprcgenekeepr)
ped <- getPyramidAgeDist()

getPyramidPlot Creates a pyramid plot of the pedigree provided.

Description

The pedigree provided must have the following columns: sex and age. This needs to be augmented
to allow pedigrees structures that are provided by the nprcgenekeepr package.

Usage

getPyramidPlot(ped = NULL)

Arguments

ped dataframe with pedigree data.

Value

The return value of par("mar") when the function was called.

Examples

library(nprcgenekeepr)
data(qcPed)
getPyramidPlot(qcPed)

86 getRequiredCols

getRecordStatusIndex Returns record numbers with selected recordStatus.

Description

Returns record numbers with selected recordStatus.

Usage

getRecordStatusIndex(ped, status = "added")

Arguments

ped pedigree dataframe
status character vector with value of "added" or "original".

Value

An integer vector of records with recordStatus == status.

getRequiredCols Get required column names for a studbook.

Description

Pedigree curation function

Usage

getRequiredCols()

Value

A character vector of the required columns that can be in a studbook. The required columns are as
follows:

• id – character vector with unique identifier for an individual
• sire – character vector with unique identifier for an individual’s father (NA if unknown).
• dam – character vector with unique identifier for an individual’s mother (NA if unknown).
• sex – factor levels: "M", "F", "U" Sex specifier for an individual
• birth – Date or NA (optional) with the individual’s birth date

Examples

library(nprcgenekeepr)
getRequiredCols()

getSexRatioWithAdditions 87

getSexRatioWithAdditions

getSexRatioWithAdditions returns the sex ratio of a group.

Description

Adding males and females to the ratio calculation is possible, but the default behavior is to simply
return the sex ratio of the group. This is a helper routine for the main one calculateSexRatio.

Usage

getSexRatioWithAdditions(ids, ped, additionalMales, additionalFemales)

Arguments

ids character vector of animal Ids

ped datatable that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

additionalMales

Integer value of males to add to those within the group when calculating the
ratio. Ignored if calculated ratio is 0 or Inf. Default is 0.

additionalFemales

Integer value of females to add to those within the group when calculating the
ratio. Ignored if calculated ratio is 0 or Inf. Default is 0.

getSiteInfo Get site information

Description

Get site information

Usage

getSiteInfo(expectConfigFile = TRUE)

Arguments

expectConfigFile

logical parameter when set to FALSE, no configuration is looked for. Default
value is TRUE.

88 getTokenList

Value

A list of site specific information used by the application.

Currently this returns the following character strings in a named list.

1. centerOne of "SNPRC" or "ONPRC"

2. baseUrlIf center is "SNPRC", baseUrl is one of "https://boomer.txbiomed.local:8080/labkey"
or "https://vger.txbiomed.local:8080/labkey". To allow testing, if center is "ONPRC" baseUrl
is "https://boomer.txbiomed.local:8080/labkey".

3. schemaNameIf center is "SNPRC", schemaName is "study". If center is "ONPRC", sche-
maName is "study"

4. folderPath If center is "SNPRC", folderPath is "/SNPRC". If center is "ONPRC", folder-
Path is "/ONPRC"

5. queryNameis "demographics"

Examples

library(nprcgenekeepr)
getSiteInfo()

getTokenList Gets tokens from character vector of lines

Description

Copyright(c) 2017-2020 R. Mark Sharp

Usage

getTokenList(lines)

Arguments

lines character vector with text from configuration file

Value

First right and left space trimmed token from first character vector element.

getVersion 89

Examples

lines <- c("center = \"SNPRC\"",
" baseUrl = \"https://boomer.txbiomed.local:8080/labkey\"",
" schemaName = \"study\"", " folderPath = \"/SNPRC\"",
" queryName = \"demographics\"",
"lkPedColumns = (\"Id\", \"gender\", \"birth\", \"death\",",
" \"lastDayAtCenter\", \"dam\", \"sire\")",
"mapPedColumns = (\"id\", \"sex\", \"birth\", \"death\", ",
" \"exit\", \"dam\", \"sire\")")

lkVec <- c("Id", "gender", "birth", "death",
"lastDayAtCenter", "dam", "sire")

mapVec <- c("id", "sex", "birth", "death", "exit", "dam", "sire")
tokenList <- getTokenList(lines)
params <- tokenList$param
tokenVectors <- tokenList$tokenVec

getVersion getVersion Get the version number of nprcgenekeepr

Description

getVersion Get the version number of nprcgenekeepr

Usage

getVersion(date = TRUE)

Arguments

date A logical value when TRUE (default) a date in YYYYMMDD format within
parentheses is appended.

Value

Current Version

Examples

library(nprcgenekeepr)
getVersion()

90 get_elapsed_time_str

get_and_or_list Returns a one element character string with correct punctuation for a
list made up of the elements of the character vector argument.

Description

Returns a one element character string with correct punctuation for a list made up of the elements
of the character vector argument.

Usage

get_and_or_list(c_vector, conjunction = "and")

Arguments

c_vector Character vector containing the list of words to be put in a list.

conjunction The conjunction to be used as the connector. This is usually ‘and’ or ‘or’ with
‘and’ being the default.

Value

A character vector of length one containing the a single correctly punctuated character string that
list each element in the first arguments vector with commas between if there are more than two
elements with the last two elements joined by the selected conjunction.

Examples

get_and_or_list(c("Bob", "John")) # "Bob and John"
get_and_or_list(c("Bob", "John"), "or") # "Bob or John"
get_and_or_list(c("Bob", "John", "Sam", "Bill"), "or")
"Bob, John, Sam, or Bill"

get_elapsed_time_str Returns the elapsed time since start_time.

Description

Taken from github.com/rmsharp/rmsutilityr

Usage

get_elapsed_time_str(start_time)

groupAddAssign 91

Arguments

start_time a POSIXct time object

Value

A character vector describing the passage of time in hours, minutes, and seconds.

Examples

start_time <- proc.time()
do something
elapsed_time <- get_elapsed_time_str(start_time)

groupAddAssign Add animals to an existing breeding group or forms groups:

Description

groupAddAssign finds the largest group that can be formed by adding unrelated animals from a set
of candidate IDs to an existing group, to a new group it has formed from a set of candidate IDs or
if more than 1 group is desired, it finds the set of groups with the largest average size.

The function implements a maximal independent set (MIS) algorithm to find groups of unrelated
animals. A set of animals may have many different MISs of varying sizes, and finding the largest
would require traversing all possible combinations of animals. Since this could be very time con-
suming, this algorithm produces a random sample of the possible MISs, and selects from these. The
size of the random sample is determined by the specified number of iterations.

Usage

groupAddAssign(
candidates,
currentGroups = list(character(0)),
kmat,
ped,
threshold = 0.015625,
ignore = list(c("F", "F")),
minAge = 1,
iter = 1000,
numGp = 1,
harem = FALSE,
sexRatio = 0,
withKin = FALSE,
updateProgress = NULL

)

92 groupAddAssign

Arguments

candidates Character vector of IDs of the animals available for use in forming the groups.
The animals that may be present in currentGroups are not included within
candidates.

currentGroups List of character vectors of IDs of animals currently assigned to groups. Defaults
to a list with character(0) in each sublist element (one for each group being
formed) assuming no groups are prepopulated.

kmat Numeric matrix of pairwise kinship values. Rows and columns are named with
animal IDs.

ped Dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

threshold Numeric value indicating the minimum kinship level to be considered in group
formation. Pairwise kinship below this level will be ignored. The default value
is 0.015625.

ignore List of character vectors representing the sex combinations to be ignored. If
provided, the vectors in the list specify if pairwise kinship should be ignored
between certain sexes. Default is to ignore all pairwise kinship between females.

minAge Integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

iter Integer indicating the number of times to perform the random group formation
process. Default value is 1000 iterations.

numGp Integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

harem Logical variable when set to TRUE, the formed groups have a single male at least
minAge old.

sexRatio Numeric value indicating the ratio of females to males x from 0.5 to 20 by
increments of 0.5.

withKin Logical variable when set to TRUE, the kinship matrix for the group is returned
along with the group and score. Defaults to not return the kinship matrix. This
maintains compatibility with earlier versions.

updateProgress Function or NULL. If this function is defined, it will be called during each iter-
ation to update a shiny::Progress object.

Details

Part of Group Formation

Value

A list with list items group, score and optionally groupKin. The list item group contains a list of
the best group(s) produced during the simulation. The list item score provides the score associated
with the group(s). The list item groupKin contains the subset of the kinship matrix that is specific
for each group formed.

groupMembersReturn 93

Examples

library(nprcgenekeepr)
examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]
ped <- setPopulation(ped = breederPed, ids = focalAnimals)
trimmedPed <- trimPedigree(focalAnimals, breederPed)
probands <- ped$id[ped$population]
ped <- trimPedigree(probands, ped, removeUninformative = FALSE,

addBackParents = FALSE)
geneticValue <- reportGV(ped, guIter = 50, # should be >= 1000

guThresh = 3,
byID = TRUE,
updateProgress = NULL)

trimmedGeneticValue <- reportGV(trimmedPed, guIter = 50, # should be >= 1000
guThresh = 3,
byID = TRUE,
updateProgress = NULL)

candidates <- trimmedPed$id[trimmedPed$birth < as.Date("2013-01-01") &
!is.na(trimmedPed$birth) &
is.na(trimmedPed$exit)]

haremGrp <- groupAddAssign(candidates = candidates,
kmat = trimmedGeneticValue[["kinship"]],
ped = trimmedPed,
iter = 10, # should be >= 1000
numGp = 6,
harem = TRUE)

haremGrp$group
sexRatioGrp <- groupAddAssign(candidates = candidates,

kmat = trimmedGeneticValue[["kinship"]],
ped = trimmedPed,
iter = 10, # should be >= 1000
numGp = 6,
sexRatio = 9)

sexRatioGrp$group

groupMembersReturn Forms return list of groupAddAssign function

Description

@return A list with members savedGroupMembers, savedScore, and if withKin == TRUE groupKin
as well.

94 hasBothParents

Usage

groupMembersReturn(savedGroupMembers, savedScore, withKin, kmat)

Arguments

savedGroupMembers

selected animal group

savedScore score of selected group, which is the group having the largest minimum group
size

withKin logical variable indicating to return kinship coefficients when TRUE.

kmat numeric matrix of pairwise kinship values. Rows and columns are named with
animal IDs.

hasBothParents hasBothParents checks to see if both parents are identified.

Description

hasBothParents checks to see if both parents are identified.

Usage

hasBothParents(id, ped)

Arguments

id character vector of IDs to examine for parents

ped a pedigree

Value

TRUE if ID has both sire and dam identified in ped.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::pedOne
names(ped) <- c("id", "sire", "dam", "sex", "birth")
hasBothParents("o2", ped)
ped$sire[ped$id == "o2"] <- NA
hasBothParents("o2", ped)

hasGenotype 95

hasGenotype Check for genotype data in dataframe

Description

Checks to ensure the content and structure are appropriate for genotype data are in the dataframe
and ready for the geneDrop function by already being mapped to integers and placed in columns
named first and second. These checks are simply based on expected columns and legal domains.

Usage

hasGenotype(genotype)

Arguments

genotype dataframe with genotype data

Value

A logical value representing whether or not the data.frame passed in contains genotypic data that
can be used. Non-standard column names are accepted for this assessment.

Examples

library(nprcgenekeepr)
rhesusPedigree <- nprcgenekeepr::rhesusPedigree
rhesusGenotypes <- nprcgenekeepr::rhesusGenotypes
pedWithGenotypes <- addGenotype(ped = rhesusPedigree,

genotype = rhesusGenotypes)
hasGenotype(pedWithGenotypes)

headerDisplayNames Convert internal column names to display or header names.

Description

Converts the column names of a Pedigree or Genetic value Report to something more descriptive.

Usage

headerDisplayNames(headers)

Arguments

headers a character vector of column (header) names

96 initializeHaremGroups

Value

Updated list of column names

Examples

library(nprcgenekeepr)
headerDisplayNames(headers = c("id", "sire", "dam", "sex", "birth", "age"))

initializeHaremGroups Make the initial groupMembers animal list

Description

Make the initial groupMembers animal list

Usage

initializeHaremGroups(numGp, currentGroups, candidates, ped, minAge)

Arguments

numGp integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

currentGroups list of character vectors of IDs of animals currently assigned to the group. De-
faults to character(0) assuming no groups are existent.

candidates character vector of IDs of the animals available for use in the group.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

Value

Initial groupMembers list

insertChangedColsTab 97

insertChangedColsTab insertChangedColsTab insert a list of changed columns found by
qcStudbook in the pedigree file

Description

insertChangedColsTab insert a list of changed columns found by qcStudbook in the pedigree file

Usage

insertChangedColsTab(errorLst, pedigreeFileName)

Arguments

errorLst list of errors and changes made by qcStudbook

pedigreeFileName

name of file provided by user on Input tab

Value

Text of the error list formatted as an HTML page

insertErrorTab insertErrorTab insert a list of errors found by qcStudbook in the pedi-
gree file

Description

insertErrorTab insert a list of errors found by qcStudbook in the pedigree file

Usage

insertErrorTab(errorLst, pedigreeFileName)

Arguments

errorLst list of errors and changes made by qcStudbook

pedigreeFileName

name of file provided by user on Input tab

Value

Text of the error list formatted as an HTML page

98 isEmpty

insertSeparators insertSeparators inserts the character "-" between year and month and
between month and day portions of a date string in %Y%m%d format.

Description

This function is not exported because it is not general purpose and is missing several defensive
programming measures.

Usage

insertSeparators(dates)

Arguments

dates character vector of potential dates

Value

A character vector of potential dates in %Y-%m-%d format.

isEmpty Is vector empty or all NA values.

Description

Is vector empty or all NA values.

Usage

isEmpty(x)

Arguments

x vector of any type.

Value

TRUE if x is a zero-length vector else FALSE.

is_valid_date_str 99

is_valid_date_str Returns TRUE if the string is a valid date.

Description

Taken from github.com/rmsharp/rmsutilityr

Usage

is_valid_date_str(
date_str,
format = "%d-%m-%Y %H:%M:%S",
optional = FALSE

)

Arguments

date_str character vector with 0 or more dates

format character vector of length one having the date format

optional parameter to as.Date. Logical value indicating to return NA (instead of signal-
ing an error) if the format guessing does not succeed. Defaults to FALSE.

Value

A logical value or NA indicating whether or not the provided character vector represented a valid
date string.

Examples

is_valid_date_str(c("13-21-1995", "20-13-98", "5-28-1014",
"1-21-15", "2-13-2098", "25-28-2014"), format = "%m-%d-%y")

kinMatrix2LongForm Reformats a kinship matrix into a long-format table.

Description

Part of Group Formation

Usage

kinMatrix2LongForm(kinMatrix, rm.dups = FALSE)

100 kinship

Arguments

kinMatrix numerical matrix of pairwise kinship values. The row and column names corre-
spond to animal IDs.

rm.dups logical value indication whether or not reverse-order ID pairs be filtered out?
(i.e., "ID1 ID2 kin_val" and "ID2 ID1 kin_val" will be collapsed into a single
entry if rm.dups = TRUE)

Value

A dataframe with columns id1, id2, and kinship. This is the kinship data reformatted from a
matrix, to a long-format table.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
ped$gen <- findGeneration(pedid, pedsire, ped$dam)
kmat <- kinship(pedid, pedsire, peddam, pedgen)
reformattedKmat <- kinMatrix2LongForm(kmat, rm.dups = FALSE)
nrow(reformattedKmat)
reformattedNoDupsKmat <- kinMatrix2LongForm(kmat, rm.dups = TRUE)
nrow(reformattedNoDupsKmat)

kinship Generates a kinship matrix.

Description

Kinship Matrix Functions The code for the kinship function was written by Terry Therneau at the
Mayo clinic and taken from his website. This function is part of a package written in S (and later
ported to R) for calculating kinship and other statistics.

Usage

kinship(id, father.id, mother.id, pdepth, sparse = FALSE)

Arguments

id character vector of IDs for a set of animals.

father.id character vector or NA for the IDs of the sires for the set of animals.

mother.id character vector or NA for the IDs of the dams for the set of animals.

pdepth integer vector indicating the generation number for each animal.

sparse logical flag. If TRUE, Matrix::Diagnol() is used to make a unit diagonal ma-
trix. If FALSE, base::diag() is used to make a unit square matrix.

kinship 101

Details

The function previously had an internal call to the kindepth function in order to provide the param-
eter pdepth (the generation number). This version requires the generation number to be calculated
elsewhere and passed into the function.

The rows (cols) of founders are just .5 * identity matrix, no further processing is needed for them.
Parents must be processed before their children, and then a child’s kinship is just a sum of the
kinship’s for his/her parents.

Value

A kinship square matrix

Author(s)

Terry Therneau, original version

as modified by, M Raboin, 2014-09-08 14:44:26

References

Main website https://www.mayo.edu/research/faculty/therneau-terry-m-ph-d/bio-00025991

S-Plus/R Function Page www.mayo.edu/research/departments-divisions/department-health-sciences-
research/division-biomedical-statistics-informatics/software/ @description s-plus-r-functions Down-
loaded 2014-08-26 This page address is now (2019-10-03) stale.

All of the code on the S-Plus page was stated to be released under the GNU General Public License
(version 2 or later).

The R version became the kinship2 package available on CRAN:

https://cran.r-project.org/package=kinship2

$Id: kinship.s,v 1.5 2003/01/04 19:07:53 therneau Exp $

Create the kinship matrix, using the algorithm of K Lange, Mathematical and Statistical Methods
for Genetic Analysis, Springer, 1997, p 71-72.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
ped$gen <- findGeneration(pedid, pedsire, ped$dam)
kmat <- kinship(pedid, pedsire, peddam, pedgen)
ped
kmat

https://www.mayo.edu/research/faculty/therneau-terry-m-ph-d/bio-00025991
https://cran.r-project.org/package=kinship2

102 lacy1989PedAlleles

lacy1989Ped lacy1989Ped small hypothetical pedigree

Description

lacy1989Ped small hypothetical pedigree

Usage

lacy1989Ped

Format

An object of class data.frame with 7 rows and 5 columns.

Source

lacy1989Ped is a dataframe containing the small hypothetical pedigree of three founders and four
descendants used by Robert C. Lacy in "Analysis of Founder Representation in Pedigrees: Founder
Equivalents and Founder Genome Equivalents" Zoo Biology 8:111-123 (1989).

The founders (A, B, E) have unknown parentages and are assumed to have independent ancestries.

id character column of animal IDs

sire the male parent of the animal indicated by the id column. Unknown sires are indicated with
NA

dam the female parent of the animal indicated by the id column.Unknown dams are indicated with
NA

gen generation number (integers beginning with 0 for the founder generation) of the animal indi-
cated by the id column.

population logical vector with all values set TRUE

lacy1989PedAlleles lacy1989PedAlleles is a dataframe produced by geneDrop on
lacy1989Ped with 5000 iterations.

Description

lacy1989PedAlleles is a dataframe produced by geneDrop on lacy1989Ped with 5000 iterations.

Usage

lacy1989PedAlleles

makeAvailable 103

Format

An object of class data.frame with 14 rows and 5002 columns.

Source

lacy1989Ped is a dataframe containing the small example pedigree used by Robert C. Lacy in "Anal-
ysis of Founder Representation in Pedigrees: Founder Equivalents and Founder Genome Equiva-
lents" Zoo Biology 8:111-123 (1989).

There are 5000 columns, one for each iteration in geneDrop containing alleles randomly se-
lected at each generation of the pedigree using Mendelian rules.

Column 5001 is the id column with two rows for each member of the pedigree (2 * 7).

Column 5002 is the parent column with values of sire and dam alternating.

makeAvailable Convenience function to make the initial available animal list

Description

Convenience function to make the initial available animal list

Usage

makeAvailable(candidates, numGp)

Arguments

candidates character vector of IDs of the animals available for use in the group.

numGp integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

Value

Initial available animals list

104 makeCEPH

makeCEPH Make a CEPH-style pedigree for each id

Description

Part of Relations

Usage

makeCEPH(id, sire, dam)

Arguments

id character vector with unique identifier for an individual
sire character vector with unique identifier for an individual’s father (NA if unknown).
dam character vector with unique identifier for an individual’s mother (NA if un-

known).

Details

Creates a CEPH-style pedigree for each id, consisting of three generations: the id, the parents, and
the grandparents. Inserts NA for unknown pedigree members.

Calculates the first-order relationships in a pedigree, and to convert pairwise kinships to the appro-
priate relationship category. Relationships categories: For each ID in the pair, find a CEPH-style
pedigree and compare them

• If one is the parent of the other — Designate the relationship as parent-offspring
• Else if both parents are shared — Designate the relationship as full-siblings
• Else if one parent is shared — Designate the relationship as half-siblings
• Else if one is the grandparent of the other — Designate the relationship as grandparent-grandchild
• Else if both grand parents are shared — Designate the relationship as cousin
• Else if at least one grand parent is shared — Designate the relationship as cousin -other

• Else if the parents of one are the grandparents of the other — Designate the relationship as
full-avuncular

• Else if a single parent of one is the grandparent of the other — Designate the relationship as
avuncular -other

• Else if the kinship is greater than 0, but the pair don’t fall into the above categories — Desig-
nate the relationship as other

• Else — Designate the relationships as no relation.

Value

List of lists: {fields: id, {subfields: parents, pgp, mgp}}. Pedigree information converted into a
CEPH-style list. The top level list elements are the IDs from id. Below each ID is a list of three
elements: parents (sire, dam), paternal grandparents (pgp: sire, dam), and maternal grandparents
(mgp: sire, dam).

makeExamplePedigreeFile 105

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::lacy1989Ped
pedCEPH <- makeCEPH(pedid, pedsire, ped$dam)
head(ped)
head(pedCEPH$F)

makeExamplePedigreeFile

Write copy of nprcgenekeepr::examplePedigree into a file

Description

Uses examplePedigree data structure to create an example data file

Usage

makeExamplePedigreeFile(
file = file.path(tempdir(), "examplePedigree.csv"),
fileType = "csv"

)

Arguments

file character vector of length one providing the file name

fileType character vector of length one with possible values of "txt", "csv", or "xlsx".
Default value is "csv".

Value

Full path name of file saved.

Examples

library(nprcgenekeepr)
pedigreeFile <- makeExamplePedigreeFile()

106 makeGrpNum

makeGroupMembers Convenience function to make the initial groupMembers animal list

Description

Convenience function to make the initial groupMembers animal list

Usage

makeGroupMembers(numGp, currentGroups, candidates, ped, harem, minAge)

Arguments

numGp integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

currentGroups list of character vectors of IDs of animals currently assigned to the group. De-
faults to character(0) assuming no groups are existent.

candidates character vector of IDs of the animals available for use in the group.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

harem logical variable when set to TRUE, the formed groups have a single male at least
minAge old.

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

Value

Initial groupMembers list

makeGrpNum Convenience function to make the initial grpNum list

Description

Convenience function to make the initial grpNum list

Usage

makeGrpNum(numGp)

Arguments

numGp integer value indicating the number of groups that should be formed from the
list of IDs. Default is 1.

makeRelationClassesTable 107

Value

Initial grpNum list

makeRelationClassesTable

Make relation classes table from kin dataframe.

Description

From Relations

Usage

makeRelationClassesTable(kin)

Arguments

kin a dataframe with columns id1, id2, kinship, and relation. It is a long-form
table of pairwise kinships, with relationship categories included for each pair.

Value

A data.frame with the number of instances of following relationship classes: Parent-Offspring, Full-
Siblings, Half-Siblings, Grandparent-Grandchild, Full-Cousins, Cousin - Other, Full-Avuncular,
Avuncular - Other, Other, and No Relation.

Examples

library(nprcgenekeepr)
suppressMessages(library(dplyr))

qcPed <- nprcgenekeepr::qcPed
bkmat <- kinship(qcPed$id, qcPed$sire, qcPed$dam, qcPed$gen,

sparse = FALSE)
kin <- convertRelationships(bkmat, qcPed)
relClasses <- makeRelationClassesTable(kin)
relClasses$`Relationship Class` <-

as.character(relClasses$`Relationship Class`)
relClassTbl <- kin[!kin$relation == "Self",] %>%

group_by(relation) %>%
summarise(count = n())

relClassTbl

108 makesLoop

makeRoundUp Round up the provided integer vector int according to the modulus.

Description

Round up the provided integer vector int according to the modulus.

Usage

makeRoundUp(int, modulus)

Arguments

int integer vector

modulus integer value to use as the divisor.

makesLoop makesLoop tests for a common ancestor.

Description

Part of Pedigree Sampling From PedigreeSampling.R 2016-01-28

Usage

makesLoop(id, ptree)

Arguments

id character vector of length 1 having the ID of interest

ptree a list of lists forming a pedigree tree as constructed by createPedTree(ped)
where ped is a standard pedigree dataframe.

Details

Contains functions to build pedigrees from sub-samples of genotyped individuals.

The goal of sampling is to reduce the number of inbreeding loops in the resulting pedigree, and thus,
reduce the amount of time required to perform calculations with SIMWALK2 or similar programs.

Value

TRUE if there is one or more common ancestors for the sire and dam.

Tests to see if sires and dams for an individual in a ptree have a common ancestor.

mapIdsToObfuscated 109

mapIdsToObfuscated Map IDs to Obfuscated IDs

Description

This is not robust as it fails if all IDs are found not within map.

Usage

mapIdsToObfuscated(ids, map)

Arguments

ids character vector with original IDs

map named character vector where the values are the obfuscated IDs and the vector
of names (names(map)) is the vector of original names.

Value

A dataframe or vector with original IDs replaced by their obfuscated counterparts.

Examples

set_seed(1)
ped <- qcStudbook(nprcgenekeepr::pedSix)
obfuscated <- obfuscatePed(ped, map = TRUE)
someIds <- c("s1", "s2", "d1", "d1")
mapIdsToObfuscated(someIds, obfuscated$map)

meanKinship Calculates the mean kinship for each animal in a kinship matrix

Description

Part of Genetic Value Analysis

Usage

meanKinship(kmat)

Arguments

kmat a numeric matrix of pairwise kinship coefficients. Animal IDs are the row and
column names.

110 nprcgenekeepr

Details

The mean kinship of animal i is
MKi = Σfij/N

, in which the summation is over all animals, j, including the kinship of animal i to itself.

Value

A named numeric vector of average kinship coefficients for each animal ID. Elements are named
with the IDs from the columns of kmat.

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::qcPed
kmat <- kinship(pedid, pedsire, peddam, pedgen)
head(meanKinship(kmat))

nprcgenekeepr Genetic Management Functions

Description

Primary Data Structure — Pedigree

Contains studbook information for a number of individuals. ASSUME: All IDs listed in the sire or
dam columns must have a row entry in the id column

See Also

getIncludeColumns to get set of columns that can be used in a pedigree file

A Pedigree is a data frame within the R environment with the following possible columns:

• id – character vector with unique identifier for an individual

• sire – character vector with unique identifier for an individual’s father (NA if unknown).

• dam – character vector with unique identifier for an individual’s mother (NA if unknown).

• sex – factor levels: "M", "F", "U" Sex specifier for an individual

• gen – integer vector with the generation number of the individual

• birth – Date or NA (optional) with the individual’s birth date

• exit – Date or NA (optional) with the individual’s exit date (death, or departure if applicable)

• ancestry – character vector or NA (optional) that indicates the geographic population to which
the individual belongs.

• age – numeric or NA (optional) indicating the individual’s current age or age at exit.

nprcgenekeepr 111

• population – logical (optional) Is the id part of the extant population?
• origin – character vector or NA (optional) that indicates the name of the facility that the indi-

vidual was imported from if other than local.NA indicates the individual was not imported.

Pedigree File Testing Functions

• qcStudbook — Main pedigree curation function that performs basic quality control on pedi-
gree information

• fixColumnNames — Changes original column names and into standardized names.
• checkRequiredCols — Examines column names, cols, to see if all required column names are

present.
• correctParentSex — Sets sex for animals listed as either a sire or dam.
• getDateErrorsAndConvertDatesInPed — Converts columns of dates in text form to Date ob-

ject columns
• checkParentAge — Check parent ages to be at least minParentAge
• removeDuplicates — Remove duplicate records from pedigree

Gene Dropping Function

• geneDrop — Performs a gene drop simulation based on the provided pedigree information

Genetic Value Analysis Functions

Contains functions to calculate the kinship coefficient and genome uniqueness for animals listed in
a Pedigree table.

• meanKinship — Calculates the mean kinship for each animal in a kinship matrix
• calcA — Calculates a, the number of an individual’s alleles that are rare in each simulation.
• alleleFreq — Calculates the count of each allele in the provided vector.
• calcFE — Calculates founder equivalents.
• calcFG — Calculates founder genome equivalents.
• calcFEFG— Returns founder equivalents FE and FG as elements in a list.
• calcGU — Calculates genome uniqueness for each ID that is part of the population.
• geneDrop — Performs a gene drop simulation based on the pedigree information.
• chooseAlleles — Combines two vectors of alleles by randomly selecting one allele or the

other at each position.
• calcRetention — Calculates allelic retention.
• filterKinMatrix — Filters a kinship matrix to include only the egos listed in ’ids’
• kinship — Generates a kinship matrix
• reportGV — Generates a genetic value report for a provided pedigree.

Plotting Functions

• meanKinship — Calculates the mean kinship for each animal in a kinship matrix

Breeding Group Formation Functions

• meanKinship — Calculates the mean kinship for each animal in a kinship matrix

112 obfuscateId

obfuscateDate obfucateDate adds a random number of days bounded by plus and
minus max delta

Description

Get the base_date add a random number of days taken from a uniform distribution bounded by
-max_delta and max_delta. Insure the resulting date is as least as large as the min_date.

Usage

obfuscateDate(baseDate, maxDelta = 30, minDate)

Arguments

baseDate list of Date objects with dates to be obfuscated

maxDelta integer vector that is used to create min and max arguments to runif (runif(n,min
= 0,max = 1))

minDate list object of Date objects that has the lower bound of resulting obfuscated dates

Value

A vector of dates that have be obfuscated.

Examples

library(nprcgenekeepr)
someDates <- rep(as.Date(c("2009-2-16", "2016-2-16"), format = "%Y-%m-%d"),

10)
minBirthDate <- rep(as.Date("2009-2-16", format = "%Y-%m-%d"), 20)
obfuscateDate(someDates, 30, minBirthDate)

obfuscateId obfucateId creates a vector of ID aliases of specified length

Description

ID aliases are pseudorandom sequences of alphanumeric upper case characters where the letter "O"
is not included for readability.. User has the option of providing a character vector of aliases to
avoid using.

Usage

obfuscateId(id, size = 10, existingIds = character(0))

obfuscatePed 113

Arguments

id character vector of IDs to be obfuscated (alias creation).
size character length of each alias
existingIds character vector of existing aliases to avoid duplication.

Value

A named character vector of aliases where the name is the original ID value.

Examples

library(nprcgenekeepr)
integerIds <- 1:10
obfuscateId(integerIds, size = 4)
characterIds <- paste0(paste0(sample(LETTERS, 1, replace = FALSE)), 1:10)
obfuscateId(characterIds, size = 4)

obfuscatePed obfuscatePed takes a pedigree object and creates aliases for all IDs
and adjusts all date within a specified amount.

Description

User provides a pedigree object (ped), the number of characters to be used for alias IDs (size), and
the maximum number of days that the birthdate can be shifted (maxDelta).

Usage

obfuscatePed(
ped,
size = 6,
maxDelta = 30,
existingIds = character(0),
map = FALSE

)

Arguments

ped pedigree object
size integer value indicating number of characters in alias IDs
maxDelta integer value indicating maximum number of days that the birthdate can be

shifted
existingIds character vector of existing aliases to avoid duplication.
map logical if TRUE a list object is returned with the new pedigree and a named char-

acter vector with the names being the original IDs and the values being the new
alias values. Defaults to FALSE.

114 offspringCounts

Value

An obfuscated pedigree

Examples

library(nprcgenekeepr)
ped <- qcStudbook(nprcgenekeepr::pedGood)
obfuscatedPed <- obfuscatePed(ped)
ped
obfuscatedPed

offspringCounts Finds the total number of offspring for each animal in the pedigree

Description

Optionally find the number that are part of the population of interest.

Usage

offspringCounts(probands, ped, considerPop = FALSE)

Arguments

probands character vector of egos for which offspring should be counted.

ped the pedigree information in datatable format. Pedigree (req. fields: id, sire, dam,
gen, population). This is the complete pedigree.

considerPop logical value indication whether or not the number of offspring that are part of
the focal population are to be counted? Default is FALSE.

Value

A dataframe with at least id and totalOffspring required and livingOffspring optional.

Examples

library(nprcgenekeepr)
examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]

orderReport 115

ped <- setPopulation(ped = breederPed, ids = focalAnimals)
trimmedPed <- trimPedigree(focalAnimals, breederPed)
probands <- ped$id[ped$population]
counts <- offspringCounts(probands, ped)

orderReport Order the results of the genetic value analysis for use in a report.

Description

Part of Genetic Value Analysis

Usage

orderReport(rpt, ped)

Arguments

rpt a dataframe with required colnames id, gu, zScores, import, totalOffspring,
which is a data.frame of results from a genetic value analysis.

ped the pedigree information in datatable format with required colnames id, sire,
dam, gen, population). This requires complete pedigree information..

Details

Takes in the results from a genetic value analysis and orders the report according to the ranking
scheme we have developed.

Value

A dataframe, which is rpt sorted according to the ranking scheme:

• imported animals with no offspring

• animals with genome uniqueness above 10

• animals with mean kinship less than 0.25, ranked by ascending mk

• all remaining animals, ranked by ascending mk

116 pedDuplicateIds

ped1Alleles ped1Alleles is a dataframe created by the geneDrop function

Description

ped1Alleles is a dataframe created by the geneDrop function

Usage

ped1Alleles

Format

A dataframe with 554 rows and 6 variables

V1 alleles assigned to the parents of the animals identified in the id column during iteration 1 of
gene dropping performed by geneDrop.

V2 alleles assigned to the parents of the animals identified in the id column during iteration 1 of
gene dropping performed by geneDrop.

V3 alleles assigned to the parents of the animals identified in the id column during iteration 1 of
gene dropping performed by geneDrop.

V4 alleles assigned to the parents of the animals identified in the id column during iteration 1 of
gene dropping performed by geneDrop.

id character vector of animal IDs provided to the gene dropping function geneDrop.

parent the parent type ("sire" or "dam") of the parent who supplied the alleles as assigned during
each of the 4 gene dropping iterations performed by geneDrop.

Source

example baboon pedigree file provided by Deborah Newman, Southwest National Primate Center.

pedDuplicateIds pedDuplicateIds is a dataframe with 9 rows and 5 columns (ego_id,
sire, dam_id, sex, birth_date) representing a full pedigree with a du-
plicated record.

Description

It is one of six pedigrees (pedDuplicateIds, pedFemaleSireMaleDam, pedgood, pedInvalidDates,
pedMissingBirth, pedSameMaleIsSireAndDam) used to demonstrate error detection by the qc-
Studbook function.

Usage

pedDuplicateIds

pedFemaleSireMaleDam 117

Format

An object of class data.frame with 9 rows and 5 columns.

pedFemaleSireMaleDam pedFemaleSireMaleDam is a dataframe with 8 rows and 5 columns
(ego_id, sire, dam_id, sex, birth_date) representing a full pedigree
with the errors of having a sire labeled as female and a dam labeled
as male.

Description

It is one of six pedigrees (pedDuplicateIds, pedFemaleSireMaleDam, pedgood, pedInvalidDates,
pedMissingBirth, pedSameMaleIsSireAndDam) used to demonstrate error detection by the qc-
Studbook function.

Usage

pedFemaleSireMaleDam

Format

An object of class data.frame with 8 rows and 5 columns.

pedGood pedGood is a dataframe with 8 rows and 5 columns (ego_id, sire,
dam_id, sex, birth_date) representing a full pedigree with no errors.

Description

It is one of six pedigrees (pedDuplicateIds, pedFemaleSireMaleDam, pedgood, pedInvalidDates,
pedMissingBirth, pedSameMaleIsSireAndDam) used to demonstrate error detection by the qc-
Studbook function.

Usage

pedGood

Format

An object of class data.frame with 8 rows and 5 columns.

118 pedMissingBirth

pedInvalidDates pedInvalidDates is a dataframe with 8 rows and 5 columns (ego_id,
sire, dam_id, sex, birth_date) representing a full pedigree with values
in the birth_date column that are not valid dates.

Description

It is one of six pedigrees (pedDuplicateIds, pedFemaleSireMaleDam, pedgood, pedInvalidDates,
pedMissingBirth, pedSameMaleIsSireAndDam) used to demonstrate error detection by the qc-
Studbook function.

Usage

pedInvalidDates

Format

An object of class data.frame with 8 rows and 5 columns.

pedMissingBirth pedMissingBirth is a dataframe with 8 rows and 5 columns (ego_id,
sire, dam_id, sex, birth_date) representing a full pedigree with no er-
rors.

Description

It is one of six pedigrees (pedDuplicateIds, pedFemaleSireMaleDam, pedgood, pedInvalidDates,
pedMissingBirth, pedSameMaleIsSireAndDam) used to demonstrate error detection by the qc-
Studbook function.

Usage

pedMissingBirth

Format

An object of class data.frame with 8 rows and 4 columns.

pedOne 119

pedOne pedOne is a loadable version of a pedigree file fragment used for test-
ing and demonstration

Description

This is used for testing and demonstration.

Usage

pedOne

Format

An object of class data.frame with 8 rows and 5 columns.

Examples

library(nprcgenekeepr)
data("pedOne")
head(pedOne)

pedSameMaleIsSireAndDam

pedSameMaleIsSireAndDam is a dataframe with 8 rows and 5
columns (ego_id, sire, dam_id, sex, birth_date) representing a full
pedigree with no errors.

Description

It is one of six pedigrees (pedDuplicateIds, pedFemaleSireMaleDam, pedgood, pedInvalidDates,
pedMissingBirth, pedSameMaleIsSireAndDam) used to demonstrate error detection by the qc-
Studbook function.

Usage

pedSameMaleIsSireAndDam

Format

An object of class data.frame with 8 rows and 5 columns.

120 pedWithGenotype

pedSix pedSix is a loadable version of a pedigree file fragment used for testing
and demonstration

Description

This is used for testing and demonstration.

Usage

pedSix

Format

An object of class data.frame with 8 rows and 7 columns.

Examples

library(nprcgenekeepr)
data("pedSix")
head(pedSix)

pedWithGenotype pedWithGenotype is a dataframe produced from qcPed by adding
made up genotypes.

Description

A dataframe containing 280 records with 12 columns: id, sire, dam, sex, gen, birth, exit,
age, first, second, first_name, and second_name.

Usage

pedWithGenotype

Format

An object of class data.frame with 280 rows and 12 columns.

pedWithGenotypeReport 121

pedWithGenotypeReport pedWithGenotypeReport is a list containing the output of reportGV.

Description

pedWithGenotypeReport is a list containing the output of reportGV.

Usage

pedWithGenotypeReport

Format

An object of class list (inherits from GVnprcmanag) of length 8.

Source

pedWithGenotypeReport was made with pedWithGenotype as input into reportGV with 10,000
iterations.

pedWithGenotypeReport is a simple example report for use in examples and unit tests. It was
created using the following commands.

• set_seed(10)
• pedWithGenotypeReport <- reportGV(nprcgenekeepr::pedWithGenotype, guIter = 10000)
• save(pedWithGenotypeReport, file = "data/pedWithGenotypeReport.RData")

Examples

pedWithGenotypeReport <- nprcgenekeepr::pedWithGenotypeReport

print.summary.nprcgenekeeprErr

print.summary.nprcgenekeepr print.summary.nprcgenekeeprGV

Description

print.summary.nprcgenekeepr print.summary.nprcgenekeeprGV

Usage

S3 method for class 'summary.nprcgenekeeprErr'
print(x, ...)

S3 method for class 'summary.nprcgenekeeprGV'
print(x, ...)

122 qcBreeders

Arguments

x object of class summary.nprcgenekeeprErr and class list

... additional arguments for the summary.default statement

Value

An object to send to the generic print function

object to send to generic print function

Examples

library(nprcgenekeepr)
errorLst <- qcStudbook(nprcgenekeepr::pedInvalidDates,

reportChanges = TRUE, reportErrors = TRUE)
summary(errorLst)

library(nprcgenekeepr)
ped <- nprcgenekeepr::pedGood
ped <- suppressWarnings(qcStudbook(ped, reportErrors = FALSE))
summary(reportGV(ped, guIter = 10))

qcBreeders qcBreeders is a list of 29 baboon IDs that are potential breeders

Description

qcBreeders is a list of 29 baboon IDs that are potential breeders

Usage

qcBreeders

Format

An object of class character of length 29.

Source

qcBreeders is a list of 3 males and 26 females from the qcPed data set.
These 29 animal IDs are used for examples and unit tests. They were initially selected for
having low kinship coefficients.

qcPed 123

qcPed qcPed is a dataframe with 277 rows and 6 columns

Description

id character column of animal IDs

sire the male parent of the animal indicated by the id column.

dam the female parent of the animal indicated by the id column.

sex sex of the animal indicated by the id column.

gen generation number (integers beginning with 0 for the founder generation) of the animal indi-
cated by the id column.

birth birth date in Date format of the animal indicated by the id column.

exit exit date in Date format of the animal indicated by the id column.

age age in year (numeric) of the animal indicated by the id column.

Usage

qcPed

Format

An object of class data.frame with 280 rows and 8 columns.

qcPedGvReport qcPedGvReport is a genetic value report

Description

qcPedGvReport is a genetic value report for illustrative purposes only. It is used in examples and
unit tests with the nprcgenekeepr package. It was created using the following commands.

• set_seed(10)

• qcPedGvReport <- reportGV(nprcgenekeepr::qcPed, guIter = 10000)

• save(qcPedGvReport, file = "data/qcPedGvReport.RData")

Usage

qcPedGvReport

Format

An object of class list (inherits from GVnprcmanag) of length 8.

124 qcStudbook

Examples

qcPedGvReport <- nprcgenekeepr::qcPedGvReport

qcStudbook Quality Control for the Studbook or pedigree

Description

Main pedigree curation function that performs basic quality control on pedigree information

Usage

qcStudbook(sb, minParentAge = 2, reportChanges = FALSE, reportErrors = FALSE)

Arguments

sb A dataframe containing a table of pedigree and demographic information.
The function recognizes the following columns (optional columns will be used
if present, but are not required):

• id — Character vector with Unique identifier for all individuals
• sire — Character vector with unique identifier for the father of the current

id
• dam — Character vector with unique identifier for the mother of the current

id
• sex — Factor levels: "M", "F", "U" Sex specifier for an individual
• birth — Date or NA (optional) with the individual’s birth date
• departure — Date or NA (optional) an individual was sold or shipped from

the colony
• death — date or NA (optional) Date of death, if applicable
• status — Factor levels: ALIVE, DEAD, SHIPPED (optional) Status of an

individual
• origin — Character or NA (optional) Facility an individual originated from,

if other than ONPRC
• ancestry — Character or NA (optional) Geographic population to which the

individual belongs
• spf — Character or NA (optional) Specific pathogen-free status of an indi-

vidual
• vasxOvx — Character or NA (optional) Indicator of the vasectomy/ovariectomy

status of an animal; NA if animal is intact, assume all other values indicate
surgical alteration

• condition — Character or NA (optional) Indicator of the restricted status of
an animal. "Nonrestricted" animals are generally assumed to be naive.

qcStudbook 125

minParentAge numeric values to set the minimum age in years for an animal to have an off-
spring. Defaults to 2 years. The check is not performed for animals with missing
birth dates.

reportChanges logical value that if TRUE, the errorLst contains the list of changes made to the
column names. Default is FALSE.

reportErrors logical value if TRUE will scan the entire file and report back changes made to
input and errors in a list of list where each sublist is a type of change or error
found. Changes will include column names, case of categorical values (male,
female, unknown), etc. Errors will include missing columns, invalid date rows,
male dams, female sires, and records with one or more parents below minimum
age of parents.
The following changes are made to the cols.

• Column cols are converted to all lower case
• Periods (".") within column cols are collapsed to no space ""
• egoid is converted to id

• sireid is convert to sire

• damid is converted to dam

If the dataframe (sb does not contain the five required columns (id, sire, dam,
sex), and birth the function throws an error by calling stop().
If the id field has the string UNKNOWN (any case) or both the fields sire or
dam have NA or UNKNOWN (any case), the record is removed. If either of the
fields sire or dam have the string UNKNOWN (any case), they are replaced with
a unique identifier with the form Unnnn, where nnnn represents one of a series
of sequential integers representing the number of missing sires and dams right
justified in a pattern of 0000. See addUIds function.
The function addParents is used to add records for parents missing their own
record in the pedigree.
The function convertSexCodes is used with ignoreHerm == TRUE to convert
sex codes according to the following factors of standardized codes:

• F – replacing "FEMALE" or "2"
• M – replacing "MALE" or "1"
• H – replacing "HERMAPHRODITE" or "4", if ignore.herm == FALSE
• U – replacing "HERMAPHRODITE" or "4", if ignore.herm == TRUE
• U – replacing "UNKNOWN" or "3"

The function correctParentSex is used to ensure no parent is both a sire and a
dam. If this error is detected, the function throws an error and halts the program.
The function convertStatusCodes converts status indicators to the following
factors of standardized codes. Case of the original status value is ignored.

• "ALIVE" — replacing "alive", "A" and "1"
• "DECEASED" — replacing "deceased", "DEAD", "D", "2"
• "SHIPPED" — replacing "shipped", "sold", "sale", "s", "3"
• "UNKNOWN" — replacing is.na(status)
• "UNKNOWN" — replacing "unknown", "U", "4"

126 qcStudbook

The function convertAncestry coverts ancestry indicators using regular ex-
pressions such that the following conversions are made from character strings
that match selected substrings to the following factors.

• "INDIAN" — replacing "ind" and not "chin"

• "CHINESE" — replacing "chin" and not "ind"

• "HYBRID" — replacing "hyb" or "chin" and "ind"

• "JAPANESE" — replacing "jap"

• "UNKNOWN" — replacing NA

• "OTHER" — replacing not matching any of the above

The function convertDate converts character representations of dates in the
columns birth, death, departure, and exit to dates using the as.Date func-
tion.

The function setExit uses heuristics and the columns death and departure to
set exit if it is not already defined.

The function calcAge uses the birth and the exit columns to define the age
column. The numerical values is rounded to the nearest 0.1 of a year. If exit is
not defined, the current system date (Sys.Date()) is used.

The function findGeneration is used to define the generation number for each
animal in the pedigree.

The function removeDuplicates checks for any duplicated records and re-
moves the duplicates. I also throws an error and stops the program if an ID
appears in more than one record where one or more of the other columns have a
difference.

Columns that cannot be used subsequently are removed and the rows are ordered
by generation number and then ID.

Finally the columns id sire, and dam are coerce to character.

Value

A data.frame with standardized and quality controlled pedigree information.

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
ped <- qcStudbook(examplePedigree, minParentAge = 2, reportChanges = FALSE,

reportErrors = FALSE)
names(ped)

rankSubjects 127

rankSubjects Ranks animals based on genetic value.

Description

Part of Genetic Value Analysis Adds a column to rpt containing integers from 1 to nrow, and
provides a value designation for each animal of "high value" or "low value"

Usage

rankSubjects(rpt)

Arguments

rpt a list of data.frame req. colnames: value containing genetic value data for the
population. Dataframes separate out those animals that are imports, those that
have high genome uniqueness (gu > 10 have low mean kinship (mk < 0.25), and
the remainder.

Value

A list of dataframes with value and ranking information added.

Examples

library(nprcgenekeepr)
finalRpt <- nprcgenekeepr::finalRpt
rpt <- rankSubjects(nprcgenekeepr::finalRpt)
rpt[["highGu"]][1, "value"]
rpt[["highGu"]][1, "rank"]
rpt[["lowMk"]][1, "value"]
rpt[["lowMk"]][1, "rank"]
rpt[["lowVal"]][1, "value"]
rpt[["lowVal"]][1, "rank"]

rbindFill Append the rows of one dataframe to another.

Description

Part of Pedigree Curation

128 readExcelPOSIXToCharacter

Usage

rbindFill(df1, df2)

Arguments

df1 the target dataframe to append to.

df2 the the donor dataframe information should be appended from

Details

Appends the rows of df2 to df1, can handle cases where df2 has a subset of the columns of df1

Value

The appended dataframe with NA inserted into columns as needed.

readExcelPOSIXToCharacter

Read in Excel file and convert POSIX dates to character

Description

Read in Excel file and convert POSIX dates to character

Usage

readExcelPOSIXToCharacter(fileName)

Arguments

fileName character vector of temporary file path.

Value

A pedigree file compatible with others in this package.

removeDuplicates 129

removeDuplicates Remove duplicate records from pedigree

Description

Part of Pedigree Curation

Usage

removeDuplicates(ped, reportErrors = FALSE)

Arguments

ped dataframe that is the ‘Pedigree‘. It contains pedigree information. The id col-
umn is required.

reportErrors logical value if TRUE will scan the entire file and make a list of all errors found.
The errors will be returned in a list of list where each sublist is a type of error
found.

Details

Returns an updated dataframe with duplicate rows removed.

Returns an error if the table has duplicate IDs with differing data.

Value

Pedigree object with all duplicates removed.

Examples

ped <- nprcgenekeepr::smallPed
newPed <- cbind(ped, recordStatus = rep("original", nrow(ped)))
ped1 <- removeDuplicates(newPed)
nrow(newPed)
nrow(ped1)
pedWithDups <- rbind(newPed, newPed[1:3,])
ped2 <- removeDuplicates(pedWithDups)
nrow(pedWithDups)
nrow(ped2)

130 removeGroupIfNoAvailableAnimals

removeEarlyDates removeEarlyDates removes dates before a specified year

Description

Dates before a specified year are set to NA. This is often used for dates formed from malformed
character representations such as a date in

Usage

removeEarlyDates(dates, firstYear)

Arguments

dates vector of dates

firstYear integer value of first (earliest) year in the allowed date range.

Details

NA values are ignored and not changed.

Value

A vector of dates after the year indicated by the numeric value of firstYear.

Examples

dates <- structure(c(12361, 14400, 15413, NA, 11189, NA, 13224, 10971,
-432000, 13262), class = "Date")

cleanedDates <- removeEarlyDates(dates, firstYear = 1000)
dates
cleanedDates

removeGroupIfNoAvailableAnimals

Remove group numbers when all available animals have been used

Description

@return The grpNum list after removing any list element corresponding to a group with no available
animals left using in filling a group.

Usage

removeGroupIfNoAvailableAnimals(grpNum, available)

removePotentialSires 131

Arguments

grpNum as list of integer vectors initially populated with one list named by the integers
1:numGrp, where numGrp is the number of groups to be formed. Each list
member is initially populated with a integer vector seq_len(numGrp).

available is a list of numGrp named members and each member is initially defined as the
character vector made up of candidate animal Ids.

removePotentialSires Removes potential sires from list of Ids

Description

@return character vector of Ids with any potential sire Ids removed.

Usage

removePotentialSires(ids, minAge, ped)

Arguments

ids character vector of IDs of the animals

minAge integer value indicating the minimum age to consider in group formation. Pair-
wise kinships involving an animal of this age or younger will be ignored. Default
is 1 year.

ped dataframe that is the ‘Pedigree‘. It contains pedigree information including the
IDs listed in candidates.

Examples

library(nprcgenekeepr)
qcBreeders <- nprcgenekeepr::qcBreeders
pedWithGenotype <- nprcgenekeepr::pedWithGenotype
noSires <- removePotentialSires(ids = qcBreeders, minAge = 2,

ped = pedWithGenotype)
sires <- getPotentialSires(qcBreeders, minAge = 2, ped = pedWithGenotype)
pedWithGenotype[pedWithGenotype$id %in% noSires, c("sex", "age")]
pedWithGenotype[pedWithGenotype$id %in% sires, c("sex", "age")]

132 removeUninformativeFounders

removeSelectedAnimalFromAvailableAnimals

Updates list of available animals by removing the selected animal

Description

Updates list of available animals by removing the selected animal

Usage

removeSelectedAnimalFromAvailableAnimals(available, ids, numGp)

Arguments

available list of available animals for each group

ids character vector having the selected animal Ids

numGp integer indicating the number of groups being formed.

Value

list of available animals

removeUninformativeFounders

Remove uninformative founders.

Description

Founders (having unknown sire and dam) that appear only one time in a pedigree are uninformative
and can be removed from a pedigree without loss of information.

Usage

removeUninformativeFounders(ped)

Arguments

ped datatable that is the ‘Pedigree‘. It contains pedigree information. The fields
sire and dam are required.

Value

A reduced pedigree.

removeUnknownAnimals 133

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

probands <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &
is.na(breederPed$exit)]

ped <- getProbandPedigree(probands, breederPed)
nrow(ped)
p <- removeUninformativeFounders(ped)
nrow(p)
p <- addBackSecondParents(p, ped)
nrow(p)

removeUnknownAnimals removeUnknownAnimals Removes unknown animals added to pedi-
gree that serve as placeholders for unknown parents.

Description

removeUnknownAnimals Removes unknown animals added to pedigree that serve as placeholders
for unknown parents.

Usage

removeUnknownAnimals(ped)

Arguments

ped pedigree dataframe

Value

Pedigree with unknown animals removed

Examples

library(nprcgenekeepr)
ped <- nprcgenekeepr::smallPed
addedPed <- cbind(ped, recordStatus = rep("original", nrow(ped)),

stringsAsFactors = FALSE)
addedPed[1:3, "recordStatus"] <- "added"
ped2 <- removeUnknownAnimals(addedPed)
nrow(ped)

134 reportGV

nrow(ped2)

reportGV Generates a genetic value report for a provided pedigree.

Description

This is the main function for the Genetic Value Analysis.

Usage

reportGV(
ped,
guIter = 5000,
guThresh = 1,
pop = NULL,
byID = TRUE,
updateProgress = NULL

)

Arguments

ped The pedigree information in data.frame format

guIter Integer indicating the number of iterations for the gene-drop analysis. Default is
5000 iterations

guThresh Integer indicating the threshold number of animals for defining a unique allele.
Default considers an allele "unique" if it is found in only 1 animal.

pop Character vector with animal IDs to consider as the population of interest. The
default is NULL.

byID Logical variable of length 1 that is passed through to eventually be used by
alleleFreq(), which calculates the count of each allele in the provided vector.
If byID is TRUE and ids are provided, the function will only count the unique
alleles for an individual (homozygous alleles will be counted as 1).

updateProgress Function or NULL. If this function is defined, it will be called during each iter-
ation to update a shiny::Progress object.

Value

A dataframe with the genetic value report. Animals are ranked in order of descending value.

resetGroup 135

Examples

library(nprcgenekeepr)
examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]
ped <- setPopulation(ped = breederPed, ids = focalAnimals)
trimmedPed <- trimPedigree(focalAnimals, breederPed)
probands <- ped$id[ped$population]
ped <- trimPedigree(probands, ped, removeUninformative = FALSE,

addBackParents = FALSE)
geneticValue <- reportGV(ped, guIter = 50, # should be >= 1000

guThresh = 3,
byID = TRUE,
updateProgress = NULL)

trimmedGeneticValue <- reportGV(trimmedPed, guIter = 50, # should be >= 1000
guThresh = 3,
byID = TRUE,
updateProgress = NULL)

rpt <- trimmedGeneticValue[["report"]]
kmat <- trimmedGeneticValue[["kinship"]]
f <- trimmedGeneticValue[["total"]]
mf <- trimmedGeneticValue[["maleFounders"]]
ff <- trimmedGeneticValue[["femaleFounders"]]
nmf <- trimmedGeneticValue[["nMaleFounders"]]
nff <- trimmedGeneticValue[["nFemaleFounders"]]
fe <- trimmedGeneticValue[["fe"]]
fg <- trimmedGeneticValue[["fg"]]

resetGroup Update or add the "group" field of a Pedigree.

Description

Part of the pedigree filtering toolset

Usage

resetGroup(ped, ids)

Arguments

ped datatable that is the ‘Pedigree‘. It contains pedigree information. The id column
is required.

136 rhesusGenotypes

ids character vector of IDs to be flagged as part of the group under consideration.

Value

An updated pedigree with the group column added or updated by being set to TRUE for the animal
IDs in ped$id and FALSE otherwise.

rhesusGenotypes rhesusGenotypes is a dataframe with two haplotypes per animal

Description

There are object.

Usage

rhesusGenotypes

Format

An object of class data.frame with 31 rows and 3 columns.

Details

Represents 31 animals that are also in the obfuscated rhesusPedigree pedigree from rhesusGeno-
types.csv.

id – character column of animal IDs

first_name – a generic name for the first haplotype

second_name – a generic name for the second haplotype

Examples

library(nprcgenekeepr)
data("rhesusGenotypes")

rhesusPedigree 137

rhesusPedigree rhesusPedigree is a pedigree object

Description

Represents an obfuscated pedigree from rhesusPedigree.csv where the IDs and dates have been
modified to de-identify the data.

id – character column of animal IDs

sire – the male parent of the animal indicated by the id column. Unknown sires are indicated with
NA

dam – the female parent of the animal indicated by the id column.Unknown dams are indicated
with NA

sex – factor with levels: "M", "F", "U". Sex specifier for an individual.

gen – generation number (integers beginning with 0 for the founder generation) of the animal
indicated by the id column.

birth – Date vector of birth dates

exit – Date vector of exit dates

age – numerical vector of age in years

Usage

rhesusPedigree

Format

An object of class data.frame with 375 rows and 8 columns.

Examples

library(nprcgenekeepr)
data("rhesusPedigree")

138 saveDataframesAsFiles

runGeneKeepR Allows running shiny application with
nprcgenekeepr::runGeneKeepR()

Description

Allows running shiny application with nprcgenekeepr::runGeneKeepR()

Usage

runGeneKeepR()

Value

Returns the error condition of the Shiny application when it terminates.

Examples

Not run:
library(nprcgenekeepr)
runGeneKeepR()

End(Not run)

saveDataframesAsFiles Write copy of dataframes to either CSV, TXT, or Excel file.

Description

Takes a list of dataframes and creates a file based on the list name of the dataframe and the extension
for the file type.

Usage

saveDataframesAsFiles(dfList, baseDir, fileType = "csv")

Arguments

dfList list of dataframes to be stored as files. "txt", "csv", or "xlsx". Default value
is "csv".

baseDir character vector of length on with the directory path.
fileType character vector of length one with possible values of "txt", "csv", or "xlsx".

Default value is "csv".

Value

Full path name of files saved.

setExit 139

setExit Sets the exit date, if there is no exit column in the table

Description

Part of Pedigree Curation

Usage

setExit(ped, time.origin = as.Date("1970-01-01"))

Arguments

ped dataframe of pedigree and demographic information potentially containing columns
indicating the birth and death dates of an individual. The table may also contain
dates of sale (departure). Optional columns are birth, death, and departure.

time.origin date object used by as.Date to set origin.

Value

A dataframe with an updated pedigree with exit dates specified based on date information that was
available.

Examples

library(lubridate)
library(nprcgenekeepr)
death <- mdy(paste0(sample(1:12, 10, replace = TRUE), "-",

sample(1:28, 10, replace = TRUE), "-",
sample(seq(0, 15, by = 3), 10, replace = TRUE) + 2000))

departure <- as.Date(rep(NA, 10), origin = as.Date("1970-01-01"))
departure[c(1, 3, 6)] <- as.Date(death[c(1, 3, 6)],

origin = as.Date("1970-01-01"))
death[c(1, 3, 5)] <- NA
death[6] <- death[6] + days(1)
ped <- data.frame(

id = paste0(100 + 1:10),
birth = mdy(paste0(sample(1:12, 10, replace = TRUE), "-",

sample(1:28, 10, replace = TRUE), "-",
sample(seq(0, 20, by = 3), 10, replace = TRUE) + 1980)),

death = death,
departure = departure,
stringsAsFactors = FALSE)

pedWithExit <- setExit(ped)

140 set_seed

setPopulation Population designation function

Description

Part of the pedigree filtering toolset.

Usage

setPopulation(ped, ids)

Arguments

ped datatable that is the ‘Pedigree‘. It contains pedigree information. The id column
is required.

ids character vector of IDs to be flagged as part of the population under considera-
tion.

Value

An updated pedigree with the population column added or updated by being set to TRUE for the
animal IDs in ped$id and FALSE otherwise.

Examples

examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]
breederPed <- setPopulation(ped = breederPed, ids = focalAnimals)
nrow(breederPed[breederPed$population,])

set_seed Work around for unit tests using sample() among various versions of
R

Description

The change in how ‘set.seed‘ works in R 3.6 prompted the creation of this R version agnostic
replacement to get unit test code to work on multiple versions of R in a Travis-CI build.

smallPed 141

Usage

set_seed(seed = 1)

Arguments

seed argument to set.seed

Details

It seems RNGkind(sample.kind="Rounding”) does not work prior to version 3.6 so I resorted to
using version dependent construction of the argument list to set.seed() in do.call().

Value

NULL, invisibly.

Examples

set_seed(1)
rnorm(5)

smallPed smallPed is a hypothetical pedigree

Description

It has the following structure: structure(list(id = c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J",
"K", "L", "M", "N", "O", "P", "Q"), sire = c("Q", NA, "A", "A", NA, "D", "D", "A", "A", NA, NA,
"C", "A", NA, NA, "M", NA), dam = c(NA, NA, "B", "B", NA, "E", "E", "B", "J", NA, NA, "K",
"N", NA, NA, "O", NA), sex = c("M", "F", "M", "M", "F", "F", "F", "M", "F", "F", "F", "F", "M",
"F", "F", "F", "M"), gen = c(1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 2, 1, 1, 2, 3, 0), population = c(TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE)), .Names = c("id", "sire", "dam", "sex", "gen", "population"), row.names =
c(NA, -17L), class = "data.frame")

Usage

smallPed

Format

An object of class data.frame with 17 rows and 6 columns.

142 str_detect_fixed_all

smallPedTree smallPedTree is a pedigree tree made from smallPed

Description

Access it using the following commands.

Usage

smallPedTree

Format

An object of class list of length 17.

Examples

library(nprcgenekeepr)
data("smallPedTree")

str_detect_fixed_all Returns a logical vector with results of stri_detect() for each pattern
in second parameters character vector.

Description

Returns a logical vector with results of stri_detect() for each pattern in second parameters character
vector.

Usage

str_detect_fixed_all(strings, patterns, ignore_na, ...)

Arguments

strings input vector. This must be an atomic vector and will be coerced to a character
vector.

patterns patterns to look for, as defined by a POSIX regular expression. See fixed, ig-
nore.case and perl sections for details. See Extended Regular Expressions for
how to use regular expressions for matching.

ignore_na if TRUE NA values are trimmed out of strings and patterns before compar-
ison

... further arguments for stri_detect_fixed

summary.nprcgenekeeprErr 143

summary.nprcgenekeeprErr

summary.nprcgenekeeprErr Summary function for class nprcgene-
keeprErr

Description

summary.nprcgenekeeprErr Summary function for class nprcgenekeeprErr

Usage

S3 method for class 'nprcgenekeeprErr'
summary(object, ...)

S3 method for class 'nprcgenekeeprGV'
summary(object, ...)

Arguments

object object of class nprcgenekeeprErr and class list

... additional arguments for the summary.default statement

Value

Object of class summary.nprcgenekeeprErr

object of class summary.nprcgenekeeprGV

Examples

errorList <- qcStudbook(nprcgenekeepr::pedOne, minParentAge = 0,
reportChanges = TRUE,
reportErrors = TRUE)
summary(errorList)

examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]
ped <- setPopulation(ped = breederPed, ids = focalAnimals)
trimmedPed <- trimPedigree(focalAnimals, breederPed)
probands <- ped$id[ped$population]
ped <- trimPedigree(probands, ped, removeUninformative = FALSE,

144 toCharacter

addBackParents = FALSE)
geneticValue <- reportGV(ped, guIter = 50, # should be >= 1000

guThresh = 3,
byID = TRUE,
updateProgress = NULL)

trimmedGeneticValue <- reportGV(trimmedPed, guIter = 50, # should be >= 1000
guThresh = 3,
byID = TRUE,
updateProgress = NULL)

summary(geneticValue)
summary(trimmedGeneticValue)

toCharacter Force dataframe columns to character

Description

Converts designated columns of a dataframe to character. Defaults to converting columns id, sire,
and dam.

Usage

toCharacter(df, headers = c("id", "sire", "dam"))

Arguments

df a dataframe where the first three columns can be coerced to character.

headers character vector with the columns to be converted to character class. Defaults to
c("id","sire","dam")/

Value

A dataframe with the specified columns converted to class "character" for display with xtables (in
shiny)

Examples

library(nprcgenekeepr)
pedGood <- nprcgenekeepr::pedGood
names(pedGood) <- c("id", "sire", "dam", "sex", "birth")
class(pedGood[["id"]])
pedGood <- toCharacter(pedGood)
class(pedGood[["id"]])

trimPedigree 145

trimPedigree Trim pedigree to ancestors of provided group by removing uninforma-
tive individuals

Description

Filters a pedigree down to only the ancestors of the provided group, removing unnecessary indi-
viduals from the studbook. This version builds the pedigree back in time starting from a group of
probands, then moves back down the tree trimming off uninformative ancestors.

Usage

trimPedigree(
probands,
ped,
removeUninformative = FALSE,
addBackParents = FALSE

)

Arguments

probands a character vector with the list of animals whose ancestors should be included
in the final pedigree.

ped datatable that is the ‘Pedigree‘. It contains pedigree information. The fields
sire and dam are required.

removeUninformative

logical defaults to FALSE. If set to TRUE, uninformative founders are removed.
Founders (having unknown sire and dam) that appear only one time in a pedi-
gree are uninformative and can be removed from a pedigree without loss of
information.

addBackParents logical defaults to FALSE. If set to TRUE, the function adds back single parents to
the p dataframe when one parent is known. The function addBackSecondParents
uses the ped dataframe, which has full complement of parents and the p dataframe,
which has all uninformative parents removed to add back single parents to the p
dataframe.

Value

A pedigree that has been trimmed, had uninformative founders removed and single parents added
back.

Examples

library(nprcgenekeepr)
examplePedigree <- nprcgenekeepr::examplePedigree
breederPed <- qcStudbook(examplePedigree, minParentAge = 2,

146 withinIntegerRange

reportChanges = FALSE,
reportErrors = FALSE)

focalAnimals <- breederPed$id[!(is.na(breederPed$sire) &
is.na(breederPed$dam)) &

is.na(breederPed$exit)]
breederPed <- setPopulation(ped = breederPed, ids = focalAnimals)
trimmedPed <- trimPedigree(focalAnimals, breederPed)
trimmedPedInformative <- trimPedigree(focalAnimals, breederPed,

removeUninformative = TRUE)
nrow(breederPed)
nrow(trimmedPed)
nrow(trimmedPedInformative)

unknown2NA Removing IDs having "UNKNOWN" regardless of case

Description

Someone started entering "unknown" for unknown parents instead of leaving the field blank in
PRIMe.

Usage

unknown2NA(ped)

Arguments

ped A dataframe containing at least and "id" field

withinIntegerRange Get integer within a range

Description

Assures that what is returned is an integer within the specified range. Real values are truncated.
Non-numerics are forced to minimum without warning.

Usage

withinIntegerRange(int = 0, minimum = 0, maximum = 0, na = "min")

withinIntegerRange 147

Arguments

int value to be forced within a range

minimum minimum integer value.

maximum maximum integer value

na if "min" then non-numerics are forced to the minimum in the range If "max"
then non-numerics are forced to the maximum in the range. If not either "min"
or "max" it is forced to "min".

Value

A vector of integers forced to be within the specified range.

Examples

library(nprcgenekeepr)
withinIntegerRange()
withinIntegerRange(, 0, 10)
withinIntegerRange(NA, 0, 10, na = "max")
withinIntegerRange(, 0, 10, na = "max") # no argument is not NA
withinIntegerRange(LETTERS, 0, 10)
withinIntegerRange(2.6, 1, 5)
withinIntegerRange(2.6, 0, 2)
withinIntegerRange(c(0, 2.6, -1), 0, 2)
withinIntegerRange(c(0, 2.6, -1, NA), 0, 2)
withinIntegerRange(c(0, 2.6, -1, NA), 0, 2, na = "max")
withinIntegerRange(c(0, 2.6, -1, NA), 0, 2, na = "min")

Index

∗ datasets
exampleNprcgenekeeprConfig, 45
examplePedigree, 45
finalRpt, 52
focalAnimals, 58
lacy1989Ped, 102
lacy1989PedAlleles, 102
ped1Alleles, 116
pedDuplicateIds, 116
pedFemaleSireMaleDam, 117
pedGood, 117
pedInvalidDates, 118
pedMissingBirth, 118
pedOne, 119
pedSameMaleIsSireAndDam, 119
pedSix, 120
pedWithGenotype, 120
pedWithGenotypeReport, 121
qcBreeders, 122
qcPed, 123
qcPedGvReport, 123
rhesusGenotypes, 136
rhesusPedigree, 137
smallPed, 141
smallPedTree, 142

addAnimalsWithNoRelative, 6
addBackSecondParents, 7
addErrTxt, 8
addGenotype, 8
addGroupOfUnusedAnimals, 9
addIdRecords, 10
addParents, 11
addSexAndAgeToGroup, 12
addUIds, 12
agePyramidPlot, 13
alleleFreq, 14, 111
allTrueNoNA, 15
assignAlleles, 15

calcA, 16, 111
calcAge, 17
calcFE, 18, 111
calcFEFG, 19, 111
calcFG, 20, 111
calcGU, 21, 111
calcRetention, 23, 111
calculateSexRatio, 24
checkChangedColAndErrorLst, 25
checkChangedColsLst, 25
checkErrorLst, 26
checkGenotypeFile, 27
checkParentAge, 28, 111
checkRequiredCols, 29, 111
chooseAlleles, 29, 111
chooseAllelesChar, 30
chooseDate, 31
colChange, 32
convertAncestry, 32
convertDate, 33
convertFromCenter, 34
convertRelationships, 35
convertSexCodes, 36
convertStatusCodes, 37
correctParentSex, 38, 111
countFirstOrder, 39
countLoops, 40
create_wkbk, 43
createExampleFiles, 41
createPedOne, 41
createPedSix, 42
createPedTree, 42

dataframe2string, 44

exampleNprcgenekeeprConfig, 45
examplePedigree, 45

fillBins, 46
fillGroupMembers, 47

148

INDEX 149

fillGroupMembersWithSexRatio, 48
filterAge, 49
filterKinMatrix, 49, 111
filterPairs, 50
filterReport, 51
filterThreshold, 52
finalRpt, 52
findGeneration, 53
findLoops, 54
findOffspring, 55
findPedigreeNumber, 56
fixColumnNames, 57, 111
fixGenotypeCols, 57
focalAnimals, 58

geneDrop, 58, 111
get_and_or_list, 90
get_elapsed_time_str, 90
getAncestors, 60
getAnimalsWithHighKinship, 61
getChangedColsTab, 62
getConfigFileName, 63
getCurrentAge, 63
getDateColNames, 64
getDatedFilename, 64
getDateErrorsAndConvertDatesInPed, 65,

111
getDemographics, 66
getEmptyErrorLst, 67
getErrorTab, 67
getFocalAnimalPed, 68
getGenoDefinedParentGenotypes, 68
getGenotypes, 69
getGVGenotype, 70
getGVPopulation, 71
getIdsWithOneParent, 72
getIncludeColumns, 72, 110
getIndianOriginStatus, 73
getLkDirectAncestors, 74
getLkDirectRelatives, 74
getLogo, 75
getMaxAx, 76
getMinParentAge, 76
getOffspring, 77
getParamDef, 77
getParents, 78
getPedigree, 78
getPedMaxAge, 79
getPossibleCols, 80

getPotentialSires, 81
getProbandPedigree, 82
getProductionStatus, 82
getProportionLow, 84
getPyramidAgeDist, 84
getPyramidPlot, 85
getRecordStatusIndex, 86
getRequiredCols, 86
getSexRatioWithAdditions, 87
getSiteInfo, 87
getTokenList, 88
getVersion, 89
groupAddAssign, 91
groupMembersReturn, 93

hasBothParents, 94
hasGenotype, 95
headerDisplayNames, 95

initializeHaremGroups, 96
insertChangedColsTab, 97
insertErrorTab, 97
insertSeparators, 98
is_valid_date_str, 99
isEmpty, 98

kinMatrix2LongForm, 99
kinship, 100, 111

lacy1989Ped, 102
lacy1989PedAlleles, 102

makeAvailable, 103
makeCEPH, 104
makeExamplePedigreeFile, 105
makeGroupMembers, 106
makeGrpNum, 106
makeRelationClassesTable, 107
makeRoundUp, 108
makesLoop, 108
mapIdsToObfuscated, 109
meanKinship, 109, 111

nprcgenekeepr, 110

obfuscateDate, 112
obfuscateId, 112
obfuscatePed, 113
offspringCounts, 114
orderReport, 115

150 INDEX

ped1Alleles, 116
pedDuplicateIds, 116
pedFemaleSireMaleDam, 117
pedGood, 117
pedInvalidDates, 118
pedMissingBirth, 118
pedOne, 119
pedSameMaleIsSireAndDam, 119
pedSix, 120
pedWithGenotype, 120
pedWithGenotypeReport, 121
print.summary.nprcgenekeeprErr, 121
print.summary.nprcgenekeeprGV

(print.summary.nprcgenekeeprErr),
121

qcBreeders, 122
qcPed, 123
qcPedGvReport, 123
qcStudbook, 111, 124

rankSubjects, 127
rbindFill, 127
readExcelPOSIXToCharacter, 128
removeDuplicates, 111, 129
removeEarlyDates, 130
removeGroupIfNoAvailableAnimals, 130
removePotentialSires, 131
removeSelectedAnimalFromAvailableAnimals,

132
removeUninformativeFounders, 132
removeUnknownAnimals, 133
reportGV, 111, 134
resetGroup, 135
rhesusGenotypes, 136
rhesusPedigree, 137
runGeneKeepR, 138

saveDataframesAsFiles, 138
set_seed, 140
setExit, 139
setPopulation, 140
smallPed, 141
smallPedTree, 142
str_detect_fixed_all, 142
summary.nprcgenekeeprErr, 143
summary.nprcgenekeeprGV

(summary.nprcgenekeeprErr), 143

toCharacter, 144

trimPedigree, 145

unknown2NA, 146

withinIntegerRange, 146

	addAnimalsWithNoRelative
	addBackSecondParents
	addErrTxt
	addGenotype
	addGroupOfUnusedAnimals
	addIdRecords
	addParents
	addSexAndAgeToGroup
	addUIds
	agePyramidPlot
	alleleFreq
	allTrueNoNA
	assignAlleles
	calcA
	calcAge
	calcFE
	calcFEFG
	calcFG
	calcGU
	calcRetention
	calculateSexRatio
	checkChangedColAndErrorLst
	checkChangedColsLst
	checkErrorLst
	checkGenotypeFile
	checkParentAge
	checkRequiredCols
	chooseAlleles
	chooseAllelesChar
	chooseDate
	colChange
	convertAncestry
	convertDate
	convertFromCenter
	convertRelationships
	convertSexCodes
	convertStatusCodes
	correctParentSex
	countFirstOrder
	countLoops
	createExampleFiles
	createPedOne
	createPedSix
	createPedTree
	create_wkbk
	dataframe2string
	exampleNprcgenekeeprConfig
	examplePedigree
	fillBins
	fillGroupMembers
	fillGroupMembersWithSexRatio
	filterAge
	filterKinMatrix
	filterPairs
	filterReport
	filterThreshold
	finalRpt
	findGeneration
	findLoops
	findOffspring
	findPedigreeNumber
	fixColumnNames
	fixGenotypeCols
	focalAnimals
	geneDrop
	getAncestors
	getAnimalsWithHighKinship
	getChangedColsTab
	getConfigFileName
	getCurrentAge
	getDateColNames
	getDatedFilename
	getDateErrorsAndConvertDatesInPed
	getDemographics
	getEmptyErrorLst
	getErrorTab
	getFocalAnimalPed
	getGenoDefinedParentGenotypes
	getGenotypes
	getGVGenotype
	getGVPopulation
	getIdsWithOneParent
	getIncludeColumns
	getIndianOriginStatus
	getLkDirectAncestors
	getLkDirectRelatives
	getLogo
	getMaxAx
	getMinParentAge
	getOffspring
	getParamDef
	getParents
	getPedigree
	getPedMaxAge
	getPossibleCols
	getPotentialSires
	getProbandPedigree
	getProductionStatus
	getProportionLow
	getPyramidAgeDist
	getPyramidPlot
	getRecordStatusIndex
	getRequiredCols
	getSexRatioWithAdditions
	getSiteInfo
	getTokenList
	getVersion
	get_and_or_list
	get_elapsed_time_str
	groupAddAssign
	groupMembersReturn
	hasBothParents
	hasGenotype
	headerDisplayNames
	initializeHaremGroups
	insertChangedColsTab
	insertErrorTab
	insertSeparators
	isEmpty
	is_valid_date_str
	kinMatrix2LongForm
	kinship
	lacy1989Ped
	lacy1989PedAlleles
	makeAvailable
	makeCEPH
	makeExamplePedigreeFile
	makeGroupMembers
	makeGrpNum
	makeRelationClassesTable
	makeRoundUp
	makesLoop
	mapIdsToObfuscated
	meanKinship
	nprcgenekeepr
	obfuscateDate
	obfuscateId
	obfuscatePed
	offspringCounts
	orderReport
	ped1Alleles
	pedDuplicateIds
	pedFemaleSireMaleDam
	pedGood
	pedInvalidDates
	pedMissingBirth
	pedOne
	pedSameMaleIsSireAndDam
	pedSix
	pedWithGenotype
	pedWithGenotypeReport
	print.summary.nprcgenekeeprErr
	qcBreeders
	qcPed
	qcPedGvReport
	qcStudbook
	rankSubjects
	rbindFill
	readExcelPOSIXToCharacter
	removeDuplicates
	removeEarlyDates
	removeGroupIfNoAvailableAnimals
	removePotentialSires
	removeSelectedAnimalFromAvailableAnimals
	removeUninformativeFounders
	removeUnknownAnimals
	reportGV
	resetGroup
	rhesusGenotypes
	rhesusPedigree
	runGeneKeepR
	saveDataframesAsFiles
	setExit
	setPopulation
	set_seed
	smallPed
	smallPedTree
	str_detect_fixed_all
	summary.nprcgenekeeprErr
	toCharacter
	trimPedigree
	unknown2NA
	withinIntegerRange
	Index

