
Package ‘oops’
March 2, 2022

Type Package

Title S3 Style Object Oriented Programming

Version 0.2.0

Author Christopher Mann <cmann3@unl.edu>

Maintainer Christopher Mann <cmann3@unl.edu>

Description Create simple, hassle-free classes with reference semantics
similar to 'RefClass' or 'R6' but relying on S3 methods. ``oops'' class
instances tend to be lighter weight and faster to create. Creating a
class is as easy creating a list, while generating an instance is a
simple function call. Support for inheritance and fixed field classes.

License MIT + file LICENSE

Imports utils

Suggests knitr, rmarkdown

Encoding UTF-8

RoxygenNote 7.1.1

LazyData true

Depends R (>= 3.5)

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-03-02 22:50:02 UTC

R topics documented:
add_fields . 2
as.oClass . 3
change_formals . 4
change_inherit . 5
clone . 5
cpi_data . 6

1

2 add_fields

Extract . 7
init . 8
init.Instance . 9
is.Instance . 9
is.oClass . 10
oClass . 10

Index 14

add_fields Add Fields to oClasses and Other Objects

Description

For environments, oClass instances and generator, add_fields is a wrapper for list2env; it adds
the objects in ... the environment if they are named. For list and other objects, it behaves similar
to appending ... as a list.

Usage

add_fields(x, ...)

Arguments

x oClass instance, generator, environment, list, or other object

... named objects to be added to x

Value

object of same type as x or list

Examples

clown <- oClass("clown")
add_fields(clown, laugh = "haha", is_funny=TRUE)

clown$laugh

as.oClass 3

as.oClass Convert Object to an oClass Generator

Description

This function takes any named object such as an environment, fully-named list, or an Instance and
converts it to an oClass generator function so that instances have access to the fields in the named
object. See oClass for details about the arguments and functionality of the oClass generator.

Usage

as.oClass(
x,
name = NULL,
inherit = NULL,
portable = FALSE,
hash = FALSE,
formals = NULL,
deep = TRUE,
...

)

Arguments

x object to be cloned and converted

name character string describing the name of the class

inherit oClass used as the parent.env for the generated instances

portable logical indicating whether all inherited values should be copied into each in-
stance

hash logical indicating whether instances should use hashing, see new.env

formals list containing the formal arguments for the resulting generator function. These
are passed to the init function when a new instance is created.

deep logical. Should the object be deep-cloned?

... named fields inherited by the class instance

Value

a function of class "ClassGenerator" with attributes describing each generated class instance

4 change_formals

change_formals Change the Formal Arguments of a oClass Generator

Description

This accepts an oClass generator and updates its formal arguments based either on those passed
in ... or the function passed to from_init. The results will be passed to the appropriate init
function each time an instance is generated.

Usage

change_formals(x, ..., envir = parent.frame(), from_init = NULL)

Arguments

x oClass generator function

... named or unnamed objects used as the formal arguments of the generator func-
tion

envir environment from which to evaluate arguments

from_init function containing the formal arguments to use; typically an init function.
... and envir are ignored if not NULL.

Value

oClass generator function

Examples

clown <- oClass("clown")
clown

'init' requires a laugh
init.clown <- function(x, laugh, ...){

x$laugh <- laugh
add_fields(x, ...)
return(x)

}

change formals of clown
clown <- change_formals(clown, from_init = init.clown)

alternatively,
clown <- change_formals(clown, laugh, ..dots)

creation
happy_clown <- clown("HAHA")
sad_clown <- clown("ha")

change_inherit 5

change_inherit Change the Inheritance of an oClass

Description

This function takes twos oClass generator function and alters the first so that it inherits the template
and classes of the second. Existing instances will inherit the objects contained in the new parent,
but will not gain access to the S3 methods.

Usage

change_inherit(x, parent)

Arguments

x oClass generator function

parent oClass generator function from which x inherits

Value

oClass generator function

Examples

typist <- oClass("typist")
job <- oClass("job", hours = 40, pay=15)

typist <- change_inherit(typist, job)
typist$hours

clone Create a Copy of an oClass Instance

Description

A copy of all objects and attributes within an environment. If deep=TRUE, all objects inside of x,
including other environments, will also be deeply "cloned". The global and base environments will
not be cloned.

Usage

clone(x, deep = FALSE, ...)

clone_attributes(x, deep = FALSE, cloned = NULL)

6 cpi_data

Arguments

x environment of class "Instance"

deep logical for whether clone should be applied to all objects.

... arguments passed to methods

cloned environment containing references to environments that have already been cloned.
This is passed to internal methods when deep=TRUE and should not be set di-
rectly.

Value

environment of class "Instance"

Functions

• clone_attributes: Clone the attributes of an object.

cpi_data Price Inflation Data

Description

This data set contains monthly observations of annualized price inflation from January 1949 until
November 2021. Price inflation is calculated by taking the log difference between the CPI for Urban
Consumers in one period and its value exactly one year earlier.

Usage

cpi_data

Format

Data frame with 875 rows and 7 variables:

date date in "YYYY-MM-DD" format

pi price inflation in decimal format

pi.1 price inflation last month

pi.2 price inflation two months ago

pi.3 price inflation three months ago

pi.6 price inflation six months ago

pi.12 price inflation one year ago

Source

https://fred.stlouisfed.org/series/CPIAUCSL

https://fred.stlouisfed.org/series/CPIAUCSL

Extract 7

Extract Extract or Replace Parts of a Class or Instance

Description

Operators acting on oClass generators and their instances.

Usage

S3 method for class 'ClassGenerator'
x$name

S3 method for class 'ClassGenerator'
x[[i, exact = TRUE, inherits = TRUE]]

S3 replacement method for class 'ClassGenerator'
x$name <- value

S3 replacement method for class 'ClassGenerator'
x[[name]] <- value

S3 method for class 'Instance'
x$name

S3 method for class 'Instance'
x[[i, exact = TRUE, inherits = TRUE]]

Arguments

x object of class "Instance" or "ClassGenerator"

i, name character or symbol for `$` describing field name to return or set

exact logical controlling whether a partial match is acceptable. Defaults to TRUE for
no partial matching

inherits logical describing whether parent environments should be searched

value new field value

Details

For oClass instances, `$` and `[` first search the instance environment for the object. If no object
is found, then all inherited objects are searched in order. Any object assigned to the instance will
be inserted into the instance’s environment. These operators act on the underlying Class template
environment when applied to a Class generator.

Value

Environment of class "Instance" or function of class "ClassGenerator"

8 init

init Initialize Class Instance

Description

Function called on oClass instance when it is created. Users create init methods to customize
creation behavior for their Classes. All init methods should return the Instance. init_next calls
the objects next init methods. init_next should only be used inside if init.

Usage

init(x, ...)

init_next(x, ...)

Arguments

x environment of class "Instance"

... named fields inherited by the class instance or passed to methods

Value

environment of class "Instance"

Functions

• init_next: Initialize the inherited Class.

Examples

Animal <- oClass("Animal")

init.Animal <- function(self, x, y){
self$x <- x
self$y <- y
self

}

turtle <- Animal(5, 10)
turtle$x == 5 # TRUE
turtle$y == 10 # TRUE

init.Instance 9

init.Instance Init Method for Instance

Description

See init for details.

Usage

S3 method for class 'Instance'
init(x, ...)

Arguments

x environment of class "Instance"

... named fields inherited by the class instance or passed to methods

Value

environment of class "Instance"

is.Instance Is Object a Class Instance?

Description

Check whether object inherits the "Instance" class. See is.oClass to check whether object is a
oClass generator.

Usage

is.Instance(x)

Arguments

x object to be tested

Value

TRUE if object inherits "Instance", FALSE otherwise

10 oClass

is.oClass Is Object an "oClass" Generator?

Description

Check whether object inherits the "ClassGenerator" class. This is used to check oClass genera-
tors, not the instance. See is.Instance to check whether object is an oClass instance.

Usage

is.oClass(x)

is.ClassGenerator(x)

Arguments

x object to be tested

Value

TRUE if object inherits "ClassGenerator", FALSE otherwise

Functions

• is.ClassGenerator: check whether object is an oClass generator

oClass Create an Object Class

Description

Create a function used to generate instances (environments) with the specified class and fields.

Usage

oClass(
name = NULL,
inherit = NULL,
portable = FALSE,
hash = FALSE,
formals = NULL,
...

)

oClass 11

Arguments

name character string describing the name of the class

inherit oClass used as the parent.env for the generated instances

portable logical indicating whether all inherited values should be copied into each in-
stance

hash logical indicating whether instances should use hashing, see new.env

formals list containing the formal arguments for the resulting generator function. These
are passed to the init function when a new instance is created.

... named fields inherited by the class instance

Details

oClass is used to create classes with reference semantics that modify in place similar to R5 and
R6 classes. Unlike those, functions on oClass instances dispatch using the standard S3 dispatch
system. Furthermore, oClass objects and instances are created similar to other R objects to ensure
that they are easy and painless to use.

To create a new object class, provide its name and a named list of its fields and their default values.
This generates a function that creates a new "instance" of the class each time that it is called. For
example, poly <-oClass("polygon",sides = NA) creates a new class called "polygon" with a
field called "sides" that can be created using poly(). Object methods that act on the instance are
created in the same manner as S3 methods. Therefore, class methods should be created separately.

Each instance of the object class is an environment. The parent environment of the instance is
attached to the attributes of the function created by the oClass function. This environment in the
function attributes serves as a instance template. Any variables that are specified during the creation
of the object instance are placed within the environment of said instance. When searching for an
object within an instance, the instance environment is first searched, then the template. This ensures
that each object instance remains as small as necessary and minimizes copying. A hashmap is not
used by default so that the instance size is smaller, but this can be changed by the oClass function.

oClass objects can also inherit other class objects. If another class object is inherited, the template
environment in the inherited object’s attributes is added to each instances search path. Furthermore,
the name of the inherited class **(and all classes it inherits)** is added to each instance’s S3 class.
If an environment is inherited, then it is added to the search path.

Since oClass relies on pointers to other environments, oClass instances are generally not portable.
If portable=TRUE is added, then each instance will include the default values of each inherited
oClass. This generally increases creation time and memory usage, but may result in marginally
faster field access. If the fields are relatively few and small, though, memory usage may decline
when each Instance is portable.

oClass instances automatically call init when created. Write custom S3 methods for init to
control this behavior. This requires the Class to be named so that instances inherit the named S3
class. The formals defines the Class generator’s formal function arguments. If used, then an
init method for the Class should be created with identical formal arguments; otherwise, instance
creation may fail. If no formals are defined, then all objects passed to the generator function are
passed to init at creation.

12 oClass

Value

a function of class "ClassGenerator" with attributes describing each generated class instance

Examples

Creating a Stack
stack <- oClass(

"stack",
data = list()

)

Methods
print.stack <- function(x, ...) print(x$data, ...)
push <- function(x, item){

x$data[[length(x$data)+1]] <- item
x

}
pop <- function(x){

n <- length(x$data)
last <- x$data[[n]]
x$data[[n]] <- NULL
last

}

Create a new instance
x <- stack()
push(x, 6)
push(x, 7)

identical(x$data, list(6, 7)) # TRUE

last <- pop(x)
identical(last, 7) # TRUE
identical(x$data, list(6)) # TRUE

Person/Student
Example of Inheritance and using Formals

Declare formal arguments of Person Generator
Person <- oClass(

"Person",
formals = list(first, last)

)

Formal arguments of init should match Person
init.Person <- function(x, first, last){

x$first <- first
x$last <- last
return(x)

}

oClass 13

Create init for Student class
init.Student <- function(x, first, last, year = 1, major = "Econ", ...){

x$year <- year
x$major <- major
add_fields(x, ...)
init_next(x, first = first, last = last)
return(x)

}

Create Student class, inherits Person
Student <- oClass(

"Student",
inherit = Person,
formals = init.Student

)

Creating a student
Student("Chris", "Mann", 4, gpa = 4.0)

Index

∗ datasets
cpi_data, 6

[[.ClassGenerator (Extract), 7
[[.Instance (Extract), 7
[[<-.ClassGenerator (Extract), 7
$.ClassGenerator (Extract), 7
$.Instance (Extract), 7
$<-.ClassGenerator (Extract), 7

add_fields, 2
as.oClass, 3

change_formals, 4
change_inherit, 5
clone, 5
clone_attributes (clone), 5
cpi_data, 6

Extract, 7

formals, 11

init, 3, 4, 8, 9, 11
init.Instance, 9
init_next (init), 8
is.ClassGenerator (is.oClass), 10
is.Instance, 9, 10
is.oClass, 9, 10

list2env, 2

new.env, 3, 11

oClass, 3–5, 7–10, 10

parent.env, 3, 11

14

	add_fields
	as.oClass
	change_formals
	change_inherit
	clone
	cpi_data
	Extract
	init
	init.Instance
	is.Instance
	is.oClass
	oClass
	Index

