
Package ‘nseval’
May 24, 2022

Type Package

Title Tools for Lazy and Non-Standard Evaluation

Version 0.4.2

Date 2022-05-16

Author Peter Meilstrup <peter.meilstrup@gmail.com>

Maintainer Peter Meilstrup <peter.meilstrup@gmail.com>

Description Functions to capture, inspect, manipulate, and create
lazy values (promises), ``...'' lists, and active calls.

License GPL (>= 2.0)

Encoding UTF-8

Imports methods

Suggests testthat (>= 3.0.0), compiler (>= 3.4), roxygen2 (>= 2.2.2),
knitr (>= 1.2), plyr (>= 1.8.1), lazyeval (>= 0.2.0), stringr
(>= 1.2.0), covr

Collate 'arg.R' 'caller.R' 'quo.R' 'dots.R' 'getpromise.R'
'conversions.R' 'format.R' 'force.R' 'shortcut.R' 'missing.R'

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-05-24 04:40:02 UTC

R topics documented:
arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
arg_env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
as.dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
as.lazy_dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dots2env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



2 arg

env2dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
forced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
format.dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
function_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
get_call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
get_dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
locate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
missing_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
quo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
set_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
unwrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Index 28

arg Capture lazy variables as quotations.

Description

arg(x) looks in the calling environment for the binding x, taken literally, and returns it as a quota-
tion. arg(x) is equivalent to unwrap(quo(x)).

arg_ evaluates the first element normally; arg(x, e) is equivalent to arg_(quote(x), e).

arg_list looks up multiple variables, and returns a dots object. arg_list(x, y) is equivalent to
unwrap(dots(x=x, y=y)). If any of the requested variables are not bound, an error will be raised.

arg_list_ is a normally evaluating version of arg_list; arg_list(x, y) is equivalent to arg_list_(alist(x,
y), environment()).

set_arg and set_arg_ create bindings from quotations. They replace base function delayedAssign.

Usage

arg(sym, env = arg_env_(quote(sym), environment()))

arg_(sym, env = arg_env(sym, environment()))

arg_list(...)

arg_list_(syms, envs)

set_arg(dst, src)

set_arg_(dst, src)



arg_env 3

Arguments

sym The name to look up. For arg this is a literal name, not evaluated. For arg_ this
should evaluate to a symbol or character.

env The environment to look in. By default, the environment from which sym was
passed.

... Bare names (not forced). Arguments may be named; these names determine the
names on the output list. If arguments are not named, the names given are used.

syms A character vector or list of names.

envs An environment, or a list of environments, to look for the bindings in.

dst A name; for set_arg this is quoted literally; for set_arg_ this should be a
quotation.

src A quotation (or something that can be converted to a quotation, like a formula).

Value

arg returns a quotation object.

args returns a dots object.

arg_list returns a dots object.

Note

If you use a a literal character value, as in arg_("x", environment()), you MUST also give the
environment parameter. The reason is that R will discard scope information about code literals in
byte-compiled code; so when arg_("x") is called in compiled code, the default value for env will
be found to be emptyenv().

Beware of writing arg_list(a, b, ...) which probably doesn’t do what you want. This is because
R unwraps ... before invoking arg_list, so this ends up double-unwrapping .... To capture ...
alongside named arguments you can use the syntax arg_list(x, y, (...)) (which is equivalent
to c(arg_list(x, y), dots(...))). You can also use get_call() to extract all function inputs
to an active function.

See Also

dots get_dots unwrap

arg_env Get information about currently bound arguments.



4 arg_env

Description

These are shortcut methods for querying current bindings. For example, arg_env(x) is equivalent
to env(arg(x)), is_forced(x, y) is equivalent to forced(arg_list(x,y)), dots_exprs(...)
is equivalent to exprs(dots(...)), and so on. The shortcut forms skip the construction of the
intermediate quotation objects.

dots_exprs(...) quotes its arguments and returns a list of expressions. It is equivalent to exprs(dots(...))
(and is nearly equivalent to alist(...), one difference being that dots_exprs will expand ....)

is_literal(x) returns TRUE if an argument x could be a source literal. Specifically it tests
whether x is bound to a singleton vector or a missing_value. This check happens without forc-
ing x.

is_missing(...) checks whether an argument is missing, without forcing. It is similar to missing
but can take multiple arguments, and can be called in more situations, such as from a nested inner
function.

is_missing_(syms, envs) is a normally evaluating version of is_missing. syms should be a sym-
bol, character vector or list of such. envs should be an environment, or list of environments. Vector
recycling rules apply, so you can call with a vector of names and one env, or vice versa.

is_promise returns TRUE if the given variable is bound to a promise. Not all arguments are bound
to promises; byte-compiled code often omits creating a promise for literal or missing arguments.

is_default determines whether an argument is bound to the function’s default value for that argu-
ment. It must be called before the arguments have been forced (afterwards it will return FALSE).

Usage

arg_env(sym, env = arg_env_(quote(sym), environment()))

arg_env_(sym, env = arg_env_(quote(sym), environment()))

arg_expr(sym, env = arg_env_(quote(sym), environment()))

arg_expr_(sym, env = arg_env_(quote(sym), environment()))

dots_envs(...)

dots_exprs(...)

is_forced(...)

is_forced_(syms, envs)

is_literal(...)

is_literal_(syms, envs)

is_missing(...)

is_missing_(syms, envs, unwrap = TRUE)



arg_env 5

## S3 method for class 'quotation'
is_missing_(syms, ..., unwrap = TRUE)

is_promise(...)

is_promise_(syms, envs)

## S3 method for class 'quotation'
is_promise_(syms, ...)

is_default(...)

is_default_(syms, envs)

## S3 method for class 'quotation'
is_default_(syms, ...)

Arguments

sym For plain arg_env, etc, a bare name, which is quoted. For the underscore ver-
sions arg_env_, something that evaluates to a name or character.

env The environment to search in.

... Bare variable names (for is_*) or expressions (for dots_*). Not forced.

syms A character vector or list of symbols.

envs An environment or list of environments.

unwrap Whether to recursively unwrap before testing for missingness.

Details

Throughout this package, some functions come in two forms, a "bare" version which quote their
first argument literally, and a normally-evaluating version with a trailing underscore in its name. So
is_forced(x) chiecks whether "x" is a missing variable, while is_forced_(x, environment())
checks whether "x" contains the name of another variable which is missing. The following are all
equivalent:

• arg_env(x)

• {y <- quo(x); arg_env_(y)}

• arg_env_(quote(x), environment())

• arg_env_(quo(x))

• env(arg_(quo(x))).

When used with quotation objects, the is_*_ functions with trailing underscore work at one level
of indirection compared to quotation methods. For example, missing_(x) tests whether expr(x)
is [missing_value()], whereas is_missing_(x) assumes expr(x) is a name and checks if that
name refers to a variable that is missing. The following are equivalent:



6 as.dots

• is_missing(x)

• is_missing_(quo(x))

• missing_(arg(x))

When used with a quotation or dots, is_missing(q) looks for the variable(s) specified by expr(q)
in environment env(q)]‘.

Value

arg_env returns an environment.

arg_expr returns the expression bound to a named argument.

is_forced and other is_* return a logical vector with optional names.

as.dots Convert items into quotations or dots.

Description

as.dots is a generic function for converting data into dots.

as.dots.environment is a synonym for env2dots.

Usage

as.dots(x)

## S3 method for class 'dots'
as.dots(x)

## S3 method for class 'quotation'
as.dots(x)

## S3 method for class 'list'
as.dots(x)

## S3 method for class 'environment'
as.dots(x)

## S3 method for class 'lazy_dots'
as.dots(x)

## Default S3 method:
as.dots(x)

Arguments

x a vector or list.



as.lazy_dots 7

Value

An object of class ....

See Also

env2dots rdname dots2env

as.lazy_dots Compatibility conversions.

Description

Convert quotations and dot lists to the representations used by other packages.

Usage

as.lazy_dots(x, env)

## S3 method for class 'dots'
as.lazy_dots(x, env = "ignored")

Arguments

x a dots object.

env See lazyeval::as.lazy_dots.

Value

as.lazy_dots returns a lazyeval::lazy_dots object.

caller Find the caller of a given environment.

Description

Given an environment that is currently on the stack, caller determines the calling environment.

Usage

caller(
env = caller(environment()),
ifnotfound = stop("caller: environment not found on stack")

)



8 caller

Arguments

env The environment whose caller to find. The default is caller’s caller; that is,
caller() should return the the same value as caller(environment()).)

ifnotfound What to return in case the caller cannot be determined. By default an error is
raised.

Details

For example, in the code:

X <- environment()
F <- function() {

Y <- environment()
caller(Y)

}
F()

the environment called Y was created by calling F(), and that call occurs in the environment called
X. In this case X is the calling environment of Y, so F() returns the same environment as X().

caller is intended as a replacement for parent.frame, which returns the next environment up the
calling stack – which is sometimes the same value, but differs in some situations, such as when lazy
evaluation re-activates an environment. parent.frame() can return different things depending on
the order in which arguments are evaluated, without warning. caller will by default throw an error
if the caller cannot be determined.

In addition, caller tries to do the right thing when the environment was instantiated by means of
do.call, eval or do rather than an ordinary function call.

Value

The environment which called env into being. If that environment cannot be determined, ifnotfound
is returned.

Examples

E <- environment()
F <- function() {
Y <- environment()
caller(Y)

}
identical(F(), E) ## TRUE



do 9

do Making function calls, with full control of argument scope.

Description

The functions do and do_ construct and invoke a function call. In combination with dots and
quotation objects they allow you to control the scope of the function call and each of its arguments
independently.

Usage

do(...)

do_(...)

Arguments

... A function to call and list(s) of arguments to pass. All should be quotation or
dots objects, except the first argument for do which is quoted literally.

Details

For do_ all arguments should be quotation or dots objects, or convertible to such using as.quo().
They will be concatenated together by c.dots to form the call list (a dots object). For do the first
argument is quoted literally, but the rest of the arguments are evaluated the same way as do_.

The head, or first element of the call list, represents the function, and it should evaluate to a function
object. The rest of the call list is used as that function’s arguments.

When a quotation is used as the first element, the call is evaluated from the environment given in
that quotation. This means that calls to caller() (or parent.frame()) from within that function
should return that environment.

do is intended to be a replacement for base function do.call. For instance these two lines are similar
in effect:

do.call("complex", list(imaginary = 1:3))
do(complex, dots(imaginary = 1:3))

As are all these:

do.call("f", list(as.name("A")), envir = env)
do_(quo(f, env), quo(A, env)):
do_(dots_(list(as.name("f"), as.name("A")), env))
do_(dots_(alist(f, A), env))

Value

The return value of the call.



10 dots

Note

When the environment of the call head differs from that of the arguments, do may make a temporary
binding of ... to pass arguments. This will cause some primitive functions, like ( <-, or for), to
fail with an error like "’...’ used an in incorrect context," because these primitives do not understand
how to unpack .... To avoid the use of ..., ensure that all args have the same environment as the
call head, or are forced.

For the specific case of calling <-, you can use set_ to make assignments.

See Also

get_call do.call match.call set_

dots Dots objects: lists of quotations.

Description

d <- dots(a = one, b = two) captures each of its arguments, unevaluated, in a dots object (a named
list of quotations).

as.data.frame.dots transforms the contents of a dots object into a data frame with one row per
quotation, with columns:

• name: a character,

• expr: an expression,

• env: an environment object or NULL if forced,

• value: NULL or a value if forced.

forced_dots(...) forces its arguments and constructs a dots object with forced quotations.

forced_dots_(values) creates a dots object from a list of values

Usage

dots(...)

dots_(exprs, envs)

exprs(d)

## S3 method for class 'dots'
exprs(d)

exprs(d) <- value

## S3 replacement method for class 'dots'
exprs(d) <- value



dots 11

envs(d)

## S3 method for class 'dots'
envs(d)

envs(d) <- value

## S3 method for class 'dots'
x[..., drop = FALSE]

## S3 replacement method for class 'dots'
x[...] <- value

## S3 method for class 'dots'
c(...)

## S3 method for class 'quotation'
c(...)

## S3 method for class 'dots'
as.data.frame(x, row.names = NULL, ...)

forced_dots(...)

forced_dots_(values)

Arguments

... Any number of arguments.

exprs An expression or list of expressions.

envs An environment or list of environments.

d A dots object.

value A replacement value or list of values.

x A dots object.

drop See Extract.

row.names If not given, uses make.unique(x$name)

values A list; each element will be used as data.

Details

Objects of class "dots" mirror R’s special variable .... Unlike ..., a dots is:

• immutable (evaluating does not change it),

• first-class (you can give it any name, not just ...),

• data (The R interpreter treates it as literal data rather than triggering argument splicing).



12 dots2env

d <- dots(...) is used to capture the contents of ... without triggering evaluation. This improves
on as.list(substitute(...())) by capturing the environment of each argument along with their
expressions. (You can also use get_dots().)

Value

dots(...) constructs a list with class ’dots’, each element of which is a quotation.

dots_(exprs, envs) constructs a dots object given lists of expressions and environments. (To
construct a dots object from quotation objects, use c().)

exprs(d) extracts a list of expressions from a dots object.

The mutator exprs(d) <- value returns a new dots object with the new expressions.

envs(d) extracts a list of environments from a dots object.

envs(d) returns a named list of environments.

envs(d) <- value returns an updated dots object with the environments replaced with the new
value(s).

as.data.frame.dots returns a data frame.

Note

The columns have a class "oneline" for better printing.

Examples

named.list <- function(...) {
# Collect only named arguments, ignoring unnamed arguments.
d <- dots(...)
do(list, d[names(d) != ""])

}

named.list(a=1, b=2*2, stop("this is not evaluated"))

dots2env Make or update an environment with bindings from a dots list.

Description

All named entries in the dots object will be bound to variables. Unnamed entries will be appended
to any existing value of ... in the order in which they appear.



dots2env 13

Usage

dots2env(
x,
env = new.env(hash = hash, parent = parent, size = size),
names = NULL,
use_dots = TRUE,
append = TRUE,
hash = (length(dots) > 100),
size = max(29L, length(dots)),
parent = emptyenv()

)

## S3 method for class 'dots'
as.environment(x)

Arguments

x A dots object with names.

env Specify an environment object to populate and return. By default a new envi-
ronment is created.

names Which variables to populate in the environment. If NULL is given, will use all
names present in the dotlist. If a name is given that does not match any names
from the dots object, an error is raised.

use_dots Whether to bind unnamed or unmatched items to .... If FALSE, these items
are discarded. If TRUE, they bound to ... in the environment. If items have
duplicate names, the earlier ones are used and the rest placed in "...".

append if TRUE, unmatched or unnamed items will be appended to any existing value of
’...’. If FALSE, the existing binding of ... will be cleared. (Neither happens if
use_dots is FALSE.)

hash if env is NULL, this argument is passed to new.env.

size if env is NULL, this argument is paseed to new.env.

parent if env is NULL, this argument is paseed to new.env.

Value

An environment object.

See Also

env2dots



14 forced

env2dots Copy bindings from an environment into a dots object, or vice versa.

Description

env2dots copies all bindings in the environment (but not those from its parents) into a new dots
object. Bindings that are promises will be captured without forcing. Bindings that are not promises
will be rendered as forced quotations. The output will not be in any guaranteed order.

Usage

env2dots(
env = caller(environment()),
names = ls(envir = env, all.names = TRUE),
include_missing = TRUE,
expand_dots = TRUE

)

Arguments

env An environment.

names Which names to extract from the environment. By default extracts all bindings
present in env, but not in its enclosing environments.

include_missing

Whether to include missing bindings.

expand_dots Whether to include the contents of ....

Value

A dots object.

forced Forcing and forcedness of arguments and quotations.

Description

There are two kinds of quotations: forced and unforced. Unforced quotations have an expression
and an environment; forced quotations have an expression and a value.

forced(q) tests whether a quotation is forced.

forced(d) on a dots object tests whether each element is forced, and returns a logical vector.

force_(x) converts an unforced quotation or dots object into a forced one, by evaluating it.

value(x) or values(...) returns the value of a quotation or dots, forcing it if necessary.



forced 15

Usage

forced(x)

## S3 method for class 'quotation'
forced(x, ...)

## S3 method for class 'dots'
forced(x)

## Default S3 method:
forced(x)

force_(x, ...)

## S3 method for class 'quotation'
force_(x, eval = base::eval, ...)

## S3 method for class 'dots'
force_(x, ...)

value(x, ...)

## S3 method for class 'quotation'
value(x, mode = "any", ...)

## S3 method for class 'dots'
value(x, ...)

values(x)

## S3 method for class 'dots'
values(x)

Arguments

x A quotation or dots object.

... Options used by methods

eval Which evaluation function to use.

mode Whether to force in "any" mode or "function" mode (see locate).

Value

forced(x) returns a logical.

value(x) returns the result of forcing the quotation.

values returns a list.



16 format.dots

See Also

is_forced forced_quo

force

format.dots Formatting methods for dots and quotations.

Description

format.dots constructs a string representation of a dots object.

format.quotation constructs a string representation of a quotation object.

format.oneline formats a vector or list so that each item is displayed on one line. It is similar to
format.AsIs but tries harder with language objects. The "oneline" class is used by as.data.frame.dots.

Usage

## S3 method for class 'dots'
format(
x,
compact = FALSE,
show.environments = !compact,
show.expressions = !compact,
width = 36,
...

)

## S3 method for class 'quotation'
format(
x,
compact = FALSE,
show.environments = !compact,
show.expressions = !compact,
width = 36,
...

)

## S3 method for class 'oneline'
format(x, max.width = 50, width = max.width, ...)

## S3 method for class 'dots'
print(x, ...)

## S3 method for class 'quotation'
print(x, ...)



function_ 17

Arguments

x An object.

compact Implies show.environments=FALSE and show.expressions=FALSE.
show.environments

Whether to show environments for unforced quotations.
show.expressions

Whether to show expressions for forced quotations.

width See base::format.

... Further parameters passed along to base::format.

max.width See base::format.

function_ Explicitly create closures.

Description

function_ is a normally-evaluating version of function, which creates closures. A closure object
has three components: the argument list, the body expression, and the enclosing environment.

arglist() is a helper that produces a named list of missing_values given a character vector of
names.

Usage

function_(args, body, env = arg_env(args, environment()))

arglist(names, fill = missing_value())

Arguments

args The argument list of the new function. NULL is accepted to make a function
with no arguments. Arguments are specified as a named list; the list names
become the argument names, and the list values become the default expressions.
A value of missing_value() indicates no default. alist and arglist are useful
for making argument lists.

body An expression for the body of the function.

env The enclosing environment of the new function.

names A character vector.

fill The expression (default missing)

Value

A closure.



18 get_call

See Also

environment formals body

Examples

f1 <- function(x, y = x) { x + y }
f2 <- function_(alist(x = , y = x),

quote( { x + y } ),
environment())

identical(f1, f2) # TRUE

# `fn` makes a compact way to write functions;
# `fn(x+y)` is equivalent to `function(x, y) x+y`
fn <- function(exp) {

exp_ <- arg(exp)
nn <- arglist(all.names(expr(exp_), functions=FALSE))
function_(nn, expr(exp_), env(exp_))

}

fn(x^2)
fn(x+y)

get_call Get information about currently executing calls.

Description

get_call(env), given an environment associated with a currently executing call, returns the func-
tion call and its arguments, as a dots object. To replicate a call, the dots object returned can be
passed to do.

get_function(env) finds the function object associated with a currently executing call.

Usage

get_call(
env = caller(environment()),
ifnotfound = stop("get_call: environment not found on stack")

)

get_function(
env = caller(environment()),
ifnotfound = stop("get_function: environment not found on stack")

)

Arguments

env An environment belonging to a currently executing function call. By default, the
caller of get_call itself (so get_call() is equivalent to get_call(environment()).)

ifnotfound What to return if the call is not found. By default an error is thrown.



get_dots 19

Details

get_call is meant to replace match.call and sys.call; its advantage is that it captures the envi-
ronments bound to arguments in addition to their written form.

get_function is similar to sys.function, but is keyed by environment rather than number.

Value

get_call returns a dots object, the first element of which represents the function name and caller
environment.

get_function returns a closure.

See Also

do dots caller

Examples

# We might think of re-writing the start of [lm] like so:
LM <- function(formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...) {

cl <- get_call()
mf <- do(model.frame,

arg_list(formula, data, subset, weights, na.action, offset))

z <- get.call()

class(z) <- c("LM", class(z))
z$call <- cl
z

}

# and `update` like so:
update.LM <- function(object, formula., ...) {

call <- object$call
extras <- dots(...)
call$formula <- forced_quo(update.formula(formula(object), formula.))
do(call)

}

get_dots Set or get the contents of ....

Description

get_dots() unpacks ... from a given environment and returns a dots object.

set_dots takes a dots list and uses it to create a binding for ... in a given environment.



20 locate

Usage

get_dots(env = caller(environment()), inherits = FALSE)

set_dots(env, d, append = FALSE)

Arguments

env The environment to look in.

inherits Whether to pull ... from enclosing environments.

d a [dots] object.

append if TRUE, the values should be appended to the existing binding. If false, existing
binding for "..." will be replaced.

Details

get_dots() is equivalent to dots(...) or arg_list(`...`).

Value

get_dots returns a dots list. If ... is not bound or is missing, it returns an empty dots list.

set_dots returns the updated environment, invisibly.

See Also

env2dots set_arg dots2env

locate Find the environment which defines a name.

Description

locate starts at a given environment, and searches enclosing environments for a name. It returns
the first enclosing environment which defines sym.

locate_ is the normally evaluating method; locate(x) is equivalent to locate_(quo(x)) or
locate_(quote(x), environment()).

When sym is a quotation or dots, any env argument is ignored.

Usage

locate(sym, env = arg_env_(quote(sym), environment()), mode = "any", ...)

locate_(sym, env = arg_env_(quote(sym), environment()), mode = "any", ...)

locate_.list(sym, env = arg_env_(quote(sym), environment()), mode = "any", ...)



locate 21

locate_.quotation(sym, env = "ignored", mode = "any", ...)

locate_.character(
sym,
env = arg_env_(quote(sym), environment()),
mode = "any",
...

)

`locate_.(`(sym, env = arg_env_(quote(sym), environment()), mode = "any", ...)

locate_.dots(sym, env = "ignored", mode = "any", ...)

locate_.name(
sym,
env = arg_env_(quote(sym), environment()),
mode = "any",
ifnotfound = stop("Binding ", deparse(sym), " not found")

)

Arguments

sym A name. For locate the argument is used literally. For locate_ it should be a
name or list of names.

env Which environment to begin searching from.

mode Either "any" or "function". "any" finds the lowest enclosing environment
which gives any definiton for sym. "function" searches for an environment
which defines sym as a function. This may force lazy arguments in the process,
in the same way as get.

... Further arguments passed to methods.

ifnotfound What is returned if the symbol is not found. By default an exception is raised.

Value

An environment object which defines sym, if one is found.

If sym is a list (of names) or a dots object, locate_(sym) returns a list.

Note

To locate where ... is bound, you can wrap it in parens, as locate( (...) ).

If you use a literal character argument, as in locate("x", environment()), you must also provide
the environment argument explicitly; locate("x") won’t work in compiled functions. However
using a literal name like locate(x) will work OK. See note under arg.

Examples

# Here is how to implement R's `<<-` operator, using `locate_`:
`%<<-%` <- function(lval, rval) {



22 missing_value

lval_ <- arg(lval)
name <- expr(lval_)
target.env <- locate_(name, parent.env(env(lval_)))
assign(as.character(name), rval, envir=target.env)

}

x <- "not this one"
local({

x <- "this one"
local({

x <- "not this one either"
x %<<-% "this works like builtin <<-"

})
print(x)

})
print(x)

missing_value R’s missing value.

Description

missing_value() returns R’s missing object; what R uses to represent a missing argument. It is
distinct from either NULL or NA.

Usage

missing_value(n)

missing_(x, unwrap = TRUE)

## Default S3 method:
missing_(x, unwrap = TRUE)

## S3 method for class 'dots'
missing_(x, unwrap = TRUE)

## S3 method for class 'quotation'
missing_(x, unwrap = TRUE)

list_missing(...)

Arguments

n Optional; a number. If provided, will return a list of missing values with this
many elements.

x a value, dots, or list.



missing_value 23

unwrap Whether to descend recursively through unevaluated promises using unwrap(x,
TRUE)

... Arguments evaluated normally. except those which are missing.

Details

The missing value occurs naturally in a quoted R expression that has an empty argument:

exp <- quote( x[1, ] )
identical(exp[[4]], missing_value()) #TRUE
is_missing(exp[[4]]) #also TRUE

So we can use missing_value() to help construct expressions:

substitute(f[x, y], list(x = 1, y=missing_value()))

When such an expression is evaluated and starts a function call, the missing value winds up in the
promise expression.

f <- function(x) arg_expr(x)
identical(f(), missing_value()) # TRUE

During "normal evaluation", finding a missing value in a variable raises an error.

m <- missing_value()
list(m) # raises error

This means that it’s sometimes tricky to work with missings:

exp <- quote( x[1, ] )
cols <- x[[4]]
x <- list(missing_value(), 2, 3) # this is ok, but...
a <- missing_value(); b <- 2; c <- 3 # this stores missing in "cols",
x <- list(a, b, c) # throws an error: "a" missing

Generally, keep your missing values wrapped up in lists or quotations, instead of assigning them to
variables directly.

Value

missing_value returns the symbol with empty name, or a list of such.

missing_ returns a logical vector.

list_missing returns a list.

See Also

missing is_missing

missing is_missing



24 quo

Examples

# These expressions are equivalent:
function(x, y=1) {x+y}
function_(list(x=missing_value, y=1),

quote( {x+y} ))

# These expressions are also equivalent:
quote(df[,1])
substitute(df[row,col],

list(row = missing_value(), col = 1))
# How to do the trick of `[` where it can tell which arguments are
# missing:
`[.myclass` <- function(x, ...) {

indices <- list_missing(...)
kept.axes <- which(missing_(indices))
cat(paste0("Keeping axes ", kept_axes, "\n"))
#...

}
ar <- structure(array(1:24, c(2, 3, 4)))
ar[, 3, ]

quo Quotation objects.

Description

quo(expr, env) captures expr without evaluating, and returns a qutation object. A quotation has
two parts: an expression expr(q) with an environment env(q).

quo_(expr, env) is the normally evaluating version. It constructs a quotation given an expression
and environment.

as.quo(x) converts an object into a quotation. Closures, formulas, and single-element dots can be
converted this way.

forced_quo(x) captures the expression in its argument, then forces it, returning a quotation with
the expression and value.

forced_quo_(val) makes a forced quotation given a value. Specifically it constructs a quotation
with the same object in both the expr and value slots, except if is a language object in which case
the expr slot is wrapped in quote().

Usage

quo(expr, env = arg_env_(quote(expr), environment()), force = FALSE)

quo_(expr, env, force = FALSE)

env(q)

env(q) <- value



quo 25

expr(q)

## S3 method for class 'quotation'
expr(q)

expr(q) <- value

is.quotation(x)

is.quo(x)

as.quo(x)

forced_quo(x)

forced_quo_(val)

Arguments

expr An expression. For quo this is taken literally and not evaluated. For quo_ this is
evaluated normally.

env An environment.

force Whether to evaluate the expression and create a forced quotation.

q A quotation object.

value An updated value.

x Any object.

val A value.

Details

(Like in writing, an ’expression’ may simply be a set of words, but a ’quotation’ comes bundled
with a citation, to reference a context in which it was said.)

A quo is parallel to a ’promise’ which is the data structure R uses to hold lazily evaluated arguments.
A quo is different from a promise because it is an immutable data object.

As a data object, a quo does not automatically evaluate like a promise, but can be evaluated explicitly
with the methods value or force_. A quo is immutable, so it does not mutate into a "forced" state if
you choose to evaluate it; instead force_(q) returns a new object in the forced state.

A function can capture its arguments as quotations using arg.

A dots object is a list of quotations.

Value

quo_ and quo return an object of class "quotation".

as.quo returns a quotation.



26 unwrap

set_ Assign values to variables

Description

set_ is a normally-evaluating version of <-. set_enclos_ is a normally evaluating version of <<-.

Usage

set_(dest, val)

set_enclos_(dest, val)

Arguments

dest A quotation specifying the destination environment and name.

val The value to assign.

Details

set_ differs from [assign] in that set_ will process subassignments.

These helpers are here because it is tricky to use do_ with <- (see Note under do_).

Value

set_ returns val, invisibly.

Examples

set_(quo(x), 12) #equivalent to `x <- 12`
set_(quo(x[3]), 12) #equivalent to `x[3] <- 12`
e <- new.env()
set_(quo(x[3], e), 12) #assigns in environment `e`
set_enclos_(quo(x[3], e), 12) #assigns in a parent of environment `e`

unwrap Unwrap variable references.

Description

Given an unforced quotation whose expression is a bare variable name, unwrap follows the variable
reference, and returns a quotation. When the argument is forced or has a nontrivial expression
unwrap has no effect.



unwrap 27

Usage

unwrap(x, recursive = FALSE)

## S3 method for class 'dots'
unwrap(x, recursive = FALSE)

Arguments

x a quotation to unwrap.

recursive Default FALSE unwraps exactly once. If TRUE, unwrap as far as possible (until a
forced promise or nontrivial expression is found.)

Details

There are two good use cases for unwrap(x, recursive=TRUE). One is to derive plot labels (the
most inoccuous use of metaprogramming). Another is to check for missingness (this is what R’s
missing and does as well).

Using unwrap(x, recursive=TRUE) in other situations can get you into confusing situations –
effectively you are changing the behavior of a parent function that may be an unknown number
of levels up the stack, possibly turning a standard-evaluating function into nonstandard-evaluating
function. So recursive unerapping is not the default behavior.

Value

The quotation method returns a quotation.

The dots method returns a dots object with each quotation unwrapped.

Examples

# different levels of unwrapping:
f <- function(x) { g(x) }
g <- function(y) { h(y) }
h <- function(z) {

print(arg(z))
print(unwrap(quo(z)))
print(unwrap(unwrap(quo(z))))
print(unwrap(quo(z), recursive=TRUE))

}

w <- 5
f(w)



Index

[.dots (dots), 10
[<-.dots (dots), 10

alist, 17
arg, 2, 21, 25
arg_ (arg), 2
arg_env, 3
arg_env_ (arg_env), 3
arg_expr (arg_env), 3
arg_expr_ (arg_env), 3
arg_list (arg), 2
arg_list_ (arg), 2
arglist, 17
arglist (function_), 17
as.data.frame.dots, 16
as.data.frame.dots (dots), 10
as.dots, 6
as.environment.dots (dots2env), 12
as.lazy_dots, 7
as.quo (quo), 24

base::format, 17

c(), 12
c.dots, 9
c.dots (dots), 10
c.quotation (dots), 10
caller, 7, 18, 19
caller(), 9

delayedAssign, 2
do, 8, 9, 18
do.call, 9
do_, 26
do_ (do), 9
dots, 2, 3, 6, 7, 9, 10, 10, 11, 13–15, 18–22,

24, 25, 27
dots2env, 12
dots_ (dots), 10
dots_envs (arg_env), 3

dots_exprs (arg_env), 3

emptyenv(), 3
env (quo), 24
env2dots, 6, 14
env<- (quo), 24
environment, 10, 25
envs (dots), 10
envs<- (dots), 10
eval, 8
expr (quo), 24
expr<- (quo), 24
exprs (dots), 10
exprs<- (dots), 10
Extract, 11

for, 10
force, 16
force_, 25
force_ (forced), 14
forced, 10, 14, 14, 24–26
forced_dots (dots), 10
forced_dots_ (dots), 10
forced_quo (quo), 24
forced_quo_ (quo), 24
format.AsIs, 16
format.dots, 16
format.oneline (format.dots), 16
format.quotation (format.dots), 16
function, 17
function_, 17

get, 21
get_call, 18
get_call(), 3
get_dots, 19
get_dots(), 12
get_function (get_call), 18

is.quo (quo), 24

28



INDEX 29

is.quotation (quo), 24
is_default (arg_env), 3
is_default_ (arg_env), 3
is_forced (arg_env), 3
is_forced_ (arg_env), 3
is_literal (arg_env), 3
is_literal_ (arg_env), 3
is_missing (arg_env), 3
is_missing_ (arg_env), 3
is_promise (arg_env), 3
is_promise_ (arg_env), 3

language, 24
lazyeval::as.lazy_dots, 7
lazyeval::lazy_dots, 7
list_missing (missing_value), 22
locate, 15, 20
locate_ (locate), 20
logical, 15

match.call, 19
missing, 4, 27
missing_ (missing_value), 22
missing_value, 4, 17, 22
missing_value(), 17

NA, 22
name, 21
new.env, 13
NULL, 22

parent.frame, 8
print.dots (format.dots), 16
print.quotation (format.dots), 16

quo, 24
quo_ (quo), 24
quotation, 2–4, 9, 10, 12, 14, 15, 20, 24, 26,

27
quotation (quo), 24

set_, 10, 26
set_arg (arg), 2
set_arg_ (arg), 2
set_dots (get_dots), 19
set_enclos_ (set_), 26
sys.call, 19
sys.function, 19

unwrap, 5, 26

value, 25
value (forced), 14
values (forced), 14


	arg
	arg_env
	as.dots
	as.lazy_dots
	caller
	do
	dots
	dots2env
	env2dots
	forced
	format.dots
	function_
	get_call
	get_dots
	locate
	missing_value
	quo
	set_
	unwrap
	Index

