Package 'olsrr'

February 10, 2020

```
Title Tools for Building OLS Regression Models
Version 0.5.3
Description Tools designed to make it easier for users, particularly beginner/intermediate R users
      to build ordinary least squares regression models. Includes comprehensive regression output,
      heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence,
      model fit assessment and variable selection procedures.
Depends R(>=3.3)
Imports car, data.table, ggplot2, goftest, graphics, gridExtra,
      nortest, Rcpp, stats, utils
Suggests covr, descriptr, knitr, rmarkdown, testthat, vdiffr, xplorerr
License MIT + file LICENSE
URL https://olsrr.rsquaredacademy.com/,
      https://github.com/rsquaredacademy/olsrr
BugReports https://github.com/rsquaredacademy/olsrr/issues
Encoding UTF-8
LazyData true
VignetteBuilder knitr
RoxygenNote 6.1.1
LinkingTo Rcpp
NeedsCompilation yes
Author Aravind Hebbali [aut, cre]
Maintainer Aravind Hebbali <a href="hebbali.aravind@gmail.com">hebbali.aravind@gmail.com</a>
Repository CRAN
Date/Publication 2020-02-10 12:00:02 UTC
```

Type Package

R topics documented:

auto	3
cement	4
fitness	4
hsb	4
olsrr	5
ols_aic	5
ols_apc	6
ols_coll_diag	7
ols_correlations	9
ols_fpe	0
ols_hadi	1
ols_hsp	2
ols_launch_app	3
ols_leverage	3
ols_mallows_cp	4
ols_msep	5
ols_plot_added_variable	6
ols_plot_comp_plus_resid	7
ols_plot_cooksd_bar	8
ols_plot_cooksd_chart	9
ols_plot_dfbetas	0
ols_plot_dffits	1
ols_plot_diagnostics	2
ols_plot_hadi	3
ols_plot_obs_fit	4
ols_plot_reg_line	4
ols_plot_resid_box	5
ols_plot_resid_fit	6
ols_plot_resid_fit_spread	
ols_plot_resid_hist	8
ols_plot_resid_lev	
ols_plot_resid_pot	
ols_plot_resid_qq	
ols_plot_resid_regressor	
ols_plot_resid_stand	
ols_plot_resid_stud	2
ols_plot_resid_stud_fit	
ols_plot_response	
ols_pred_rsq	
ols_prep_avplot_data	
ols_prep_cdplot_data	
ols_prep_cdplot_outliers	
ols_prep_dfbeta_data	
ols_prep_dfbeta_outliers	
ols_prep_dsrvf_data	
ols_prep_outlier_obs	
- 010_p10p_0001101_000	J

auto 3

auto	Test Data Set	
Index		7 4
	surgical	72
	stepdata	
	rvsr_plot_shiny	
	rivers	
	ols_test_score	
	ols_test_outlier	
	ols_test_normality	
	ols_test_f	
	ols_test_correlation	
	ols_test_breusch_pagan	
	ols_test_bartlett	
	ols_step_forward_p	
	ols_step_forward_aic	
	ols_step_both_p	
	ols_step_both_aic	
	ols_step_best_subset	
	ols_step_backward_p	
	ols_step_backward_aic	
	ols_step_all_possible_betas	
	ols_step_all_possible	
	ols_sbic	
	ols_sbc	
	ols_regress	
	ols_pure_error_anova	
	ols_press	
	ols_prep_srplot_data	
	ols_prep_srchart_data	
	ols_prep_rvsrplot_data	
	ols_prep_rstudlev_data	
	ols_prep_rfsplot_fmdata	
	ols_prep_regress_y	
	ols_prep_regress_x	

Description

Test Data Set

Usage

auto

Format

An object of class tbl_df (inherits from tbl, data.frame) with 74 rows and 11 columns.

4 hsb

cement

Test Data Set

Description

Test Data Set

Usage

cement

Format

An object of class data. frame with 13 rows and 6 columns.

fitness

Test Data Set

Description

Test Data Set

Usage

fitness

Format

An object of class data. frame with 31 rows and 7 columns.

hsb

Test Data Set

Description

Test Data Set

Usage

hsb

Format

An object of class data. frame with 200 rows and 15 columns.

olsrr 5

olsrr

olsrr package

Description

Tools for teaching and learning OLS regression

Details

See the README on GitHub

ols_aic

Akaike information criterion

Description

Akaike information criterion for model selection.

Usage

```
ols_aic(model, method = c("R", "STATA", "SAS"))
```

Arguments

model An object of class 1m.

method A character vector; specify the method to compute AIC. Valid options include

R, STATA and SAS.

Details

AIC provides a means for model selection. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. R and STATA use loglikelihood to compute AIC. SAS uses residual sum of squares. Below is the formula in each case:

R & STATA

$$AIC = -2(loglikelihood) + 2p$$

SAS

$$AIC = n * ln(SSE/n) + 2p$$

where n is the sample size and p is the number of model parameters including intercept.

Value

Akaike information criterion of the model.

ols_apc

References

Akaike, H. (1969). "Fitting Autoregressive Models for Prediction." Annals of the Institute of Statistical Mathematics 21:243–247.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_apc, ols_fpe, ols_hsp, ols_mallows_cp, ols_msep, ols_sbc, ols_sbic

Examples

```
# using R computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model)

# using STATA computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model, method = 'STATA')

# using SAS computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model, method = 'SAS')</pre>
```

ols_apc

Amemiya's prediction criterion

Description

Amemiya's prediction error.

Usage

```
ols_apc(model)
```

Arguments

model

An object of class 1m.

Details

Amemiya's Prediction Criterion penalizes R-squared more heavily than does adjusted R-squared for each addition degree of freedom used on the right-hand-side of the equation. The higher the better for this criterion.

$$((n+p)/(n-p))(1-(R^2))$$

ols_coll_diag 7

where n is the sample size, p is the number of predictors including the intercept and R^2 is the coefficient of determination.

Value

Amemiya's prediction error of the model.

References

Amemiya, T. (1976). Selection of Regressors. Technical Report 225, Stanford University, Stanford, CA.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic, ols_fpe, ols_hsp, ols_mallows_cp, ols_msep, ols_sbc, ols_sbic

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_apc(model)</pre>
```

ols_coll_diag

Collinearity diagnostics

Description

Variance inflation factor, tolerance, eigenvalues and condition indices.

Usage

```
ols_coll_diag(model)
ols_vif_tol(model)
ols_eigen_cindex(model)
```

Arguments

model

An object of class 1m.

8 ols_coll_diag

Details

Collinearity implies two variables are near perfect linear combinations of one another. Multicollinearity involves more than two variables. In the presence of multicollinearity, regression estimates are unstable and have high standard errors.

Tolerance

Percent of variance in the predictor that cannot be accounted for by other predictors.

Steps to calculate tolerance:

- Regress the kth predictor on rest of the predictors in the model.
- Compute R^2 the coefficient of determination from the regression in the above step.
- $Tolerance = 1 R^2$

Variance Inflation Factor

Variance inflation factors measure the inflation in the variances of the parameter estimates due to collinearities that exist among the predictors. It is a measure of how much the variance of the estimated regression coefficient β_k is inflated by the existence of correlation among the predictor variables in the model. A VIF of 1 means that there is no correlation among the kth predictor and the remaining predictor variables, and hence the variance of β_k is not inflated at all. The general rule of thumb is that VIFs exceeding 4 warrant further investigation, while VIFs exceeding 10 are signs of serious multicollinearity requiring correction.

Steps to calculate VIF:

- Regress the kth predictor on rest of the predictors in the model.
- ullet Compute \mathbb{R}^2 the coefficient of determination from the regression in the above step.
- $Tolerance = 1/1 R^2 = 1/Tolerance$

Condition Index

Most multivariate statistical approaches involve decomposing a correlation matrix into linear combinations of variables. The linear combinations are chosen so that the first combination has the largest possible variance (subject to some restrictions), the second combination has the next largest variance, subject to being uncorrelated with the first, the third has the largest possible variance, subject to being uncorrelated with the first and second, and so forth. The variance of each of these linear combinations is called an eigenvalue. Collinearity is spotted by finding 2 or more variables that have large proportions of variance (.50 or more) that correspond to large condition indices. A rule of thumb is to label as large those condition indices in the range of 30 or larger.

Value

ols_coll_diag returns an object of class "ols_coll_diag". An object of class "ols_coll_diag" is a list containing the following components:

vif_t tolerance and variance inflation factors eig_cindex eigen values and condition index ols_correlations 9

References

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt + drat, data = mtcars)
# vif and tolerance
ols_vif_tol(model)
# eigenvalues and condition indices
ols_eigen_cindex(model)
# collinearity diagnostics
ols_coll_diag(model)</pre>
```

ols_correlations

Part and partial correlations

Description

Zero-order, part and partial correlations.

Usage

```
ols_correlations(model)
```

Arguments

model

An object of class 1m.

Details

ols_correlations() returns the relative importance of independent variables in determining response variable. How much each variable uniquely contributes to rsquare over and above that which can be accounted for by the other predictors? Zero order correlation is the Pearson correlation coefficient between the dependent variable and the independent variables. Part correlations indicates how much rsquare will decrease if that variable is removed from the model and partial correlations indicates amount of variance in response variable, which is not estimated by the other independent variables in the model, but is estimated by the specific variable.

ols_fpe

Value

ols_correlations returns an object of class "ols_correlations". An object of class "ols_correlations" is a data frame containing the following components:

Zero-order zero order correlations
Partial partial correlations
Part part correlations

References

Morrison, D. F. 1976. Multivariate statistical methods. New York: McGraw-Hill.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_correlations(model)</pre>
```

ols_fpe

Final prediction error

Description

Estimated mean square error of prediction.

Usage

```
ols_fpe(model)
```

Arguments

mode1

An object of class 1m.

Details

Computes the estimated mean square error of prediction for each model selected assuming that the values of the regressors are fixed and that the model is correct.

$$MSE((n+p)/n)$$

where MSE = SSE/(n-p), n is the sample size and p is the number of predictors including the intercept

Value

Final prediction error of the model.

ols_hadi

References

Akaike, H. (1969). "Fitting Autoregressive Models for Prediction." Annals of the Institute of Statistical Mathematics 21:243–247.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic, ols_apc, ols_hsp, ols_mallows_cp, ols_msep, ols_sbc, ols_sbic

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_fpe(model)</pre>
```

ols_hadi

Hadi's influence measure

Description

Measure of influence based on the fact that influential observations in either the response variable or in the predictors or both.

Usage

```
ols_hadi(model)
```

Arguments

model

An object of class 1m.

Value

Hadi's measure of the model.

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

Other influence measures: ols_leverage, ols_pred_rsq, ols_press

ols_hsp

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_hadi(model)</pre>
```

ols_hsp

Hocking's Sp

Description

Average prediction mean squared error.

Usage

```
ols_hsp(model)
```

Arguments

model

An object of class 1m.

Details

Hocking's Sp criterion is an adjustment of the residual sum of Squares. Minimize this criterion.

$$MSE/(n-p-1)$$

where MSE = SSE/(n-p), n is the sample size and p is the number of predictors including the intercept

Value

Hocking's Sp of the model.

References

Hocking, R. R. (1976). "The Analysis and Selection of Variables in a Linear Regression." Biometrics 32:1–50.

See Also

Other model selection criteria: ols_aic , ols_apc , ols_fpe , $ols_mallows_cp$, ols_msep , ols_sbc , ols_sbic

```
model \leftarrow lm(mpg \sim disp + hp + wt + qsec, data = mtcars) ols_hsp(model)
```

ols_launch_app

ols_launch_app

Launch shiny app

Description

Launches shiny app for interactive model building.

Usage

```
ols_launch_app()
```

Examples

```
## Not run:
ols_launch_app()
## End(Not run)
```

ols_leverage

Leverage

Description

The leverage of an observation is based on how much the observation's value on the predictor variable differs from the mean of the predictor variable. The greater an observation's leverage, the more potential it has to be an influential observation.

Usage

```
ols_leverage(model)
```

Arguments

model

An object of class 1m.

Value

Leverage of the model.

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other influence measures: ols_hadi, ols_pred_rsq, ols_press

ols_mallows_cp

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_leverage(model)</pre>
```

ols_mallows_cp

Mallow's Cp

Description

Mallow's Cp.

Usage

```
ols_mallows_cp(model, fullmodel)
```

Arguments

model An object of class 1m. fullmodel An object of class 1m.

Details

Mallows' Cp statistic estimates the size of the bias that is introduced into the predicted responses by having an underspecified model. Use Mallows' Cp to choose between multiple regression models. Look for models where Mallows' Cp is small and close to the number of predictors in the model plus the constant (p).

Value

Mallow's Cp of the model.

References

Hocking, R. R. (1976). "The Analysis and Selection of Variables in a Linear Regression." Biometrics 32:1–50.

Mallows, C. L. (1973). "Some Comments on Cp." Technometrics 15:661–675.

See Also

Other model selection criteria: ols_aic, ols_apc, ols_fpe, ols_hsp, ols_msep, ols_sbc, ols_sbic

ols_msep 15

ols_msep

MSEP

Description

Estimated error of prediction, assuming multivariate normality.

Usage

```
ols_msep(model)
```

Arguments

mode1

An object of class 1m.

Details

Computes the estimated mean square error of prediction assuming that both independent and dependent variables are multivariate normal.

$$MSE(n+1)(n-2)/n(n-p-1)$$

where MSE = SSE/(n-p), n is the sample size and p is the number of predictors including the intercept

Value

Estimated error of prediction of the model.

References

Stein, C. (1960). "Multiple Regression." In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, edited by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, 264–305. Stanford, CA: Stanford University Press.

Darlington, R. B. (1968). "Multiple Regression in Psychological Research and Practice." Psychological Bulletin 69:161–182.

See Also

Other model selection criteria: ols_aic, ols_apc, ols_fpe, ols_hsp, ols_mallows_cp, ols_sbc, ols_sbic

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_msep(model)</pre>
```

ols_plot_added_variable

Added variable plots

Description

Added variable plot provides information about the marginal importance of a predictor variable, given the other predictor variables already in the model. It shows the marginal importance of the variable in reducing the residual variability.

Usage

```
ols_plot_added_variable(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

The added variable plot was introduced by Mosteller and Tukey (1977). It enables us to visualize the regression coefficient of a new variable being considered to be included in a model. The plot can be constructed for each predictor variable.

Let us assume we want to test the effect of adding/removing variable X from a model. Let the response variable of the model be Y

Steps to construct an added variable plot:

- Regress Y on all variables other than X and store the residuals (Y residuals).
- Regress *X* on all the other variables included in the model (*X* residuals).
- Construct a scatter plot of Y residuals and X residuals.

What do the Y and X residuals represent? The Y residuals represent the part of \mathbf{Y} not explained by all the variables other than X. The X residuals represent the part of \mathbf{X} not explained by other variables. The slope of the line fitted to the points in the added variable plot is equal to the regression coefficient when \mathbf{Y} is regressed on all variables including \mathbf{X} .

A strong linear relationship in the added variable plot indicates the increased importance of the contribution of X to the model already containing the other predictors.

Deprecated Function

ols_avplots() has been deprecated. Instead use ols_plot_added_variable().

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

```
[ols_plot_resid_regressor()], [ols_plot_comp_plus_resid()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_added_variable(model)</pre>
```

```
ols_plot_comp_plus_resid
```

Residual plus component plot

Description

The residual plus component plot indicates whether any non-linearity is present in the relationship between response and predictor variables and can suggest possible transformations for linearizing the data.

Usage

```
ols_plot_comp_plus_resid(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

ols_rpc_plot() has been deprecated. Instead use ols_plot_comp_plus_resid().

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

ols_plot_cooksd_bar

See Also

```
[ols_plot_added_variable()], [ols_plot_resid_regressor()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_comp_plus_resid(model)</pre>
```

ols_plot_cooksd_bar Cooks' D bar plot

Description

Bar Plot of cook's distance to detect observations that strongly influence fitted values of the model.

Usage

```
ols_plot_cooksd_bar(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

Cook's distance was introduced by American statistician R Dennis Cook in 1977. It is used to identify influential data points. It depends on both the residual and leverage i.e it takes it account both the x value and y value of the observation.

Steps to compute Cook's distance:

- Delete observations one at a time.
- Refit the regression model on remaining n-1 observations
- examine how much all of the fitted values change when the ith observation is deleted.

A data point having a large cook's d indicates that the data point strongly influences the fitted values.

Value

ols_plot_cooksd_bar returns a list containing the following components:

outliers a data. frame with observation number and cooks distance that exceed threshold

threshold threshold for classifying an observation as an outlier

ols_plot_cooksd_chart 19

Deprecated Function

```
ols_cooksd_barplot() has been deprecated. Instead use ols_plot_cooksd_bar().
```

See Also

```
[ols_plot_cooksd_chart()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_cooksd_bar(model)</pre>
```

```
ols_plot_cooksd_chart Cooks' D chart
```

Description

Chart of cook's distance to detect observations that strongly influence fitted values of the model.

Usage

```
ols_plot_cooksd_chart(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

Cook's distance was introduced by American statistician R Dennis Cook in 1977. It is used to identify influential data points. It depends on both the residual and leverage i.e it takes it account both the x value and y value of the observation.

Steps to compute Cook's distance:

- Delete observations one at a time.
- Refit the regression model on remaining n-1 observations
- exmine how much all of the fitted values change when the ith observation is deleted.

A data point having a large cook's d indicates that the data point strongly influences the fitted values.

Value

ols_plot_cooksd_chart returns a list containing the following components:

outliers a data. frame with observation number and cooks distance that exceed threshold

threshold threshold for classifying an observation as an outlier

20 ols_plot_dfbetas

Deprecated Function

```
ols_cooksd_chart() has been deprecated. Instead use ols_plot_cooksd_chart().
```

See Also

```
[ols_plot_cooksd_bar()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_cooksd_chart(model)</pre>
```

ols_plot_dfbetas

DFBETAs panel

Description

Panel of plots to detect influential observations using DFBETAs.

Usage

```
ols_plot_dfbetas(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

DFBETA measures the difference in each parameter estimate with and without the influential point. There is a DFBETA for each data point i.e if there are n observations and k variables, there will be n*k DFBETAs. In general, large values of DFBETAS indicate observations that are influential in estimating a given parameter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and $2/\sqrt(n)$ as a size-adjusted cutoff.

Value

list; ols_plot_dfbetas returns a list of data.frame (for intercept and each predictor) with the observation number and DFBETA of observations that exceed the threshold for classifying an observation as an outlier/influential observation.

Deprecated Function

```
ols_dfbetas_panel() has been deprecated. Instead use ols_plot_dfbetas().
```

ols_plot_dffits 21

References

Belsley, David A.; Kuh, Edwin; Welsh, Roy E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.

Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. pp. ISBN 0-471-05856-4.

See Also

```
[ols_plot_dffits()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_dfbetas(model)</pre>
```

ols_plot_dffits

DFFITS plot

Description

Plot for detecting influential observations using DFFITs.

Usage

```
ols_plot_dffits(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

DFFIT - difference in fits, is used to identify influential data points. It quantifies the number of standard deviations that the fitted value changes when the ith data point is omitted.

Steps to compute DFFITs:

- Delete observations one at a time.
- Refit the regression model on remaining n-1 observations
- examine how much all of the fitted values change when the ith observation is deleted.

An observation is deemed influential if the absolute value of its DFFITS value is greater than:

$$2\sqrt{(p+1)/(n-p-1)}$$

where n is the number of observations and p is the number of predictors including intercept.

22 ols_plot_diagnostics

Value

ols_plot_dffits returns a list containing the following components:

outliers a data.frame with observation number and DFFITs that exceed threshold

threshold threshold for classifying an observation as an outlier

Deprecated Function

```
ols_dffits_plot() has been deprecated. Instead use ols_plot_dffits().
```

References

Belsley, David A.; Kuh, Edwin; Welsh, Roy E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.

Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. ISBN 0-471-05856-4.

See Also

```
[ols_plot_dfbetas()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_dffits(model)</pre>
```

Description

Panel of plots for regression diagnostics.

Usage

```
ols_plot_diagnostics(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

 $\hbox{\it\#'} @ section \ Deprecated \ Function: ols_diagnostic_panel() \ has \ been \ depresent \ and \ begin{picture}(10,0) \put(0,0) \put(0,$

cated. Instead use ols_plot_diagnostics().

ols_plot_hadi 23

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_diagnostics(model)</pre>
```

ols_plot_hadi

Hadi plot

Description

Hadi's measure of influence based on the fact that influential observations can be present in either the response variable or in the predictors or both. The plot is used to detect influential observations based on Hadi's measure.

Usage

```
ols_plot_hadi(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_hadi_plot() has been deprecated. Instead use ols_plot_hadi().
```

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

```
[ols_plot_resid_pot()]
```

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_hadi(model)</pre>
```

24 ols_plot_reg_line

-1-			C: 1
OTS	plot	obs	TIL

Observed vs fitted values plot

Description

Plot of observed vs fitted values to assess the fit of the model.

Usage

```
ols_plot_obs_fit(model, print_plot = TRUE)
```

Arguments

model

An object of class 1m.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

Details

Ideally, all your points should be close to a regressed diagonal line. Draw such a diagonal line within your graph and check out where the points lie. If your model had a high R Square, all the points would be close to this diagonal line. The lower the R Square, the weaker the Goodness of fit of your model, the more foggy or dispersed your points are from this diagonal line.

Deprecated Function

```
ols_ovsp_plot() has been deprecated. Instead use ols_plot_obs_fit().
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_obs_fit(model)</pre>
```

ols_plot_reg_line

Simple linear regression line

Description

Plot to demonstrate that the regression line always passes through mean of the response and predictor variables.

Usage

```
ols_plot_reg_line(response, predictor, print_plot = TRUE)
```

ols_plot_resid_box 25

Arguments

response Response variable.
predictor Predictor variable.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_reg_line() has been deprecated. Instead use ols_plot_reg_line().
```

Examples

```
ols_plot_reg_line(mtcars$mpg, mtcars$disp)
```

ols_plot_resid_box

Residual box plot

Description

Box plot of residuals to examine if residuals are normally distributed.

Usage

```
ols_plot_resid_box(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_rsd_boxplot() has been deprecated. Instead use ols_plot_resid_box().
```

See Also

```
Other residual diagnostics: ols_plot_resid_fit, ols_plot_resid_hist, ols_plot_resid_qq, ols_test_correlation, ols_test_normality
```

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_box(model)</pre>
```

ols_plot_resid_fit

```
ols_plot_resid_fit Residual vs fitted plot
```

Description

Scatter plot of residuals on the y axis and fitted values on the x axis to detect non-linearity, unequal error variances, and outliers.

Usage

```
ols_plot_resid_fit(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

Characteristics of a well behaved residual vs fitted plot:

- The residuals spread randomly around the 0 line indicating that the relationship is linear.
- The residuals form an approximate horizontal band around the 0 line indicating homogeneity of error variance.
- No one residual is visibly away from the random pattern of the residuals indicating that there are no outliers.

Deprecated Function

```
ols_rvsp_plot() has been deprecated. Instead use ols_plot_resid_fit().
```

See Also

```
Other residual diagnostics: ols_plot_resid_box, ols_plot_resid_hist, ols_plot_resid_qq, ols_test_correlation, ols_test_normality
```

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_fit(model)</pre>
```

```
ols_plot_resid_fit_spread

*Residual fit spread plot
```

Description

Plot to detect non-linearity, influential observations and outliers.

Usage

```
ols_plot_resid_fit_spread(model, print_plot = TRUE)
ols_plot_fm(model, print_plot = TRUE)
ols_plot_resid_spread(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

Consists of side-by-side quantile plots of the centered fit and the residuals. It shows how much variation in the data is explained by the fit and how much remains in the residuals. For inappropriate models, the spread of the residuals in such a plot is often greater than the spread of the centered fit.

Deprecated Function

```
ols_rfs_plot(), ols_fm_plot() and ols_rsd_plot() has been deprecated. Instead use ols_plot_resid_fit_spread() ols_plot_fm() and ols_plot_resid_spread().
```

References

Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press.

```
# model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
# residual fit spread plot
ols_plot_resid_fit_spread(model)
# fit mean plot
ols_plot_fm(model)
# residual spread plot</pre>
```

28 ols_plot_resid_lev

```
ols_plot_resid_spread(model)
```

Description

Histogram of residuals for detecting violation of normality assumption.

Usage

```
ols_plot_resid_hist(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_rsd_hist() has been deprecated. Instead use ols_plot_resid_hist().
```

See Also

```
Other residual diagnostics: ols_plot_resid_box, ols_plot_resid_fit, ols_plot_resid_qq, ols_test_correlation, ols_test_normality
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_hist(model)</pre>
```

```
ols_plot_resid_lev Studentized residuals vs leverage plot
```

Description

Graph for detecting outliers and/or observations with high leverage.

Usage

```
ols_plot_resid_lev(model, print_plot = TRUE)
```

ols_plot_resid_pot 29

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_rsdlev_plot() has been deprecated. Instead use ols_plot_resid_lev().
```

See Also

```
[ols_plot_resid_stud_fit()], [ols_plot_resid_lev()]
```

Examples

```
model <- lm(read ~ write + math + science, data = hsb)
ols_plot_resid_lev(model)</pre>
```

ols_plot_resid_pot

Potential residual plot

Description

Plot to aid in classifying unusual observations as high-leverage points, outliers, or a combination of both.

Usage

```
ols_plot_resid_pot(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_potrsd_plot() has been deprecated. Instead use ols_plot_resid_pot().
```

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

```
[ols_plot_hadi()]
```

30 ols_plot_resid_qq

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_pot(model)</pre>
```

ols_plot_resid_qq

Residual QQ plot

Description

Graph for detecting violation of normality assumption.

Usage

```
ols_plot_resid_qq(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_rsd_qqplot() has been deprecated. Instead use ols_plot_resid_qq().
```

See Also

```
Other \ residual \ diagnostics: \ ols\_plot\_resid\_box, \ ols\_plot\_resid\_fit, \ ols\_plot\_resid\_hist, \ ols\_test\_correlation, \ ols\_test\_normality
```

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_qq(model)</pre>
```

```
ols_plot_resid_regressor
```

Residual vs regressor plot

Description

Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.

Usage

```
ols_plot_resid_regressor(model, variable, print_plot = TRUE)
```

Arguments

model An object of class 1m.

variable New predictor to be added to the model.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_rvsr_plot() has been deprecated. Instead use ols_plot_resid_regressor().
```

See Also

```
[ols_plot_added_variable()], [ols_plot_comp_plus_resid()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_regressor(model, 'drat')</pre>
```

ols_plot_resid_stand Standardized residual chart

Description

Chart for identifying outliers.

Usage

```
ols_plot_resid_stand(model, print_plot = TRUE)
```

32 ols_plot_resid_stud

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Details

Standardized residual (internally studentized) is the residual divided by estimated standard deviation.

Value

ols_plot_resid_stand returns a list containing the following components:

outliers a data.frame with observation number and standardized resiudals that ex-

ceed threshold

for classifying an observation as an outlier

threshold threshold for classifying an observation as an outlier

Deprecated Function

```
ols_srsd_chart() has been deprecated. Instead use ols_plot_resid_stand().
```

See Also

```
[ols_plot_resid_stud()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_stand(model)</pre>
```

ols_plot_resid_stud

Studentized residual plot

Description

Graph for identifying outliers.

Usage

```
ols_plot_resid_stud(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

ols_plot_resid_stud_fit

Details

Studentized deleted residuals (or externally studentized residuals) is the deleted residual divided by its estimated standard deviation. Studentized residuals are going to be more effective for detecting outlying Y observations than standardized residuals. If an observation has an externally studentized residual that is larger than 3 (in absolute value) we can call it an outlier.

Value

```
ols_plot_resid_stud returns a list containing the following components:
```

outliers a data.frame with observation number and studentized residuals that ex-

ceed threshold

for classifying an observation as an outlier

threshold threshold for classifying an observation as an outlier

Deprecated Function

```
ols_srsd_plot() has been deprecated. Instead use ols_plot_resid_stud().
```

See Also

```
[ols_plot_resid_stand()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_stud(model)</pre>
```

```
ols_plot_resid_stud_fit
```

Deleted studentized residual vs fitted values plot

Description

Plot for detecting violation of assumptions about residuals such as non-linearity, constant variances and outliers. It can also be used to examine model fit.

Usage

```
ols_plot_resid_stud_fit(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

34 ols_plot_response

Details

Studentized deleted residuals (or externally studentized residuals) is the deleted residual divided by its estimated standard deviation. Studentized residuals are going to be more effective for detecting outlying Y observations than standardized residuals. If an observation has an externally studentized residual that is larger than 2 (in absolute value) we can call it an outlier.

Value

ols_plot_resid_stud_fit returns a list containing the following components:

outliers a data.frame with observation number, fitted values and deleted studentized

residuals that exceed the threshold for classifying observations as outliers/influential

observations

threshold threshold for classifying an observation as an outlier/influential observation

Deprecated Function

```
ols_dsrvsp_plot() has been deprecated. Instead use ols_plot_resid_stud_fit().
```

See Also

```
[ols_plot_resid_lev()], [ols_plot_resid_stand()], [ols_plot_resid_stud()]
```

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_resid_stud_fit(model)</pre>
```

ols_plot_response

Response variable profile

Description

Panel of plots to explore and visualize the response variable.

Usage

```
ols_plot_response(model, print_plot = TRUE)
```

Arguments

model An object of class 1m.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

```
ols_resp_viz() has been deprecated. Instead use ols_plot_response().
```

ols_pred_rsq 35

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_response(model)</pre>
```

ols_pred_rsq

Predicted rsquare

Description

Use predicted rsquared to determine how well the model predicts responses for new observations. Larger values of predicted R2 indicate models of greater predictive ability.

Usage

```
ols_pred_rsq(model)
```

Arguments

model

An object of class 1m.

Value

Predicted rsquare of the model.

See Also

Other influence measures: ols_hadi, ols_leverage, ols_press

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_pred_rsq(model)</pre>
```

Description

Data for generating the added variable plots.

Usage

```
ols_prep_avplot_data(model)
```

Arguments

model

An object of class 1m.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_prep_avplot_data(model)</pre>
```

```
\verb|ols_prep_cdplot_data| Cooks' D plot data|
```

Description

Prepare data for cook's d bar plot.

Usage

```
ols_prep_cdplot_data(model)
```

Arguments

model

An object of class 1m.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_prep_cdplot_data(model)</pre>
```

```
ols_prep_cdplot_outliers
```

Cooks' d outlier data

Description

Outlier data for cook's d bar plot.

Usage

```
ols_prep_cdplot_outliers(k)
```

Arguments

k

Cooks' d bar plot data.

ols_prep_dfbeta_data 37

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
k <- ols_prep_cdplot_data(model)
ols_prep_cdplot_outliers(k)</pre>
```

Description

Prepares the data for dfbetas plot.

Usage

```
ols_prep_dfbeta_data(d, threshold)
```

Arguments

d A tibble or data. frame with dfbetas.

threshold The threshold for outliers.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
dfb <- dfbetas(model)
n <- nrow(dfb)
threshold <- 2 / sqrt(n)
dbetas <- dfb[, 1]
df_data <- data.frame(obs = seq_len(n), dbetas = dbetas)
ols_prep_dfbeta_data(df_data, threshold)</pre>
```

```
ols_prep_dfbeta_outliers
```

DFBETAs plot outliers

Description

Data for identifying outliers in dfbetas plot.

```
ols_prep_dfbeta_outliers(d)
```

38 ols_prep_outlier_obs

Arguments

d

A tibble or data.frame.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
dfb <- dfbetas(model)
n <- nrow(dfb)
threshold <- 2 / sqrt(n)
dbetas <- dfb[, 1]
df_data <- data.frame(obs = seq_len(n), dbetas = dbetas)
d <- ols_prep_dfbeta_data(df_data, threshold)
ols_prep_dfbeta_outliers(d)</pre>
```

ols_prep_dsrvf_data

Deleted studentized residual plot data

Description

Generates data for deleted studentized residual vs fitted plot.

Usage

```
ols_prep_dsrvf_data(model)
```

Arguments

model

An object of class 1m.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_dsrvf_data(model)</pre>
```

ols_prep_outlier_obs Cooks' D outlier observations

Description

Identify outliers in cook's d plot.

```
ols_prep_outlier_obs(k)
```

ols_prep_regress_x 39

Arguments

k

Cooks' d bar plot data.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
k <- ols_prep_cdplot_data(model)
ols_prep_outlier_obs(k)</pre>
```

ols_prep_regress_x

Regress predictor on other predictors

Description

Regress a predictor in the model on all the other predictors.

Usage

```
ols_prep_regress_x(data, i)
```

Arguments

data

A data.frame.

i

A numeric vector (indicates the predictor in the model).

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
data <- ols_prep_avplot_data(model)
ols_prep_regress_x(data, 1)</pre>
```

ols_prep_regress_y

Regress y on other predictors

Description

Regress y on all the predictors except the ith predictor.

```
ols_prep_regress_y(data, i)
```

Arguments

data A data.frame.

i A numeric vector (indicates the predictor in the model).

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
data <- ols_prep_avplot_data(model)
ols_prep_regress_y(data, 1)</pre>
```

```
ols_prep_rfsplot_fmdata
```

Residual fit spread plot data

Description

Data for generating residual fit spread plot.

Usage

```
ols_prep_rfsplot_fmdata(model)
ols_prep_rfsplot_rsdata(model)
```

Arguments

model An o

An object of class 1m.

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_rfsplot_fmdata(model)
ols_prep_rfsplot_rsdata(model)</pre>
```

ols_prep_rstudlev_data

ols_prep_rstudlev_data

Studentized residual vs leverage plot data

Description

Generates data for studentized residual vs leverage plot.

Usage

```
ols_prep_rstudlev_data(model)
```

Arguments

model

An object of class 1m.

Examples

```
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_rstudlev_data(model)</pre>
```

```
ols_prep_rvsrplot_data
```

Residual vs regressor plot data

Description

Data for generating residual vs regressor plot.

Usage

```
ols_prep_rvsrplot_data(model)
```

Arguments

model

An object of class 1m.

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_rvsrplot_data(model)</pre>
```

42 ols_prep_srplot_data

Description

Generates data for standardized residual chart.

Usage

```
ols_prep_srchart_data(model)
```

Arguments

model

An object of class 1m.

Examples

```
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_srchart_data(model)</pre>
```

Description

Generates data for studentized residual plot.

Usage

```
ols_prep_srplot_data(model)
```

Arguments

model

An object of class 1m.

```
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_srplot_data(model)</pre>
```

ols_press 43

ols_press

PRESS

Description

PRESS (prediction sum of squares) tells you how well the model will predict new data.

Usage

```
ols_press(model)
```

Arguments

model

An object of class 1m.

Details

The prediction sum of squares (PRESS) is the sum of squares of the prediction error. Each fitted to obtain the predicted value for the ith observation. Use PRESS to assess your model's predictive ability. Usually, the smaller the PRESS value, the better the model's predictive ability.

Value

Predicted sum of squares of the model.

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other influence measures: ols_hadi, ols_leverage, ols_pred_rsq

44 ols_pure_error_anova

Description

Assess how much of the error in prediction is due to lack of model fit.

Usage

```
ols_pure_error_anova(model, ...)
```

Arguments

An object of class 1m. mode1 Other parameters.

Details

The residual sum of squares resulting from a regression can be decomposed into 2 components:

- · Due to lack of fit
- Due to random variation

If most of the error is due to lack of fit and not just random error, the model should be discarded and a new model must be built.

Value

ols_pure_error_anova returns an object of class "ols_pure_error_anova". An object of class "ols_pure_error_anova" is a list containing the following components:

lackoffit	lack of fit sum of squares
pure_error	pure error sum of squares
rss	regression sum of squares
ess	error sum of squares
total	total sum of squares
rms	regression mean square
ems	error mean square
lms	lack of fit mean square
pms	pure error mean square
rf	f statistic
lf	lack of fit f statistic
pr	p-value of f statistic
pl	p-value pf lack of fit f statistic

ols_regress 45

mpred	data.frame containing data for the response and predictor of the model
df_rss	regression sum of squares degrees of freedom
df_ess	error sum of squares degrees of freedom
df_lof	lack of fit degrees of freedom
df_error	pure error degrees of freedom
final	data.frame; contains computed values used for the lack of fit f test
resp	character vector; name of response variable
preds	character vector; name of predictor variable

Note

The lack of fit F test works only with simple linear regression. Moreover, it is important that the data contains repeat observations i.e. replicates for at least one of the values of the predictor x. This test generally only applies to datasets with plenty of replicates.

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

Examples

```
model <- lm(mpg ~ disp, data = mtcars)
ols_pure_error_anova(model)</pre>
```

ols_regress

Ordinary least squares regression

Description

Ordinary least squares regression.

Usage

```
ols_regress(object, ...)
## S3 method for class 'lm'
ols_regress(object, ...)
```

Arguments

object An object of class "formula" (or one that can be coerced to that class): a sym-

bolic description of the model to be fitted or class 1m.

... Other inputs.

46 ols_regress

Value

ols_regress returns an object of class "ols_regress". An object of class "ols_regress" is a list containing the following components:

r square root of rsquare, correlation between observed and predicted values of

dependent variable

rsq coefficient of determination or r-square

adjr adjusted rsquare

root mean squared error
cv coefficient of variation
mse mean squared error
mae mean absolute error

aic akaike information criteria sbc bayesian information criteria

sbic sawa bayesian information criteria

prsq predicted rsquare

error_df residual degrees of freedom model_df regression degrees of freedom

total_df total degrees of freedom
ess error sum of squares
rss regression sum of squares

tss total sum of squares
rms regression mean square
ems error mean square

f f statistis
p p-value for f

n number of predictors including intercept

betas betas; estimated coefficients

sbetas standardized betas std_errors standard errors

tvalues t values

pvalues p-value of tvalues

df degrees of freedom of betas

conf_lm confidence intervals for coefficients

title title for the model

dependent character vector; name of the dependent variable predictors character vector; name of the predictor variables

mvars character vector; name of the predictor variables including intercept

model input model for ols_regress

ols_sbc 47

Interaction Terms

If the model includes interaction terms, the standardized betas are computed after scaling and centering the predictors.

References

https://www.ssc.wisc.edu/~hemken/Stataworkshops/stdBeta/Getting

Examples

```
ols_regress(mpg ~ disp + hp + wt, data = mtcars)
# if model includes interaction terms set iterm to TRUE
ols_regress(mpg ~ disp * wt, data = mtcars, iterm = TRUE)
```

ols_sbc

Bayesian information criterion

Description

Bayesian information criterion for model selection.

Usage

```
ols_sbc(model, method = c("R", "STATA", "SAS"))
```

Arguments

model

An object of class 1m.

method

A character vector; specify the method to compute BIC. Valid options include

R, STATA and SAS.

Details

SBC provides a means for model selection. Given a collection of models for the data, SBC estimates the quality of each model, relative to each of the other models. R and STATA use loglikelihood to compute SBC. SAS uses residual sum of squares. Below is the formula in each case:

R & STATA

$$AIC = -2(loglikelihood) + ln(n) * 2p \\$$

SAS

$$AIC = n * ln(SSE/n) + p * ln(n)$$

where n is the sample size and p is the number of model parameters including intercept.

48 ols_sbic

Value

The bayesian information criterion of the model.

References

Schwarz, G. (1978). "Estimating the Dimension of a Model." Annals of Statistics 6:461–464.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic, ols_apc, ols_fpe, ols_hsp, ols_mallows_cp, ols_msep, ols_sbic

Examples

```
# using R computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbc(model)

# using STATA computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbc(model, method = 'STATA')

# using SAS computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbc(model, method = 'SAS')</pre>
```

ols_sbic

Sawa's bayesian information criterion

Description

Sawa's bayesian information criterion for model selection.

Usage

```
ols_sbic(model, full_model)
```

Arguments

model An object of class 1m.

full_model An object of class 1m.

ols_step_all_possible 49

Details

Sawa (1978) developed a model selection criterion that was derived from a Bayesian modification of the AIC criterion. Sawa's Bayesian Information Criterion (BIC) is a function of the number of observations n, the SSE, the pure error variance fitting the full model, and the number of independent variables including the intercept.

$$SBIC = n * ln(SSE/n) + 2(p+2)q - 2(q^2)$$

where $q = n(\sigma^2)/SSE$, n is the sample size, p is the number of model parameters including intercept SSE is the residual sum of squares.

Value

Sawa's Bayesian Information Criterion

References

Sawa, T. (1978). "Information Criteria for Discriminating among Alternative Regression Models." Econometrica 46:1273–1282.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic, ols_apc, ols_fpe, ols_hsp, ols_mallows_cp, ols_msep, ols_sbc

Examples

```
full_model <- lm(mpg ~ ., data = mtcars)
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbic(model, full_model)</pre>
```

ols_step_all_possible All possible regression

Description

Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.

Arguments

model An object of class 1m.
... Other arguments.

x An object of class ols_best_subset.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_all_possible returns an object of class "ols_step_all_possible". An object of class "ols_step_all_possible" is a data frame containing the following components:

n model number

predictors predictors in the model rsquare rsquare of the model

adjr adjusted rsquare of the model
predrsq predicted rsquare of the model

cp mallow's Cp

aic akaike information criteria

sbic sawa bayesian information criteria sbc schwarz bayes information criteria

gmsep estimated MSE of prediction, assuming multivariate normality

jp final prediction error

pc amemiya prediction criteria

sp hocking's Sp

Deprecated Function

ols_all_subset() has been deprecated. Instead use ols_step_all_possible().

References

Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition). Prentice Hall

See Also

Other variable selection procedures: ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p

Examples

```
model <- lm(mpg ~ disp + hp, data = mtcars)
k <- ols_step_all_possible(model)
k

# plot
plot(k)</pre>
```

```
{\tt ols\_step\_all\_possible\_betas}
```

All possible regression variable coefficients

Description

Returns the coefficients for each variable from each model.

Usage

```
ols_step_all_possible_betas(object, ...)
```

Arguments

```
object An object of class 1m.

Other arguments.
```

Value

```
ols_step_all_possible_betas returns a data.frame containing:
```

```
## Not run:
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_step_all_possible_betas(model)
## End(Not run)</pre>
```

ols_step_backward_aic Stepwise AIC backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_aic(model, ...)
## Default S3 method:
ols_step_backward_aic(model, progress = FALSE,
    details = FALSE, ...)
## S3 method for class 'ols_step_backward_aic'
plot(x, print_plot = TRUE, ...)
```

Arguments

model An object of class 1m; the model should include all candidate predictor variables.

... Other arguments.

progress Logical; if TRUE, will display variable selection progress.

details Logical; if TRUE, will print the regression result at each step.

x An object of class ols_step_backward_aic.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_backward_aic returns an object of class "ols_step_backward_aic". An object of class "ols_step_backward_aic" is a list containing the following components:

model model with the least AIC; an object of class 1m

steps total number of steps

predictors variables removed from the model

aics akaike information criteria

ess error sum of squares

rss regression sum of squares

rsq rsquare

arsq adjusted rsquare

ols_step_backward_p 53

Deprecated Function

```
ols_stepaic_backward() has been deprecated. Instead use ols_step_backward_aic().
```

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p

Examples

```
# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_aic(model)

# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_aic(model)
plot(k)

# final model
k$model</pre>
```

Description

Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.

```
ols_step_backward_p(model, ...)
## Default S3 method:
ols_step_backward_p(model, prem = 0.3,
    progress = FALSE, details = FALSE, ...)
## S3 method for class 'ols_step_backward_p'
plot(x, model = NA, print_plot = TRUE,
    ...)
```

Arguments

model An object of class 1m; the model should include all candidate predictor variables.

... Other inputs.

prem p value; variables with p more than prem will be removed from the model.

progress Logical; if TRUE, will display variable selection progress.

details Logical; if TRUE, will print the regression result at each step.

x An object of class ols_step_backward_p.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_backward_p returns an object of class "ols_step_backward_p". An object of class "ols_step_backward_p" is a list containing the following components:

model final model; an object of class 1m

steps total number of steps

removed variables removed from the model

rsquare coefficient of determination
aic akaike information criteria
sbc bayesian information criteria

sbic sawa's bayesian information criteria

adjr adjusted r-square

rmse root mean square error

mallows_cp mallow's Cp indvar predictors

Deprecated Function

ols_step_backward() has been deprecated. Instead use ols_step_backward_p().

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p

ols_step_best_subset 55

Examples

```
# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_p(model)

# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_p(model)
plot(k)

# final model
k$model</pre>
```

ols_step_best_subset Best subsets regression

Description

Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow's Cp or AIC.

Usage

Arguments

model An object of class 1m.

... Other inputs.

x An object of class ols_step_best_subset.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_best_subset returns an object of class "ols_step_best_subset". An object of class "ols_step_best_subset" is a data frame containing the following components:

n model number

predictors predictors in the model rsquare rsquare of the model

adjr adjusted rsquare of the model

ols_step_both_aic

predrsq	predicted rsquare of the model
ср	mallow's Cp
aic	akaike information criteria
sbic	sawa bayesian information criteria
sbc	schwarz bayes information criteria
gmsep	estimated MSE of prediction, assuming multivariate normality
jp	final prediction error
рс	amemiya prediction criteria
sp	hocking's Sp

Deprecated Function

```
ols_best_subset() has been deprecated. Instead use ols_step_best_subset().
```

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

 $Other \ variable \ selection \ procedures: \ ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, \ ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p$

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_step_best_subset(model)

# plot
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
k <- ols_step_best_subset(model)
plot(k)</pre>
```

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on akaike information criteria, in a stepwise manner until there is no variable left to enter or remove any more.

ols_step_both_aic 57

Usage

```
ols_step_both_aic(model, progress = FALSE, details = FALSE)
## S3 method for class 'ols_step_both_aic'
plot(x, print_plot = TRUE, ...)
```

Arguments

model An object of class 1m.

progress Logical; if TRUE, will display variable selection progress.

details Logical; if TRUE, details of variable selection will be printed on screen.

x An object of class ols_step_both_aic.

print_plot logical; if TRUE, prints the plot else returns a plot object.

... Other arguments.

Value

ols_step_both_aic returns an object of class "ols_step_both_aic". An object of class "ols_step_both_aic" is a list containing the following components:

model model with the least AIC; an object of class 1m

predictors variables added/removed from the model

method addition/deletion

aics akaike information criteria

ess error sum of squares

rss regression sum of squares

rsq rsquare

arsq adjusted rsquare steps total number of steps

Deprecated Function

ols_stepaic_both() has been deprecated. Instead use ols_step_both_aic().

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_forward_aic, ols_step_forward_p

ols_step_both_p

Examples

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = stepdata)
ols_step_both_aic(model)

# stepwise regression plot
model <- lm(y ~ ., data = stepdata)
k <- ols_step_both_aic(model)
plot(k)

# final model
k$model

## End(Not run)</pre>
```

ols_step_both_p

Stepwise regression

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_p(model, ...)
## Default S3 method:
ols_step_both_p(model, pent = 0.1, prem = 0.3,
    progress = FALSE, details = FALSE, ...)
## S3 method for class 'ols_step_both_p'
plot(x, model = NA, print_plot = TRUE, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables
	Other arguments.
pent	p value; variables with p value less than pent will enter into the model.
prem	p value; variables with p more than prem will be removed from the model.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_both_p.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

ols_step_both_p 59

Value

ols_step_both_p returns an object of class "ols_step_both_p". An object of class "ols_step_both_p" is a list containing the following components:

model final model; an object of class 1m

orders candidate predictor variables according to the order by which they were added

or removed from the model

method addition/deletion steps total number of steps

predictors variables retained in the model (after addition)

rsquare coefficient of determination
aic akaike information criteria
sbc bayesian information criteria

sbic sawa's bayesian information criteria

adjr adjusted r-square

rmse root mean square error

mallows_cp mallow's Cp indvar predictors

Deprecated Function

ols_stepwise() has been deprecated. Instead use ols_step_both_p().

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

```
# stepwise regression
model <- lm(y ~ ., data = surgical)
ols_step_both_p(model)

# stepwise regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_both_p(model)
plot(k)

# final model
k$model</pre>
```

60 ols_step_forward_aic

```
ols_step_forward_aic Stepwise AIC forward regression
```

Description

Build regression model from a set of candidate predictor variables by entering predictors based on akaike information criterion, in a stepwise manner until there is no variable left to enter any more.

Usage

```
ols_step_forward_aic(model, ...)
## Default S3 method:
ols_step_forward_aic(model, progress = FALSE,
    details = FALSE, ...)
## S3 method for class 'ols_step_forward_aic'
plot(x, print_plot = TRUE, ...)
```

Arguments

model An object of class 1m.
... Other arguments.

progress Logical; if TRUE, will display variable selection progress.

details Logical; if TRUE, will print the regression result at each step.

x An object of class ols_step_forward_aic.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_forward_aic returns an object of class "ols_step_forward_aic". An object of class "ols_step_forward_aic" is a list containing the following components:

model model with the least AIC; an object of class 1m

steps total number of steps

predictors variables added to the model aics akaike information criteria ess error sum of squares

rss regression sum of squares

rsq rsquare

arsq adjusted rsquare

Deprecated Function

```
ols_stepaic_forward() has been deprecated. Instead use ols_step_forward_aic().
```

ols_step_forward_p 61

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_p

Examples

```
# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_aic(model)

# stepwise forward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_forward_aic(model)
plot(k)

# final model
k$model</pre>
```

ols_step_forward_p Stepv

Stepwise forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more.

```
ols_step_forward_p(model, ...)
## Default S3 method:
ols_step_forward_p(model, penter = 0.3,
    progress = FALSE, details = FALSE, ...)
## S3 method for class 'ols_step_forward_p'
plot(x, model = NA, print_plot = TRUE,
    ...)
```

62 ols_step_forward_p

Arguments

model An object of class 1m; the model should include all candidate predictor variables.

... Other arguments.

penter p value; variables with p value less than penter will enter into the model

progress Logical; if TRUE, will display variable selection progress.

details Logical; if TRUE, will print the regression result at each step.

x An object of class ols_step_forward_p.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_forward_p returns an object of class "ols_step_forward_p". An object of class "ols_step_forward_p" is a list containing the following components:

model final model; an object of class 1m

steps number of steps

predictors variables added to the model rsquare coefficient of determination aic akaike information criteria sbc bayesian information criteria

sbic sawa's bayesian information criteria

adjr adjusted r-square

rmse root mean square error

mallows_cp mallow's Cp indvar predictors

Deprecated Function

ols_step_forward() has been deprecated. Instead use ols_step_forward_p().

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_best_subset, ols_step_both_aic, ols_step_forward_aic

ols_test_bartlett 63

Examples

```
# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_p(model)

# stepwise forward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_forward_p(model)
plot(k)

# final model
k$model</pre>
```

ols_test_bartlett

Bartlett test

Description

Test if k samples are from populations with equal variances.

Usage

```
ols_test_bartlett(data, ...)
## Default S3 method:
ols_test_bartlett(data, ..., group_var = NULL)
```

Arguments

data A data.frame or tibble.
... Columns in data.
group_var Grouping variable.

Details

Bartlett's test is used to test if variances across samples is equal. It is sensitive to departures from normality. The Levene test is an alternative test that is less sensitive to departures from normality.

Value

ols_test_bartlett returns an object of class "ols_test_bartlett". An object of class "ols_test_bartlett" is a list containing the following components:

```
fstat f statistic
pval p-value of fstat
df degrees of freedom
```

Deprecated Function

```
ols_bartlett_test() has been deprecated. Instead use ols_test_bartlett().
```

References

Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.

See Also

Other heteroskedasticity tests: ols_test_breusch_pagan, ols_test_f, ols_test_score

Examples

```
# using grouping variable
library(descriptr)
ols_test_bartlett(mtcarz, 'mpg', group_var = 'cyl')
# using variables
ols_test_bartlett(hsb, 'read', 'write')
```

```
ols_test_breusch_pagan
```

Breusch pagan test

Description

Test for constant variance. It assumes that the error terms are normally distributed.

Usage

```
ols_test_breusch_pagan(model, fitted.values = TRUE, rhs = FALSE,
   multiple = FALSE, p.adj = c("none", "bonferroni", "sidak", "holm"),
   vars = NA)
```

Arguments

model	An object of class 1m.
fitted.values	Logical; if TRUE, use fitted values of regression model.
rhs	Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
multiple	Logical; if TRUE, specifies that multiple testing be performed.
p.adj	Adjustment for p value, the following options are available: bonferroni, holm, sidak and none.
vars	Variables to be used for heteroskedasticity test.

Details

Breusch Pagan Test was introduced by Trevor Breusch and Adrian Pagan in 1979. It is used to test for heteroskedasticity in a linear regression model. It test whether variance of errors from a regression is dependent on the values of a independent variable.

- Null Hypothesis: Equal/constant variances
- Alternative Hypothesis: Unequal/non-constant variances

Computation

- Fit a regression model
- Regress the squared residuals from the above model on the independent variables
- Compute nR^2 . It follows a chi square distribution with p -1 degrees of freedom, where p is the number of independent variables, n is the sample size and R^2 is the coefficient of determination from the regression in step 2.

Value

ols_test_breusch_pagan returns an object of class "ols_test_breusch_pagan". An object of class "ols_test_breusch_pagan" is a list containing the following components:

bp	breusch pagan statistic
р	p-value of bp
fv	fitted values of the regression model
rhs	names of explanatory variables of fitted regression model
multiple	logical value indicating if multiple tests should be performed
padj	adjusted p values
vars	variables to be used for heteroskedasticity test
resp	response variable
preds	predictors

Deprecated Function

ols_bp_test() has been deprecated. Instead use ols_test_breusch_pagan().

References

T.S. Breusch & A.R. Pagan (1979), A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 47, 1287–1294

Cook, R. D.; Weisberg, S. (1983). "Diagnostics for Heteroskedasticity in Regression". Biometrika. 70 (1): 1–10.

See Also

Other heteroskedasticity tests: ols_test_bartlett, ols_test_f, ols_test_score

ols_test_correlation

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt + drat, data = mtcars)

# use fitted values of the model
ols_test_breusch_pagan(model)

# use independent variables of the model
ols_test_breusch_pagan(model, rhs = TRUE)

# use independent variables of the model and perform multiple tests
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE)

# bonferroni p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'bonferroni')

# sidak p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'sidak')

# holm's p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'holm')</pre>
```

Description

Correlation between observed residuals and expected residuals under normality.

Usage

```
ols_test_correlation(model)
```

Arguments

mode1

An object of class 1m.

Value

Correlation between fitted regression model residuals and expected values of residuals.

Deprecated Function

```
ols_corr_test() has been deprecated. Instead use ols_test_correlation().
```

See Also

```
Other residual diagnostics: ols_plot_resid_box, ols_plot_resid_fit, ols_plot_resid_hist, ols_plot_resid_qq, ols_test_normality
```

ols_test_f 67

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_test_correlation(model)</pre>
```

ols_test_f

F test

Description

Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).

Usage

```
ols_test_f(model, fitted_values = TRUE, rhs = FALSE, vars = NULL,
    ...)
```

Arguments

model An object of class 1m.

rhs Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the

right-hand-side (explanatory) variables of the fitted regression model.

vars Variables to be used for for heteroskedasticity test.

... Other arguments.

Value

ols_test_f returns an object of class "ols_test_f". An object of class "ols_test_f" is a list containing the following components:

f f statistic
p p-value of f

fv fitted values of the regression model

rhs names of explanatory variables of fitted regression model

numdf numerator degrees of freedom dendf denominator degrees of freedom

variables to be used for heteroskedasticity test

resp response variable preds predictors

Deprecated Function

```
ols_f_test() has been deprecated. Instead use ols_test_f().
```

68 ols_test_normality

References

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.

See Also

Other heteroskedasticity tests: ols_test_bartlett, ols_test_breusch_pagan, ols_test_score

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
# using fitted values
ols_test_f(model)
# using all predictors of the model
ols_test_f(model, rhs = TRUE)
# using fitted values
ols_test_f(model, vars = c('disp', 'hp'))</pre>
```

Description

Test for detecting violation of normality assumption.

Usage

```
ols_test_normality(y, ...)
## S3 method for class 'lm'
ols_test_normality(y, ...)
```

Arguments

```
y A numeric vector or an object of class 1m.
```

... Other arguments.

ols_test_outlier 69

Value

ols_test_normality returns an object of class "ols_test_normality". An object of class "ols_test_normality" is a list containing the following components:

kolmogorv smirnov statistic shapiro shapiro wilk statistic cramer cramer von mises statistic anderson darling statistic

Deprecated Function

```
ols_norm_test() has been deprecated. Instead use ols_test_normality().
```

See Also

```
Other residual diagnostics: ols_plot_resid_box, ols_plot_resid_fit, ols_plot_resid_hist, ols_plot_resid_qq, ols_test_correlation
```

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_test_normality(model)</pre>
```

ols_test_outlier

Bonferroni Outlier Test

Description

Detect outliers using Bonferroni p values.

Usage

```
ols_test_outlier(model, cut_off = 0.05, n_max = 10, ...)
```

Arguments

model An object of class 1m.

cut_off Bonferroni p-values cut off for reporting observations.

n_max Maximum number of observations to report, default is 10.

... Other arguments.

```
# model
model <- lm(y ~ ., data = surgical)
ols_test_outlier(model)</pre>
```

70 ols_test_score

ols_test_score

Description

Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).

Usage

```
ols_test_score(model, fitted_values = TRUE, rhs = FALSE, vars = NULL)
```

Arguments

model An object of class 1m.

rhs Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the

right-hand-side (explanatory) variables of the fitted regression model.

vars Variables to be used for for heteroskedasticity test.

Value

ols_test_score returns an object of class "ols_test_score". An object of class "ols_test_score" is a list containing the following components:

score	f statistic
p	p value of score
df	degrees of freedom
fv	fitted values of the regression model
rhs	names of explanatory variables of fitted regression model
resp	response variable
preds	predictors

Deprecated Function

ols_score_test() has been deprecated. Instead use ols_test_score().

References

Breusch, T. S. and Pagan, A. R. (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287–1294.

Cook, R. D. and Weisberg, S. (1983) Diagnostics for heteroscedasticity in regression. Biometrika 70, 1–10.

Koenker, R. 1981. A note on studentizing a test for heteroskedasticity. Journal of Econometrics 17: 107–112.

rivers 71

See Also

Other heteroskedasticity tests: ols_test_bartlett, ols_test_breusch_pagan, ols_test_f

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
# using fitted values of the model
ols_test_score(model)
# using predictors from the model
ols_test_score(model, rhs = TRUE)
# specify predictors from the model
ols_test_score(model, vars = c('disp', 'wt'))</pre>
```

rivers

Test Data Set

Description

Test Data Set

Usage

rivers

Format

An object of class data. frame with 20 rows and 6 columns.

rvsr_plot_shiny

Residual vs regressors plot for shiny app

Description

Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.

```
rvsr_plot_shiny(model, data, variable, print_plot = TRUE)
```

72 surgical

Arguments

model An object of class 1m.

data A data.frame or tibble.

variable Character; new predictor to be added to the model.

print_plot logical; if TRUE, prints the plot else returns a plot object.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
rvsr_plot_shiny(model, mtcars, 'drat')</pre>
```

stepdata

Test Data Set

Description

Test Data Set

Usage

stepdata

Format

An object of class data. frame with 20000 rows and 7 columns.

surgical

Surgical Unit Data Set

Description

A dataset containing data about survival of patients undergoing liver operation.

Usage

surgical

surgical 73

Format

```
bcs blood clotting score
pindex prognostic index
enzyme_test enzyme function test score
liver_test liver function test score
age age, in years
gender indicator variable for gender (0 = male, 1 = female)
alc_mod indicator variable for history of alcohol use (0 = None, 1 = Moderate)
alc_heavy indicator variable for history of alcohol use (0 = None, 1 = Heavy)
y Survival Time
```

A data frame with 54 rows and 9 variables:

Source

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

Index

*Topic datasets	ols_diagnostic_panel
auto, 3	(ols_plot_diagnostics), 22
cement, 4	ols_dsrvsp_plot
fitness, 4	(ols_plot_resid_stud_fit), 33
hsb, 4	<pre>ols_eigen_cindex (ols_coll_diag), 7</pre>
rivers, 71	ols_f_test (ols_test_f), 67
stepdata, 72	ols_fm_plot
surgical, 72	<pre>(ols_plot_resid_fit_spread), 27</pre>
	ols_fpe, 6, 7, 10, 12, 14, 15, 48, 49
auto, 3	ols_hadi, 11, <i>13</i> , <i>35</i> , <i>43</i>
	ols_hadi_plot (ols_plot_hadi), 23
cement, 4	ols_hsp, 6, 7, 11, 12, 14, 15, 48, 49
	ols_launch_app, 13
fitness, 4	ols_leverage, 11, 13, 35, 43
	ols_mallows_cp, 6, 7, 11, 12, 14, 15, 48, 49
hsb, 4	ols_msep, 6, 7, 11, 12, 14, 15, 48, 49
1	ols_norm_test (ols_test_normality), 68
ols_aic, 5, 7, 11, 12, 14, 15, 48, 49	ols_ovsp_plot(ols_plot_obs_fit), 24
ols_all_subset (ols_step_all_possible),	ols_plot_added_variable, 16
49	ols_plot_comp_plus_resid, 17
ols_all_subset_betas	ols_plot_cooksd_bar, 18
<pre>(ols_step_all_possible_betas), 51</pre>	ols_plot_cooksd_chart, 19
ols_apc, 6, 6, 11, 12, 14, 15, 48, 49	ols_plot_dfbetas, 20
ols_avplots (ols_plot_added_variable),	ols_plot_dffits, 21
16	ols_plot_diagnostics, 22
ols_bartlett_test (ols_test_bartlett),	ols_plot_fm
63	<pre>(ols_plot_resid_fit_spread), 27</pre>
ols_best_subset (ols_step_best_subset),	ols_plot_hadi, 23
55	ols_plot_obs_fit, 24
ols_bp_test (ols_test_breusch_pagan), 64	ols_plot_reg_line, 24
ols_coll_diag, 7	ols_plot_resid_box, 25, 26, 28, 30, 66, 69
ols_cooksd_barplot	ols_plot_resid_fit, 25, 26, 28, 30, 66, 69
(ols_plot_cooksd_bar), 18	ols_plot_resid_fit_spread, 27
ols_cooksd_chart	ols_plot_resid_hist, 25, 26, 28, 30, 66, 69
(ols_plot_cooksd_chart), 19	ols_plot_resid_lev, 28
ols_corr_test (ols_test_correlation), 66	ols_plot_resid_pot, 29
ols_correlations, 9	ols_plot_resid_qq, 25, 26, 28, 30, 66, 69
ols_dfbetas_panel (ols_plot_dfbetas), 20	ols_plot_resid_regressor, 31
ols_dffits_plot (ols_plot_dffits), 21	ols_plot_resid_spread
(/ / /	-, = -, ···

INDEX 75

<pre>(ols_plot_resid_fit_spread), 27</pre>	61, 62
ols_plot_resid_stand, 31	ols_step_all_possible_betas, 51
ols_plot_resid_stud, 32	ols_step_backward
ols_plot_resid_stud_fit, 33	<pre>(ols_step_backward_p), 53</pre>
ols_plot_response, 34	ols_step_backward_aic, 50, 52, 54, 56, 57,
ols_potrsd_plot (ols_plot_resid_pot), 29	61, 62
ols_pred_rsq, 11, 13, 35, 43	ols_step_backward_p, 50, 53, 53, 56, 57, 61,
ols_prep_avplot_data, 35	62
ols_prep_cdplot_data, 36	ols_step_best_subset, 50, 53, 54, 55, 57,
ols_prep_cdplot_outliers, 36	61, 62
ols_prep_dfbeta_data, 37	ols_step_both_aic, 50, 53, 54, 56, 56, 61, 62
ols_prep_dfbeta_outliers, 37	ols_step_both_p,58
ols_prep_dsrvf_data, 38	ols_step_forward(ols_step_forward_p),
ols_prep_outlier_obs, 38	61
ols_prep_regress_x, 39	ols_step_forward_aic, 50, 53, 54, 56, 57,
ols_prep_regress_y, 39	60, 62
ols_prep_rfsplot_fmdata, 40	ols_step_forward_p, 50, 53, 54, 56, 57, 61,
ols_prep_rfsplot_rsdata	61
(ols_prep_rfsplot_fmdata), 40	ols_stepaic_backward
ols_prep_rstudlev_data, 41	<pre>(ols_step_backward_aic), 52</pre>
ols_prep_rvsrplot_data, 41	ols_stepaic_both(ols_step_both_aic), 56
ols_prep_srchart_data, 42	ols_stepaic_forward
ols_prep_srplot_data, 42	(ols_step_forward_aic), 60
ols_press, 11, 13, 35, 43	ols_stepwise(ols_step_both_p),58
	ols_test_bartlett, 63, 65, 68, 71
ols_pure_error_anova, 44 ols_reg_line (ols_plot_reg_line), 24	ols_test_breusch_pagan, 64, 64, 68, 71
	ols_test_correlation, 25, 26, 28, 30, 66, 69
ols_regress, 45	ols_test_f, 64, 65, 67, 71
ols_resp_viz (ols_plot_response), 34	ols_test_normality, 25, 26, 28, 30, 66, 68
ols_rfs_plot	ols_test_outlier,69
(ols_plot_resid_fit_spread), 27	ols_test_score, <i>64</i> , <i>65</i> , <i>68</i> , 70
ols_rpc_plot	ols_vif_tol (ols_coll_diag), 7
(ols_plot_comp_plus_resid), 17	olsrr,5
ols_rsd_boxplot (ols_plot_resid_box), 25	olsrr-package (olsrr), 5
ols_rsd_hist (ols_plot_resid_hist), 28	
ols_rsd_plot	plot.ols_step_all_possible
(ols_plot_resid_fit_spread), 27	(ols_step_all_possible), 49
ols_rsd_qqplot(ols_plot_resid_qq), 30	plot.ols_step_backward_aic
ols_rsdlev_plot (ols_plot_resid_lev), 28	(ols_step_backward_aic), 52
ols_rvsp_plot (ols_plot_resid_fit), 26	plot.ols_step_backward_p
ols_rvsr_plot	<pre>(ols_step_backward_p), 53</pre>
(ols_plot_resid_regressor), 31	plot.ols_step_best_subset
ols_sbc, 6, 7, 11, 12, 14, 15, 47, 49	(ols_step_best_subset), 55
ols_sbic, 6, 7, 11, 12, 14, 15, 48, 48	plot.ols_step_both_aic
ols_score_test (ols_test_score), 70	(ols_step_both_aic), 56
ols_srsd_chart (ols_plot_resid_stand),	<pre>plot.ols_step_both_p (ols_step_both_p),</pre>
31	58
ols_srsd_plot (ols_plot_resid_stud), 32	plot.ols_step_forward_aic
ols_step_all_possible, 49, 53, 54, 56, 57,	(ols_step_forward_aic), 60

76 INDEX