
Package ‘openair’
June 21, 2022

Type Package

Title Tools for the Analysis of Air Pollution Data

Version 2.10-0

Date 2022-06-21

ByteCompile true

Depends R (>= 3.2.0),

Imports grid, dplyr (>= 1.0), purrr, tidyr, readr, mgcv, lattice,
latticeExtra, lubridate, cluster, mapproj, hexbin, Rcpp,
grDevices, graphics, methods, stats, MASS, utils

Suggests KernSmooth, maps, mapdata, quantreg

LinkingTo Rcpp

Maintainer David Carslaw <david.carslaw@york.ac.uk>

Description Tools to analyse, interpret and understand air
pollution data. Data are typically hourly time series
and both monitoring data and dispersion model output
can be analysed. Many functions can also be applied to
other data, including meteorological and traffic data.

License GPL (>= 2)

URL https://davidcarslaw.github.io/openair/

BugReports https://github.com/davidcarslaw/openair/issues

LazyLoad yes

LazyData yes

Encoding UTF-8

RoxygenNote 7.2.0

NeedsCompilation yes

Author David Carslaw [aut, cre],
Karl Ropkins [aut]

Repository CRAN

Date/Publication 2022-06-21 13:00:02 UTC

1

https://davidcarslaw.github.io/openair/
https://github.com/davidcarslaw/openair/issues

2 R topics documented:

R topics documented:
aqStats . 3
binData . 5
bootMeanDF . 6
calcFno2 . 6
calcPercentile . 8
calendarPlot . 10
conditionalEval . 14
conditionalQuantile . 17
corPlot . 20
cutData . 23
drawOpenKey . 25
import . 28
importADMS . 31
importAQE . 34
importAURNCsv . 38
importEurope . 41
importKCL . 42
importMeta . 57
importTraj . 58
kernelExceed . 61
linearRelation . 64
modStats . 66
mydata . 69
openair . 70
openColours . 71
percentileRose . 73
polarAnnulus . 77
polarCluster . 81
polarDiff . 84
polarFreq . 86
polarPlot . 90
quickText . 98
rollingMean . 99
scatterPlot . 100
selectByDate . 107
selectRunning . 108
smoothTrend . 110
splitByDate . 114
summaryPlot . 115
TaylorDiagram . 118
TheilSen . 123
timeAverage . 128
timePlot . 131
timeProp . 137
timeVariation . 139
trajCluster . 145

aqStats 3

trajLevel . 148
trajPlot . 152
trendLevel . 155
windRose . 159

Index 165

aqStats Calculate summary statistics for air pollution data by year

Description

Calculate a range of air pollution-relevant statistics by year.

Usage

aqStats(
mydata,
pollutant = "no2",
type = "default",
data.thresh = 0,
percentile = c(95, 99),
transpose = FALSE,
...

)

Arguments

mydata A data frame containing a date field of hourly data.

pollutant The name of a pollutant e.g. pollutant = c("o3","pm10").

type type allows timeAverage to be applied to cases where there are groups of data
that need to be split and the function applied to each group. The most common
example is data with multiple sites identified with a column representing site
name e.g. type = "site". More generally, type should be used where the date
repeats for a particular grouping variable.

data.thresh The data capture threshold in if data capture over the period of interest is less
than this value. data.thresh is used for example in the calculation of daily
mean values from hourly data. If there are less than data.thresh percentage of
measurements available in a period, NA is returned.

percentile Percentile values to calculate for each pollutant.

transpose The default is to return a data frame with columns representing the statistics. If
transpose = TRUE then the results have columns for each pollutant-site combi-
nation.

... Other arguments, currently unused.

4 aqStats

Details

This function calculates a range of common and air pollution-specific statistics from a data frame.
The statistics are calculated on an annual basis and the input is assumed to be hourly data. The
function can cope with several sites and years e.g. using type = "site". The user can control the
output by setting transpose appropriately.

Note that the input data is assumed to be in mass units e.g. ug/m3 for all species except CO (mg/m3).

The following statistics are calculated:

• data.capture — percentage data capture over a full year.

• mean — annual mean.

• minimum — minimum hourly value.

• maximum — maximum hourly value.

• median — median value.

• max.daily — maximum daily mean.

• max.rolling.8 — maximum 8-hour rolling mean.

• max.rolling.24 — maximum 24-hour rolling mean.

• percentile.95 — 95th percentile. Note that several percentiles can be calculated.

• roll.8.O3.gt.100 — number of days when the daily maximum rolling 8-hour mean ozone
concentration is >100 ug/m3. This is the target value.

• roll.8.O3.gt.120 — number of days when the daily maximum rolling 8-hour mean ozone
concentration is >120 ug/m3. This is the Limit Value not to be exceeded > 10 days a year.

• AOT40 — is the accumulated amount of ozone over the threshold value of 40 ppb for daylight
hours in the growing season (April to September). Note that latitude and longitude can
also be passed to this calculation.

• hours.gt.200 — number of hours NO2 is more than 200 ug/m3.

• days.gt.50 — number of days PM10 is more than 50 ug/m3.

For the rolling means, the user can supply the option align, which can be "centre" (default), "left"
or "right". See rollingMean for more details.

There can be small discrepancies with the AURN due to the treatment of rounding data. The
aqStats function does not round, whereas AURN data can be rounded at several stages during
the calculations.

Author(s)

David Carslaw

Examples

Statistics for 2004. NOTE! these data are in ppb/ppm so the
example is for illustrative purposes only
aqStats(selectByDate(mydata, year = 2004), pollutant = "no2")

binData 5

binData Bin data, calculate mean and bootstrap 95% confidence interval in the
mean

Description

Bin a variable and calculate mean an uncertainties in mean

Usage

binData(mydata, bin = "nox", uncer = "no2", n = 40, interval = NA, breaks = NA)

Arguments

mydata Name of the data frame to process.

bin The name of the column to divide into intervals

uncer The name of the column for which the mean, lower and upper uncertainties
should be calculated for each interval of bin.

n The number of intervals to split bin into.

interval The interval to be used for binning the data.

breaks User specified breaks to use for binning.

Details

This function summarises data by intervals and calculates the mean and bootstrap 95% confidence
intervals in the mean of a chosen variable in a data frame. Any other numeric variables are sum-
marised by their mean intervals.

There are three options for binning. The default is to bon bin into 40 intervals. Second, the user
can choose an binning interval e.g. interval = 5. Third, the user can supply their own breaks to
use as binning intervals.

Value

Retruns a summarised data frame with new columns for the mean and upper / lower 95% confidence
intervals in the mean.

Examples

how does nox vary by intervals of wind speed?
results <- binData(mydata, bin = "ws", uncer = "nox")

easy to plot this using ggplot2
Not run:
library(ggplot2)
ggplot(results, aes(ws, mean, ymin = min, ymax = max)) +
geom_pointrange()

6 calcFno2

End(Not run)

bootMeanDF Bootsrap confidence intervals in the mean

Description

A utility function to calculation the uncertainty intervals in the mean of a vector. The function
removes any missing data before the calculation.

Usage

bootMeanDF(x, conf.int = 0.95, B = 1000)

Arguments

x A vector from which the mean and bootstrap confidence intervals in the mean
are to be calculated

conf.int The confidence interval; default = 0.95.

B The number of bootstrap simulations

Value

Returns a data frame with the mean, lower uncertainty, upper uncertainty and number of values
used in the calculation

Examples

test <- rnorm(20, mean = 10)
bootMeanDF(test)

calcFno2 Estimate NO2/NOX emission ratios from monitoring data

Description

Given hourly NOX and NO2 from a roadside site and hourly NOX, NO2 and O3 from a background
site the function will estimate the emissions ratio of NO2/NOX — the level of primary NO2

Usage

calcFno2(input, tau = 60, user.fno2, main = "", xlab = "year", ...)

calcFno2 7

Arguments

input A data frame with the following fields. nox andno2 (roadside NOX and NO2
concentrations), back_nox, back_no2 and back_o3 (hourly background con-
centrations of each pollutant). In addition temp (temperature in degrees Celsius)
and cl (cloud cover in Oktas). Note that if temp and cl are not available, typical
means values of 11 deg. C and cloud = 3.5 will be used.

tau Mixing time scale. It is unlikely the user will need to adjust this. See details
below.

user.fno2 User-supplied f-NO2 fraction e.g. 0.1 is a NO2/NOX ratio of 10 series and is
useful for testing "what if" questions.

main Title of plot if required.

xlab x-axis label.

... Other graphical parameters send to scatterPlot.

Details

The principal purpose of this function is to estimate the level of primary (or direct) NO2 from road
vehicles. When hourly data of NOX, NO2 and O3 are available, the total oxidant method of Clapp
and Jenkin (2001) can be used. If roadside O3 measurements are available see linearRelation
for details of how to estimate the primary NO2 fraction.

In the absence of roadside O3 measurements, it is rather more problematic to calculate the fraction
of primary NO2. Carslaw and Beevers (2005c) developed an approach based on linearRelation
the analysis of roadside and background measurements. The increment in roadside NO2 concen-
trations is primarily determined by direct emissions of NO2 and the availability of One to react
with NO to form NO2. The method aims to quantify the amount of NO2 formed through these two
processes by seeking the optimum level of primary NO2 that gives the least error.

Test data is provided at https://davidcarslaw.github.io/openair/.

Value

As well as generating the plot itself, calcFno2 also returns an object of class “openair”. The object
includes three main components: call, the command used to generate the plot; data, the data
frame of summarised information used to make the plot; and plot, the plot itself. If retained, e.g.
using output <- calcFno2(...), this output can be used to recover the data, reproduce or rework
the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

References

Clapp, L.J., Jenkin, M.E., 2001. Analysis of the relationship between ambient levels of O3, NO2
and NO as a function of NOX in the UK. Atmospheric Environment 35 (36), 6391-6405.

https://davidcarslaw.github.io/openair/

8 calcPercentile

Carslaw, D.C. and N Carslaw (2007). Detecting and characterising small changes in urban nitrogen
dioxide concentrations. Atmospheric Environment. Vol. 41, 4723-4733.

Carslaw, D.C., Beevers, S.D. and M.C. Bell (2007). Risks of exceeding the hourly EU limit value
for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide.
Atmospheric Environment 41 2073-2082.

Carslaw, D.C. (2005a). Evidence of an increasing NO2/NOX emissions ratio from road traffic
emissions. Atmospheric Environment, 39(26) 4793-4802.

Carslaw, D.C. and Beevers, S.D. (2005b). Development of an urban inventory for road transport
emissions of NO2 and comparison with estimates derived from ambient measurements. Atmo-
spheric Environment, (39): 2049-2059.

Carslaw, D.C. and Beevers, S.D. (2005c). Estimations of road vehicle primary NO2 exhaust emis-
sion fractions using monitoring data in London. Atmospheric Environment, 39(1): 167-177.

Carslaw, D. C. and S. D. Beevers (2004). Investigating the Potential Importance of Primary NO2
Emissions in a Street Canyon. Atmospheric Environment 38(22): 3585-3594.

Carslaw, D. C. and S. D. Beevers (2004). New Directions: Should road vehicle emissions legislation
consider primary NO2? Atmospheric Environment 38(8): 1233-1234.

See Also

linearRelation if you have roadside ozone measurements.

Examples

Users should see the full openair manual for examples of how
to use this function.

calcPercentile Calculate percentile values from a time series

Description

Calculates multiple percentile values from a time series, with flexible time aggregation.

Usage

calcPercentile(
mydata,
pollutant = "o3",
avg.time = "month",
percentile = 50,
data.thresh = 0,
start = NA

)

calcPercentile 9

Arguments

mydata A data frame of data with a date field in the format Date or POSIXct. Must
have one variable to apply calculations to.

pollutant Name of variable to process. Mandatory.

avg.time Averaging period to use. See timeAverage for details.

percentile A vector of percentile values. For example percentile = 50 for median values,
percentile = c(5, 50, 95 for multiple percentile values.

data.thresh Data threshold to apply when aggregating data. See timeAverage for details.

start Start date to use - see timeAverage for details.

Details

This is a utility function to calculate percentiles and is used in, for example, timePlot. Given a
data frame with a date field and one other numeric variable, percentiles are calculated.

Value

Returns a data frame with new columns for each percentile level. New columns are given names
like percentile.95 e.g. when percentile = 95 is chosen. See examples below.

Author(s)

David Carslaw

See Also

timePlot, timeAverage

Examples

95th percentile monthly o3 concentrations
percentiles <- calcPercentile(mydata, pollutant ="o3",
avg.time = "month", percentile = 95)

head(percentiles)

5, 50, 95th percentile monthly o3 concentrations
Not run:
percentiles <- calcPercentile(mydata, pollutant ="o3",
avg.time = "month", percentile = c(5, 50, 95))

head(percentiles)

End(Not run)

10 calendarPlot

calendarPlot Plot time series values in convential calendar format

Description

This function will plot data by month laid out in a conventional calendar format. The main purpose
is to help rapidly visualise potentially complex data in a familiar way. Users can also choose to
show daily mean wind vectors if wind speed and direction are available.

Usage

calendarPlot(
mydata,
pollutant = "nox",
year = 2003,
month = 1:12,
type = "default",
annotate = "date",
statistic = "mean",
cols = "heat",
limits = c(0, 100),
lim = NULL,
col.lim = c("grey30", "black"),
col.arrow = "black",
font.lim = c(1, 2),
cex.lim = c(0.6, 1),
digits = 0,
data.thresh = 0,
labels = NA,
breaks = NA,
w.shift = 0,
remove.empty = TRUE,
main = NULL,
key.header = "",
key.footer = "",
key.position = "right",
key = TRUE,
auto.text = TRUE,
...

)

Arguments

mydata A data frame minimally containing date and at least one other numeric variable.
The date should be in either Date format or class POSIXct.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should
be supplied e.g. pollutant = "nox".

calendarPlot 11

year Year to plot e.g. year = 2003. If not supplied all data potentially spanning
several years will be plotted.

month If only certain month are required. By default the function will plot an entire
year even if months are missing. To only plot certain months use the month op-
tion where month is a numeric 1:12 e.g. month = c(1, 12) to only plot January
and December.

type Not yet implemented.

annotate This option controls what appears on each day of the calendar. Can be: “date”
— shows day of the month; “wd” — shows vector-averaged wind direction, or
“ws” — shows vector-averaged wind direction scaled by wind speed. Finally it
can be “value” which shows the daily mean value.

statistic Statistic passed to timeAverage.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

limits Use this option to manually set the colour scale limits. This is useful in the case
when there is a need for two or more plots and a consistent scale is needed on
each. Set the limits to cover the maximimum range of the data for all plots of
interest. For example, if one plot had data covering 0–60 and another 0–100,
then set limits = c(0,100). Note that data will be ignored if outside the limits
range.

lim A threshold value to help differentiate values above and below lim. It is used
when annotate = "value". See next few options for control over the labels
used.

col.lim For the annotation of concentration labels on each day. The first sets the colour
of the text below lim and the second sets the colour of the text above lim.

col.arrow The colour of the annotated wind direction / wind speed arrows.

font.lim For the annotation of concentration labels on each day. The first sets the font of
the text below lim and the second sets the font of the text above lim. Note that
font = 1 is normal text and font = 2 is bold text.

cex.lim For the annotation of concentration labels on each day. The first sets the size of
the text below lim and the second sets the size of the text above lim.

digits The number of digits used to display concentration values when annotate =
"value".

data.thresh Data capture threshold passed to timeAverage. For example, data.thresh =
75 means that at least 75% of the data must be available in a day for the value to
be calculate, else the data is removed.

labels If a categorical scale is required then these labels will be used. Note there is one
less label than break. For example, labels = c("good", "bad", "very bad").
breaks must also be supplied if labels are given.

breaks If a categorical scale is required then these breaks will be used. For exam-
ple, breaks = c(0, 50, 100, 1000). In this case “good” corresponds to values

12 calendarPlot

berween 0 and 50 and so on. Users should set the maximum value of breaks to
exceed the maximum data value to ensure it is within the maximum final range
e.g. 100–1000 in this case.

w.shift Controls the order of the days of the week. By default the plot shows Saturday
first (w.shift = 0). To change this so that it starts on a Monday for example, set
w.shift = 2, and so on.

remove.empty Should months with no data present be removed? Default is TRUE.

main The plot title; default is pollutant and year.

key.header Adds additional text/labels to the scale key. For example, passing calendarPlot(mydata,
key.header = "header", key.footer = "footer") adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.header.

key.position Location where the scale key is to plotted. Allowed arguments currently include
"top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for further
details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters are passed onto the lattice function lattice:levelplot,
with common axis and title labelling options (such as xlab, ylab, main) being
passed to via quickText to handle routine formatting.

Details

calendarPlot will plot data in a conventional calendar format i.e. by month and day of the week.
Daily statistics are calculated using timeAverage, which by default will calculate the daily mean
concentration.

If wind direction is available it is then possible to plot the wind direction vector on each day. This is
very useful for getting a feel for the meteorological conditions that affect pollutant concentrations.
Note that if hourly or higher time resolution are supplied, then calendarPlot will calculate daily
averages using timeAverage, which ensures that wind directions are vector-averaged.

If wind speed is also available, then setting the option annotate = "ws" will plot the wind vectors
whose length is scaled to the wind speed. Thus information on the daily mean wind speed and
direction are available.

It is also possible to plot categorical scales. This is useful where, for example, an air quality index
defines concentrations as bands e.g. “good”, “poor”. In these cases users must supply labels and
corresponding breaks.

Note that is is possible to pre-calculate concentrations in some way before passing the data to
calendarPlot. For example rollingMean could be used to calculate rolling 8-hour mean concen-
trations. The data can then be passed to calendarPlot and statistic = "max" chosen, which will
plot maximum daily 8-hour mean concentrations.

calendarPlot 13

Value

As well as generating the plot itself, calendarPlot also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. If retained,
e.g. using output <- calendarPlot(mydata, "nox"), this output can be used to recover the data,
reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

See Also

timePlot, timeVariation

Examples

load example data from package
data(mydata)

basic plot
calendarPlot(mydata, pollutant = "o3", year = 2003)

show wind vectors
calendarPlot(mydata, pollutant = "o3", year = 2003, annotate = "wd")
Not run:
show wind vectors scaled by wind speed and different colours
calendarPlot(mydata, pollutant = "o3", year = 2003, annotate = "ws",
cols = "heat")

show only specific months with selectByDate
calendarPlot(selectByDate(mydata, month = c(3,6,10), year = 2003),
pollutant = "o3", year = 2003, annotate = "ws", cols = "heat")

categorical scale example
calendarPlot(mydata, pollutant = "no2", breaks = c(0, 50, 100, 150, 1000),
labels = c("Very low", "Low", "High", "Very High"),
cols = c("lightblue", "green", "yellow", "red"), statistic = "max")

End(Not run)

14 conditionalEval

conditionalEval Conditional quantile estimates with additional variables for model
evaluation

Description

This function enhances conditionalQuantile by also considering how other variables vary over
the same intervals. Conditional quantiles are very useful on their own for model evaluation, but
provide no direct information on how other variables change at the same time. For example, a
conditional quantile plot of ozone concentrations may show that low concentrations of ozone tend
to be under-predicted. However, the cause of the under-prediction can be difficult to determine.
However, by considering how well the model predicts other variables over the same intervals, more
insight can be gained into the underlying reasons why model performance is poor.

Usage

conditionalEval(
mydata,
obs = "obs",
mod = "mod",
var.obs = "var.obs",
var.mod = "var.mod",
type = "default",
bins = 31,
statistic = "MB",
xlab = "predicted value",
ylab = "statistic",
col = brewer.pal(5, "YlOrRd"),
col.var = "Set1",
var.names = NULL,
auto.text = TRUE,
...

)

Arguments

mydata A data frame containing the field obs and mod representing observed and mod-
elled values.

obs The name of the observations in mydata.

mod The name of the predictions (modelled values) in mydata.

var.obs Other variable observations for which statistics should be calculated. Can be
more than length one e.g. var.obs = c("nox.obs","ws.obs"). Note that in-
cluding other variables could reduce the number of data available to plot due to
teh need of having non-missing data for all variables.

var.mod Other variable predictions for which statistics should be calculated. Can be more
than length one e.g. var.obs = c("nox.obs","ws.obs").

conditionalEval 15

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. "season", "year", "weekday" and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.

bins Number of bins used in conditionalQuantile.

statistic Statistic(s) to be plotted. Can be “MB”, “NMB”, “r”, “COE”, “MGE”, “NMGE”,
“RMSE” and “FAC2”, as described in modStats. When these statistics are cho-
sen, they are calculated from var.mod and var.mod.
statistic can also be a value that can be supplied to cutData. For exam-
ple, statistic = "season" will show how model performance varies by season
across the distribution of predictions which might highlight that at high concen-
trations of NOx the model tends to underestimate concentrations and that these
periods mostly occur in winter. statistic can also be another variable in the
data frame — see cutData for more information. A special case is statistic
= "cluster" if clusters have been calculated using trajCluster.

xlab label for the x-axis, by default "predicted value".

ylab label for the y-axis, by default "observed value".

col Colours to be used for plotting the uncertainty bands and median line. Must be
of length 5 or more.

col.var Colours for the additional variables to be compared. See openColours for more
details.

var.names Variable names to be shown on plot for plotting var.obs and var.mod.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will automati-
cally try and format pollutant names and units properly e.g. by subscripting the
‘2’ in NO2.

... Other graphical parameters passed onto conditionalQuantile and cutData.
For example, conditionalQuantile passes the option hemisphere = "southern"
on to cutData to provide southern (rather than default northern) hemisphere
handling of type = "season". Similarly, common axis and title labelling op-
tions (such as xlab, ylab, main) are passed to xyplot via quickText to handle
routine formatting.

Details

The conditionalEval function provides information on how other variables vary across the same
intervals as shown on the conditional quantile plot. There are two types of variable that can be
considered by setting the value of statistic. First, statistic can be another variable in the data
frame. In this case the plot will show the different proportions of statistic across the range of
predictions. For example statistic = "season" will show for each interval of mod the proportion

16 conditionalEval

of predictions that were spring, summer, autumn or winter. This is useful because if model perfor-
mance is worse for example at high concentrations of mod then knowing that these tend to occur
during a particular season etc. can be very helpful when trying to understand why a model fails. See
cutData for more details on the types of variable that can be statistic. Another example would
be statistic = "ws" (if wind speed were available in the data frame), which would then split wind
speed into four quantiles and plot the proportions of each.

Second, conditionalEval can simultaneously plot the model performance of other observed/predicted
variable pairs according to different model evaluation statistics. These statistics derive from the
modStats function and include “MB”, “NMB”, “r”, “COE”, “MGE”, “NMGE”, “RMSE” and
“FAC2”. More than one statistic can be supplied e.g. statistic = c("NMB", "COE"). Bootstrap
samples are taken from the corresponding values of other variables to be plotted and their statistics
with 95% confidence intervals calculated. In this case, the model performance of other variables is
shown across the same intervals of mod, rather than just the values of single variables. In this second
case the model would need to provide observed/predicted pairs of other variables.

For example, a model may provide predictions of NOx and wind speed (for which there are also ob-
servations available). The conditionalEval function will show how well these other variables are
predicted for the same intervals of the main variables assessed in the conditional quantile e.g. ozone.
In this case, values are supplied to var.obs (observed values for other variables) and var.mod
(modelled values for other variables). For example, to consider how well the model predicts NOx
and wind speed var.obs = c("nox.obs", "ws.obs") and var.mod = c("nox.mod", "ws.mod")
would be supplied (assuming nox.obs, nox.mod,ws.obs, ws.mod are present in the data frame).
The analysis could show for example, when ozone concentrations are under-predicted, the model
may also be shown to over-predict concentrations of NOx at the same time, or under-predict wind
speeds. Such information can thus help identify the underlying causes of poor model performance.
For example, an under-prediction in wind speed could result in higher surface NOx concentrations
and lower ozone concentrations. Similarly if wind speed predictions were good and NOx was over
predicted it might suggest an over-estimate of NOx emissions. One or more additional variables
can be plotted.

A special case is statistic = "cluster". In this case a data frame is provided that contains the
cluster calculated by trajCluster and importTraj. Alternatively users could supply their own
pre-calculated clusters. These calculations can be very useful in showing whether certain back
trajectory clusters are associated with poor (or good) model performance. Note that in the case
of statistic = "cluster" there will be fewer data points used in the analysis compared with the
ordinary statistics above because the trajectories are available for every three hours. Also note that
statistic = "cluster" cannot be used together with the ordinary model evaluation statistics such
as MB. The output will be a bar chart showing the proportion of each interval of mod by cluster
number.

Far more insight can be gained into model performance through conditioning using type. For
example, type = "season" will plot conditional quantiles and the associated model performance
statistics of other variables by each season. type can also be a factor or character field e.g. repre-
senting different models used.

See Wilks (2005) for more details of conditional quantile plots.

Author(s)

David Carslaw

conditionalQuantile 17

References

Wilks, D. S., 2005. Statistical Methods in the Atmospheric Sciences, Volume 91, Second Edition
(International Geophysics), 2nd Edition. Academic Press.

See Also

See conditionalQuantile for information on conditional quantiles, modStats for model evalua-
tion statistics and the package verification for comprehensive functions for forecast verification.

Examples

Examples to follow, or will be shown in the openair manual

conditionalQuantile Conditional quantile estimates for model evaluation

Description

Function to calculate conditional quantiles with flexible conditioning. The function is for use in
model evaluation and more generally to help better understand forecast predictions and how well
they agree with observations.

Usage

conditionalQuantile(
mydata,
obs = "obs",
mod = "mod",
type = "default",
bins = 31,
min.bin = c(10, 20),
xlab = "predicted value",
ylab = "observed value",
col = brewer.pal(5, "YlOrRd"),
key.columns = 2,
key.position = "bottom",
auto.text = TRUE,
...

)

18 conditionalQuantile

Arguments

mydata A data frame containing the field obs and mod representing observed and mod-
elled values.

obs The name of the observations in mydata.

mod The name of the predictions (modelled values) in mydata.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

bins Number of bins to be used in calculating the different quantile levels.

min.bin The minimum number of points required for the estimates of the 25/75th and
10/90th percentiles.

xlab label for the x-axis, by default “predicted value”.

ylab label for the y-axis, by default “observed value”.

col Colours to be used for plotting the uncertainty bands and median line. Must be
of length 5 or more.

key.columns Number of columns to be used in the key.

key.position Location of the key e.g. “top”, “bottom”, “right”, “left”. See lattice xyplot
for more details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will automati-
cally try and format pollutant names and units properly e.g. by subscripting the
‘2’ in NO2.

... Other graphical parameters passed onto cutData and lattice:xyplot. For ex-
ample, conditionalQuantile passes the option hemisphere = "southern" on
to cutData to provide southern (rather than default northern) hemisphere han-
dling of type = "season". Similarly, common axis and title labelling options
(such as xlab, ylab, main) are passed to xyplot via quickText to handle rou-
tine formatting.

Details

Conditional quantiles are a very useful way of considering model performance against observations
for continuous measurements (Wilks, 2005). The conditional quantile plot splits the data into evenly
spaced bins. For each predicted value bin e.g. from 0 to 10~ppb the corresponding values of the

conditionalQuantile 19

observations are identified and the median, 25/75th and 10/90 percentile (quantile) calculated for
that bin. The data are plotted to show how these values vary across all bins. For a time series of
observations and predictions that agree precisely the median value of the predictions will equal that
for the observations for each bin.

The conditional quantile plot differs from the quantile-quantile plot (Q-Q plot) that is often used
to compare observations and predictions. A Q-Q~plot separately considers the distributions of
observations and predictions, whereas the conditional quantile uses the corresponding observations
for a particular interval in the predictions. Take as an example two time series, the first a series
of real observations and the second a lagged time series of the same observations representing
the predictions. These two time series will have identical (or very nearly identical) distributions
(e.g. same median, minimum and maximum). A Q-Q plot would show a straight line showing
perfect agreement, whereas the conditional quantile will not. This is because in any interval of the
predictions the corresponding observations now have different values.

Plotting the data in this way shows how well predictions agree with observations and can help reveal
many useful characteristics of how well model predictions agree with observations — across the
full distribution of values. A single plot can therefore convey a considerable amount of information
concerning model performance. The conditionalQuantile function in openair allows conditional
quantiles to be considered in a flexible way e.g. by considering how they vary by season.

The function requires a data frame consisting of a column of observations and a column of predic-
tions. The observations are split up into bins according to values of the predictions. The median
prediction line together with the 25/75th and 10/90th quantile values are plotted together with a
line showing a “perfect” model. Also shown is a histogram of predicted values (shaded grey) and a
histogram of observed values (shown as a blue line).

Far more insight can be gained into model performance through conditioning using type. For
example, type = "season" will plot conditional quantiles by each season. type can also be a factor
or character field e.g. representing different models used.

See Wilks (2005) for more details and the examples below.

Author(s)

David Carslaw

References

Murphy, A. H., B.G. Brown and Y. Chen. (1989) Diagnostic Verification of Temperature Forecasts,
Weather and Forecasting, Volume: 4, Issue: 4, Pages: 485-501.

Wilks, D. S., 2005. Statistical Methods in the Atmospheric Sciences, Volume 91, Second Edition
(International Geophysics), 2nd Edition. Academic Press.

See Also

See modStats for model evaluation statistics and the package verification for comprehensive
functions for forecast verification.

Examples

20 corPlot

load example data from package
data(mydata)

make some dummy prediction data based on 'nox'
mydata$mod <- mydata$nox*1.1 + mydata$nox * runif(1:nrow(mydata))

basic conditional quantile plot
A "perfect" model is shown by the blue line
predictions tend to be increasingly positively biased at high nox,
shown by departure of median line from the blue one.
The widening uncertainty bands with increasing NOx shows that
hourly predictions are worse for higher NOx concentrations.
Also, the red (median) line extends beyond the data (blue line),
which shows in this case some predictions are much higher than
the corresponding measurements. Note that the uncertainty bands
do not extend as far as the median line because there is insufficient
to calculate them
conditionalQuantile(mydata, obs = "nox", mod = "mod")

can split by season to show seasonal performance (not very
enlightening in this case - try some real data and it will be!)

Not run: conditionalQuantile(mydata, obs = "nox", mod = "mod", type = "season")

corPlot corrgram plot with conditioning

Description

Function to to draw and visualise correlation matrices using lattice. The primary purpose is as a
tool for exploratory data analysis. Hierarchical clustering is used to group similar variables.

Usage

corPlot(
mydata,
pollutants = NULL,
type = "default",
cluster = TRUE,
method = "pearson",
dendrogram = FALSE,
lower = FALSE,
cols = "default",
r.thresh = 0.8,
text.col = c("black", "black"),
auto.text = TRUE,

corPlot 21

...
)

Arguments

mydata A data frame which should consist of some numeric columns.

pollutants the names of data-series in mydata to be plotted by corPlot. The default option
NULL and the alternative “all” use all available valid (numeric) data.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.

cluster Should the data be ordered according to cluster analysis. If TRUE hierarchical
clustering is applied to the correlation matrices using hclust to group similar
variables together. With many variables clustering can greatly assist interpreta-
tion.

method The correlation method to use. Can be “pearson”, “spearman” or “kendall”.

dendrogram Should a dendrogram be plotted? When TRUE a dendrogram is shown on the
right of the plot. Note that this will only work for type = "default".

lower Should only the lower triangle be plotted?

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“spectral”, “hue”, “greyscale” and user defined (see openColours for more de-
tails).

r.thresh Values of greater than r.thresh will be shown in bold type. This helps to
highlight high correlations.

text.col The colour of the text used to show the correlation values. The first value con-
trols the colour of negative correlations and the second positive.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters passed onto lattice:levelplot, with common
axis and title labelling options (such as xlab, ylab, main) being passed via
quickText to handle routine formatting.

Details

The corPlot function plots correlation matrices. The implementation relies heavily on that shown
in Sarkar (2007), with a few extensions.

22 corPlot

Correlation matrices are a very effective way of understating relationships between many variables.
The corPlot shows the correlation coded in three ways: by shape (ellipses), colour and the numeric
value. The ellipses can be thought of as visual representations of scatter plot. With a perfect positive
correlation a line at 45 degrees positive slope is drawn. For zero correlation the shape becomes a
circle. See examples below.

With many different variables it can be difficult to see relationships between variables i.e. which
variables tend to behave most like one another. For this reason hierarchical clustering is applied to
the correlation matrices to group variables that are most similar to one another (if cluster = TRUE).

If clustering is chosen it is also possible to add a dendrogram using the option dendrogram = TRUE.
Note that dendrogramscan only be plotted for type = "default" i.e. when there is only a single
panel. The dendrogram can also be recovered from the plot object itself and plotted more clearly;
see examples below.

It is also possible to use the openair type option to condition the data in many flexible ways,
although this may become difficult to visualise with too many panels.

Value

As well as generating the plot itself, corPlot also returns an object of class “openair”. The object
includes three main components: call, the command used to generate the plot; data, the data frame
of summarised information used to make the plot; and plot, the plot itself. If retained, e.g. using
output <- corPlot(mydata), this output can be used to recover the data, reproduce or rework the
original plot or undertake further analysis. Note the denogram when cluster = TRUE can aslo be
returned and plotted. See examples.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw — but mostly based on code contained in Sarkar (2007)

References

Sarkar, D. (2007). Lattice Multivariate Data Visualization with R. New York: Springer.

Friendly, M. (2002). Corrgrams : Exploratory displays for correlation matrices. American Statisti-
cian, 2002(4), 1-16. doi:10.1198/000313002533

See Also

taylor.diagram from the plotrix package from which some of the annotation code was used.

Examples

load openair data if not loaded already
data(mydata)
basic corrgram plot
corPlot(mydata)
plot by season ... and so on
corPlot(mydata, type = "season")

cutData 23

recover dendogram when cluster = TRUE and plot it
res <-corPlot(mydata)
plot(res$clust)
Not run:
a more interesting are hydrocarbon measurements
hc <- importAURN(site = "my1", year = 2005, hc = TRUE)
now it is possible to see the hydrocarbons that behave most
similarly to one another
corPlot(hc)

End(Not run)

cutData Function to split data in different ways for conditioning

Description

Utility function to split data frames up in various ways for conditioning plots. Users would generally
not be expected to call this function directly. Widely used by many openair functions usually
through the option type.

Usage

cutData(
x,
type = "default",
hemisphere = "northern",
n.levels = 4,
start.day = 1,
is.axis = FALSE,
local.tz = NULL,
latitude = 51,
longitude = -0.5,
...

)

Arguments

x A data frame containing a field date.

type A string giving the way in which the data frame should be split. Pre-defined
values are: “default”, “year”, “hour”, “month”, “season”, “weekday”, “site”,
“weekend”, “monthyear”, “daylight”, “dst” (daylight saving time).
type can also be the name of a numeric or factor. If a numeric column name is
supplied cutData will split the data into four quantiles. Factors levels will be
used to split the data without any adjustment.

24 cutData

hemisphere Can be "northern" or "southern", used to split data into seasons.

n.levels Number of quantiles to split numeric data into.

start.day What day of the week should the type = "weekday" start on? The user can
change the start day by supplying an integer between 0 and 6. Sunday = 0,
Monday = 1, . . . For example to start the weekday plots on a Saturday, choose
start.day = 6.

is.axis A logical (TRUE/FALSE), used to request shortened cut labels for axes.

local.tz Used for identifying whether a date has daylight savings time (DST) applied or
not. Examples include local.tz = "Europe/London", local.tz = "America/New_York"
i.e. time zones that assume DST. https://en.wikipedia.org/wiki/List_
of_zoneinfo_time_zones shows time zones that should be valid for most sys-
tems. It is important that the original data are in GMT (UTC) or a fixed offset
from GMT. See import and the openair manual for information on how to im-
port data and ensure no DST is applied.

latitude The decimal latitude used in type = "daylight".

longitude The decimal longitude. Note that locations west of Greenwich are negative.

... All additional parameters are passed on to next function(s).

Details

This section give a brief description of each of the define levels of type. Note that all time dependent
types require a column date.

"default" does not split the data but will describe the levels as a date range in the format "day month
year".

"year" splits the data by each year.

"month" splits the data by month of the year.

"hour" splits the data by hour of the day.

"monthyear" splits the data by year and month. It differs from month in that a level is defined for
each month of the data set. This is useful sometimes to show an ordered sequence of months if the
data set starts half way through a year; rather than starting in January.

"weekend" splits the data by weekday and weekend.

"weekday" splits the data by day of the week - ordered to start Monday.

"season" splits data up by season. In the northern hemisphere winter = December, January, Febru-
ary; spring = March, April, May etc. These defintions will change of hemisphere = "southern".

"seasonyear (or "yearseason") will split the data into year-season intervals, keeping the months of
a season together. For example, December 2010 is considered as part of winter 2011 (with January
and February 2011). This makes it easier to consider contiguous seasons. In contrast, type =
"season" will just split the data into four seasons regardless of the year.

"daylight" splits the data relative to estimated sunrise and sunset to give either daylight or nighttime.
The cut is made by cutDaylight but more conveniently accessed via cutData, e.g. cutData(mydata,
type = "daylight",latitude = my.latitude, longitude = my.longitude). The daylight esti-
mation, which is valid for dates between 1901 and 2099, is made using the measurement location,

https://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones
https://en.wikipedia.org/wiki/List_of_zoneinfo_time_zones

drawOpenKey 25

date, time and astronomical algorithms to estimate the relative positions of the Sun and the mea-
surement location on the Earth’s surface, and is based on NOAA methods. Measurement location
should be set using latitude (+ to North; - to South) and longitude (+ to East; - to West).

"dst" will split the data by hours that are in daylight saving time (DST) and hours that are not
for appropriate time zones. The option "dst" also requires that the local time zone is given e.g.
local.tz = "Europe/London", local.tz = "America/New_York". Each of the two periods will
be in local time. The main purpose of this option is to test whether there is a shift in the diurnal
profile when DST and non-DST hours are compared. This option is particularly useful with the
timeVariation function. For example, close to the source of road vehicle emissions, ‘rush-hour’
will tend to occur at the same local time throughout the year e.g. 8 am and 5 pm. Therefore,
comparing non-DST hours with DST hours will tend to show similar diurnal patterns (at least in the
timing of the peaks, if not magnitude) when expressed in local time. By contrast a variable such as
wind speed or temperature should show a clear shift when expressed in local time. In essence, this
option when used with timeVariation may help determine whether the variation in a pollutant is
driven by man-made emissions or natural processes.

"wd" splits the data by 8 wind sectors and requires a column wd: "NE", "E", "SE", "S", "SW", "W",
"NW", "N".

"ws" splits the data by 8 quantiles of wind speed and requires a column ws.

"site" splits the data by site and therefore requires a column site.

Note that all the date-based types e.g. month/year are derived from a column date. If a user already
has a column with a name of one of the date-based types it will not be used.

Value

Returns a data frame with a column cond that is defined by type.

Author(s)

David Carslaw (cutData) and Karl Ropkins (cutDaylight)

Examples

split data by day of the week
mydata <- cutData(mydata, type = "weekday")

drawOpenKey Scale key handling for openair

Description

General function for producing scale keys for other openair functions. The function is a crude
modification of the draw.colorkey function developed by Deepayan Sarkar as part of the lattice
package, and allows additional key labelling to added, and provides some additional control of the
appearance and scaling.

26 drawOpenKey

Usage

drawOpenKey(key, draw = FALSE, vp = NULL)

Arguments

key List defining the scale key structure to be produced. Most options are identical
to original draw.colorkey function.
Original draw.colorkey options:
space location of the scale key ("left", "right", "top" or "bottom"). Defaults to
"right".
col vector of colours, used in scale key.
at numeric vector specifying where the colors change. Must be of length 1 more
than the col vector.
labels a character vector for labelling the at values, or more commonly, a
list describing characteristics of the labels. This list may include components
labels, at, cex, col, rot, font, fontface and fontfamily.
tick.number approximate number of ticks.
width width of the key.
height height of key.
Note: width and height refer to the key dimensions. height is the length
of the key along the plot axis it is positioned against, and width is the length
perpendicular to that.
Additional options include:
header a character vector of extra text to be added above the key, or a list de-
scribing some characteristics of the header. This list may include components
header, the character vector of header labels, tweaks, a list of local controls,
e.g. ’gap’ and ’balance’ for spacing relative to scale and footer, respectively,
auto.text, TRUE/FALSE option to apply quickText, and slot, a numeric vec-
tor setting the size of the text boxes header text is placed in.
footer as in header but for labels below the scale key.
Notes: header and footer formatting can not be set locally, but instead are
matched to those set in labels. drawOpenKey allows for up to six additional
labels (three above and three below scale key). Any additional text is ignored.
tweak, auto.text, slot as in header and footer but sets all options uni-
formly. This also overwrites anything in header and/or footer.
fit the fit method to be applied to the header, scale key and footer when placing
the scale key left or right of the plot. Options include: ’all’, ’soft’ and ’scale’.
The default ’all’ fits header, key and footer into height range. The alternative
’scale’ fits only the key within height. (This means that keys keep the same
proportions relative to the main plot regardless of positioning but that header
and footer may exceed plot dimensions if height and/or slots are too large.
plot.style a character vector of key plotting style instructions: Options cur-
rently include: ’paddle’, ’ticks’ and ’border’. ’paddle’ applies the incremental
paddle layout used by winRose. ’ticks’ places ticks between the labels scale
key. ’border’ places a border about the scale key. Any combination of these
may be used but if none set, scale key defaults to c("ticks", "border") for
most plotting operations or c("paddle") for windRose.

drawOpenKey 27

draw Option to return the key object or plot it directly. The default, FALSE, should
always be used within openair calls.

vp View port to be used when plotting key. The default, NULL, should always be
used within openair calls.
(Note: drawOpenKey is a crude modification of lattice::draw.colorkey, that
provides labelling options for openair plot scale keys. Some aspects of the
function are in development and may to subject to change. Therefore, it is rec-
ommended that you use parent openair function controls, e.g. key.position,
key.header, key.footer options, where possible. drawOpenKey may obvi-
ously be used in other plots but it is recommended that draw.colorkey itself be
used wherever this type of additional scale labelling is not required.)

Details

The drawOpenKey function produces scale keys for other openair functions.

Most drawOpenKey options are identical to those of lattice::draw.colorkey. For example, scale
key size and position are controlled via height, width and space. Likewise, the axis labelling can
be set in and formatted by labels. See draw.colorkey for further details.

Additional scale labelling may be added above and below the scale using header and footer op-
tions within key. As in other openair functions, automatic text formatting can be enabled via
auto.key.

(Note: Currently, the formatting of header and footer text are fixed to the same style as labels
(the scale axis) and cannot be defined locally.)

The relationship between header, footer and the scale key itself can be controlled using fit
options. These can be set in key$fit to apply uniform control or individually in key$header$fit
and/or key$footer$fit to control locally.

The appearance of the scale can be controlled using plot.style.

Value

The function is a modification of lattice::draw.colorkey and returns a scale key using a similar
mechanism to that used in in the original function as developed by Deepayan Sarkar.

Note

We gratefully acknoweldge the considerable help and advice of Deepayan Sarkar.

Author(s)

draw.colorkey is part of the lattice package, developed by Deepayan Sarkar.

Additional modifications by Karl Ropkins.

References

Deepayan Sarkar (2010). lattice: Lattice Graphics. R package version 0.18-5. http://r-forge.r-
project.org/projects/lattice/

28 import

See Also

Functions using drawOpenKey currently include windRose, pollutionRose.

For details of the original function, see draw.colorkey

Examples

##########
#example 1
##########

#paddle style scale key used by windRose

windRose(mydata,)

#adding text and changing style and position via key

#note:
#some simple key control also possible directly
#For example, below does same as
#windRose(mydata, key.position="right")

windRose(mydata,
key =list(space="right")

)

#however:
#more detailed control possible working with
#key and drawOpenKey. For example,

windRose(mydata,
key = list(header="Title", footer="wind speed",

plot.style = c("ticks", "border"),
fit = "all", height = 1,
space = "top")

)

import Generic data import for openair

Description

This function is mostly used to simplify the importing of csv and text file in openair. In particular
it helps to get the date or date/time into the correct format. The file can contain either a date or
date/time in a single column or a date in one column and time in another.

import 29

Usage

import(
file = file.choose(),
file.type = "csv",
sep = ",",
header.at = 1,
data.at = 2,
date = "date",
date.format = "%d/%m/%Y %H:%M",
time = NULL,
time.format = NULL,
tzone = "GMT",
na.strings = c("", "NA"),
quote = "\"",
ws = NULL,
wd = NULL,
correct.time = NULL,
...

)

Arguments

file The name of the file to be imported. Default, file = file.choose(), opens
browser. Alternatively, the use of read.table (in utils) also allows this to be
a character vector of a file path, connection or url.

file.type The file format, defaults to common ‘csv’ (comma delimited) format, but also
allows ‘txt’ (tab delimited).

sep Allows user to specify a delimiter if not ‘,’ (csv) or TAB (txt). For example ‘;’
is sometimes used to delineate separate columns.

header.at The file row holding header information or NULL if no header to be used.

data.at The file row to start reading data from. When generating the data frame, the
function will ignore all information before this row, and attempt to include all
data from this row onwards.

date Name of the field containing the date. This can be a date e.g. 10/12/2012 or a
date-time format e.g. 10/12/2012 01:00.

date.format The format of the date. This is given in ‘R’ format according to strptime. For
example, a date format such as 1/11/2000 12:00 (day/month/year hour:minutes)
is given the format “%d/%m/%Y %H:%M”. See examples below and strptime
for more details.

time The name of the column containing a time — if there is one. This is used when a
time is given in a separate column and date contains no information about time.

time.format If there is a column for time then the time format must be supplied. Common
examples include “%H:%M” (like 07:00) or an integer giving the hour, in which
case the format is “%H”. Again, see examples below.

30 import

tzone The time zone for the data. In order to avoid the complexities of DST (daylight
savings time), openair assumes the data are in GMT (UTC) or a constant off-
set from GMT. Users can set a positive or negative offset in hours from GMT.
For example, to set the time zone of the data to the time zone in New York
(EST, 5 hours behind GMT) set tzone = "Etc/GMT+5". To set the time zone of
the data to Central European Time (CET, 1 hour ahead of GMT) set tzone =
"Etc/GMT-1". Note that the positive and negative offsets are opposite to what
most users expect.

na.strings Strings of any terms that are to be interpreted as missing (NA). For example,
this might be “-999”, or “n/a” and can be of several items.

quote String of characters (or character equivalents) the imported file may use to rep-
resent a character field.

ws Name of wind speed field if present if different from “ws” e.g. ws = "WSPD".
wd Name of wind direction field if present if different from “wd” e.g. wd = "WDIR".
correct.time Numerical correction (in seconds) for imported date. Default NULL turns this

option off. This can be useful if the hour is represented as 1 to 24 (rather than
0 to 23 assumed by R). In which case correct.time = -3600 will correct the
hour.

... Other arguments passed to read.table.

Details

The function uses strptime to parse dates and times. Users should consider the examples for use
of these formats.

The function can either deal with combined date-time formats e.g. 10/12/1999 23:00 or with two
separate columns that deal with date and time. Often there is a column for the date and another
for hour. For the latter, the option time.format = "%H" should be supplied. Note that R considers
hours 0 to 23. However, if hours 1 to 24 are detected import will correct the hours accordingly.

import will also ensure wind speed and wind direction are correctly labelled (i.e. "ws", "wd") if ws
or wd are given.

Note that it is assumed that the input data are in GMT (UTC) format and in particular there is no
consideration of daylight saving time i.e. where in the input data set an hour is missing in spring
and duplicated in autumn.

Examples of use are given in the openair manual.

Value

A data frame formatted for openair use.

Author(s)

David Carslaw

See Also

Dedicated import functions available for selected file types, e.g. : importAURN, importAURNCsv,
importKCL, importADMS, etc.

importADMS 31

importADMS CERC Atmospheric Dispersion Modelling System (ADMS) data im-
port function(s) for openair

Description

Function(s) to import various ADMS file types into openair. Currently handles ".met", ".bgd",
".mop" and ".pst" file structures. Uses read.csv (in utils) to read in data, format for R and
openair and apply some file structure testing.

Usage

importADMS(
file = file.choose(),
file.type = "unknown",
drop.case = TRUE,
drop.input.dates = TRUE,
keep.units = TRUE,
simplify.names = TRUE,
test.file.structure = TRUE,
drop.delim = TRUE,
add.prefixes = TRUE,
names = NULL,
...

)

Arguments

file The ADMS file to be imported. Default, file.choose() opens browser. Use
of read.csv (in utils) also allows this to be a readable text-mode connection
or url (although these options are currently not fully tested).

file.type Type of ADMS file to be imported. With default, "unknown", the import uses
the file extension to identify the file type and, where recognised, uses this to
identify the file structure and import method to be applied. Where file extension
is not recognised the choice may be forced by setting file.type to one of the
known file.type options: "bgd", "met", "mop" or "pst".

drop.case Option to convert all data names to lower case. Default, TRUE. Alternative,
FALSE, returns data with name cases as defined in file.

drop.input.dates

Option to remove ADMS "hour", "day", and "year" data columns after gener-
ating openair "date" timeseries. Default, TRUE. Alternative, FALSE, returns both
"date" and the associated ADMS data columns as part of openair data frame.

keep.units Option to retain ADMS data units. Default, TRUE, retains units (if recover-
able) as character vector in data frame comment if defined in file. Alternative,
FALSE, discards units. (NOTE: currently, only .bgd and .pst files assign units.
So, this option is ignored when importing .met or .mop files.)

32 importADMS

simplify.names Option to simplify data names in accordance with common openair practices.
Default, TRUE. Alternative, FALSE, returns data with names as interpreted by
standard R. (NOTE: Some ADMS file data names include symbols and struc-
tures that R does not allow as part of a name, so some renaming is automatic
regardless of simplify.names setting. For example, brackets or symbols are
removed from names or repaced with ".", and names in the form "1/x" may be
returned as "X1.x" or "recip.x".)

test.file.structure

Option to test file structure before trying to import. Default, TRUE, tests for
expected file structure and halts import operation if this is not found. Alternative,
FALSE, attempts import regardless of structure.

drop.delim Option to remove delim columns from the data frame. ADMS .mop files include
two columns, "INPUT_DATA:" and "PROCESSED_DATA:", to separate model
input and output types. Default, TRUE, removes these. Alternative, FALSE, re-
tains them as part of import. (Note: Option ignored when importing .bgd, .met
or .pst files.)

add.prefixes Option to add prefixes to data names. ADMS .mop files include a number of
input and process data types with shared names. Prefixes can be automatically
added to these so individual data can be readily identified in the R/openair envi-
ronment. Default, TRUE, adds "process." as a prefix to processed data. Other op-
tions include: FALSE which uses no prefixes and leave all name rationalisation to
R, and character vectors which are treated as the required prefixes. If one vector
is sent, this is treated as processed data prefix. If two (or more) vectors are sent,
the first and second are treated as the input and processed data prefixes, respec-
tively. For example, the argument (add.prefixes="out") would add the "out"
prefix to processed data names, while the argument (add.prefixes=c("in","out"))
would add "in" and "out" prefixes to input and output data names, respectively.
(Note: Option ignored when importing .bgd, .met or .pst files.)

names Option applied by simplifyNamesADMS when simplify.names is enabled. All
names are simplified for the default setting, NULL.

... Additional arguments, passed to read.csv as part of import operation.

Details

The importADMS function were developed to help import various ADMS file types into openair.
In most cases the parent import function should work in default configuration, e.g. mydata <-
importADMS(). The function currently recognises four file formats: .bgd, .met, .mop and .pst.
Where other file extensions have been set but the file structure is known, the import call can be
forced by, e.g, mydata <- importADMS(file.type="bgd"). Other options can be adjusted to pro-
vide fine control of the data structuring and renaming.

Value

In standard use importADMS() returns a data frame for use in openair. By comparison to the original
file, the resulting data frame is modified as follows:

Time and date information will combined in a single column "date", formatted as a conventional
timeseries (as.POSIX*). If drop.input.dates is enabled data series combined to generated the
new "date" data series will also be removed.

importADMS 33

If simplify.names is enabled common chemical names may be simplified, and some other pa-
rameters may be reset to openair standards (e.g. "ws", "wd" and "temp") according to operations
defined in simplifyNamesADMS. A summary of simplfication operations can be obtained using, e.g.,
the call importADMS(simplify.names).

If drop.case is enabled all upper case characters in names will be converted to lower case.

If keep.units is enabled data units information may also be retained as part of the data frame
comment if available.

With .mop files, input and processed data series names may also been modified on the basis of
drop.delim and add.prefixes settings

Note

Times are assumed to be in GMT. Zero wind directions reset to 360 as part of .mop file import.

Author(s)

Karl Ropkins, David Carslaw and Matthew Williams (CERC).

See Also

Generic import function import, for possible alternative import methods. Other dedicated import
functions available for other file types, including importKCL, importAURN, etc.

Examples

##########
#example 1
##########
#To be confirmed

#all current simplify.names operations
importADMS(simplify.names)

#to see what simplify.names does to adms data series name PHI
new.name <- importADMS(simplify.names, names="PHI")
new.name

34 importAQE

importAQE Air Quality England Network data import for openair

Description

Functions for importing air pollution data from a range of UK networks including the Automatic Ur-
ban and Rural Network. Files are imported from a remote server operated by Ricardo that provides
air quality data files as R data objects.

Usage

importAQE(
site = "yk13",
year = 2018,
data_type = "hourly",
pollutant = "all",
meta = FALSE,
ratified = FALSE,
to_narrow = FALSE

)

importAURN(
site = "my1",
year = 2009,
data_type = "hourly",
pollutant = "all",
hc = FALSE,
meta = FALSE,
ratified = FALSE,
to_narrow = FALSE,
verbose = FALSE

)

importNI(
site = "bel0",
year = 2018,
data_type = "hourly",
pollutant = "all",
meta = FALSE,
ratified = FALSE,
to_narrow = FALSE

)

importSAQN(
site = "gla4",
year = 2009,
data_type = "hourly",

importAQE 35

pollutant = "all",
meta = FALSE,
ratified = FALSE,
to_narrow = FALSE

)

importWAQN(
site = "card",
year = 2018,
data_type = "hourly",
pollutant = "all",
meta = FALSE,
ratified = FALSE,
to_narrow = FALSE

)

Arguments

site Site code of the site to import e.g. “my1” is Marylebone Road. Several sites can
be imported with site = c("my1", "nott") — to import Marylebone Road and
Nottingham for example.

year Year or years to import. To import a sequence of years from 1990 to 2000 use
year = 1990:2000. To import several specific years use year = c(1990, 1995,
2000) for example.

data_type The data type averaging period. These include:

• "hourly" Default is to return hourly data.
• "daily" Daily average data.
• "monthly" Monthly average data with data capture information for the whole

network.
• "annual" Annual average data with data capture information for the whole

network.
• "15_min" To import 15-minute average SO2 concentrations.
• "8_hour" To import 8-hour rolling mean concentrations for O3 and CO.
• "24_hour" To import 24-hour rolling mean concentrations for particulates.
• "daily_max_8" To import maximum daily rolling 8-hour maximum for O3

and CO.
• "daqi" To import Daily Air Quality Index (DAQI). See here for more details

of how the index is defined.

pollutant Pollutants to import. If omitted will import all pollutants from a site. To import
only NOx and NO2 for example use pollutant = c("nox", "no2").

meta Should meta data be returned? If TRUE the site type, latitude and longitude are
returned.

ratified If TRUE columns are returned indicating when each species was ratified i.e.
quality-checked. Available for hourly data only.

https://uk-air.defra.gov.uk/air-pollution/daqi?view=more-info&pollutant=ozone#pollutant

36 importAQE

to_narrow By default the returned data has a column for each pollutant/variable. When
to_narrow = TRUE the data are stacked into a narrow format with a column iden-
tifying the pollutant name.

hc A few sites have hydrocarbon measurements available and setting hc = TRUE will
ensure hydrocarbon data are imported. The default is however not to as most
users will not be interested in using hydrocarbon data and the resulting data
frames are considerably larger. This option is only available for importAURN.

verbose Should the function give messages when downloading files? Default is FALSE.

Details

This family of functions has been written to make it easy to import data from across several UK
air quality networks. Ricardo have provided .RData files (R workspaces) of all individual sites and
years, as well as up to date meta data. These files are updated on a daily basis. This approach
requires a link to the Internet to work.

For an up to date list of available sites that can be imported, see importMeta.

The site codes and pollutant names can be upper or lower case.

There are several advantages over the web portal approach where .csv files are downloaded. First, it
is quick to select a range of sites, pollutants and periods (see examples below). Second, storing the
data as .RData objects is very efficient as they are about four times smaller than .csv files — which
means the data downloads quickly and saves bandwidth. Third, the function completely avoids
any need for data manipulation or setting time formats, time zones etc. The function also has the
advantage that the proper site name is imported and used in openair functions.

The data are imported by stacking sites on top of one another and will have field names site, code
(the site code) and pollutant.

By default, the function returns hourly average data. However, annual, monthly, daily and 15 minute
data (for SO2) can be returned using the option data_type. Annual and monthly data provide whole
network information including data capture statistics.

All units are expressed in mass terms for gaseous species (ug/m3 for NO, NO2, NOx (as NO2), SO2
and hydrocarbons; and mg/m3 for CO). PM10 concentrations are provided in gravimetric units of
ug/m3 or scaled to be comparable with these units. Over the years a variety of instruments have
been used to measure particulate matter and the technical issues of measuring PM10 are complex.
In recent years the measurements rely on FDMS (Filter Dynamics Measurement System), which
is able to measure the volatile component of PM. In cases where the FDMS system is in use there
will be a separate volatile component recorded as ’v10’ and non-volatile component ’nv10’, which
is already included in the absolute PM10 measurement. Prior to the use of FDMS the measure-
ments used TEOM (Tapered Element Oscillating. Microbalance) and these concentrations have
been multiplied by 1.3 to provide an estimate of the total mass including the volatile fraction.

The function returns modelled hourly values of wind speed (ws), wind direction (wd) and ambient
temperature (air_temp) if available (generally from around 2010). These values are modelled using
the WRF model operated by Ricardo.

The BAM (Beta-Attenuation Monitor) instruments that have been incorporated into the network
throughout its history have been scaled by 1.3 if they have a heated inlet (to account for loss of
volatile particles) and 0.83 if they do not have a heated inlet. The few TEOM instruments in the
network after 2008 have been scaled using VCM (Volatile Correction Model) values to account for
the loss of volatile particles. The object of all these scaling processes is to provide a reasonable

importAQE 37

degree of comparison between data sets and with the reference method and to produce a consistent
data record over the operational period of the network, however there may be some discontinuity in
the time series associated with instrument changes.

No corrections have been made to the PM2.5 data. The volatile component of FDMS PM2.5 (where
available) is shown in the ’v2.5’ column.

Value

Returns a data frame of hourly mean values with date in POSIXct class and time zone GMT.

Functions

• importAQE: Import data from the Air Quality England

• importNI: Import data from the Northern Ireland Air Quality Network

• importSAQN: Import data from the Scottish Air Quality Network

• importWAQN: Import data from the Welsh Air Quality Network

Author(s)

David Carslaw and Trevor Davies

See Also

importKCL, importADMS

Examples

import all pollutants from Marylebone Rd from 1990:2009
Not run: mary <- importAURN(site = "my1", year = 2000:2009)

import nox, no2, o3 from Marylebone Road and Nottingham Centre for 2000
Not run: thedata <- importAURN(site = c("my1", "nott"), year = 2000,
pollutant = c("nox", "no2", "o3"))
End(Not run)

Other functions work in the same way e.g. to import Cardiff Centre data

Import annual data over a period, make it narrow format and return site information

Not run: aq <- importAURN(year = 2010:2020, data_type = "annual", meta = TRUE, to_narrow = TRUE)

Not run: cardiff <- importWAQN(site = "card", year = 2020)

38 importAURNCsv

importAURNCsv AURN csv file data import for openair

Description

Function for importing common 1 hour average (hourly) UK Automatic Urban and Rural Network
(AURN) Air Quality Archive data files previously downloaded in ".csv" format for use with the
openair package. The function uses read.table (in utils) and rbind (in reshape).

Usage

importAURNCsv(
file = file.choose(),
header.at = 5,
data.at = 7,
na.strings = c("No data", "", "NA"),
date.name = "Date",
date.break = "-",
time.name = "time",
misc.info = c(1, 2, 3, 4),
is.site = 4,
bad.24 = TRUE,
correct.time = -3600,
output = "final",
data.order = c("value", "status", "unit"),
simplify.names = TRUE,
...

)

Arguments

file The name of the AURN file to be imported. Default, file.choose opens
browser. Use of read.table (in utils) also allows this to be a readable text-
mode connection or url (although these options are currently not fully tested).

header.at The file row holding header information. This is used to set names for the result-
ing imported data frame, but may be subject to further modifications depending
on following argument settings.

data.at The first file row holding actual data. When generating the data frame, the func-
tion will ignore all information before this row, and attempt to include all data
from this row onwards.

na.strings Strings of any terms that are to be interpreted as NA values within the file.

date.name Header name of column holding date information. Combined with time infor-
mation as single date column in the generated data frame.

date.break The break character separating days, months and years in date information. For
example, "-" in "01-01-2009".

importAURNCsv 39

time.name Header name of column holding time information. Combined with date infor-
mation as single date column in the generated data frame.

misc.info Row numbers of any additional information that may be required from the orig-
inal file. Each line retained as a character vector in the generated data frame
comment.

is.site Header name of column holding site information. Setting to NULL turns this
option off.

bad.24 Reset AURN 24 time stamp. AURN time series are logged as 00:00:01 to
24:00:00 as opposed to the more conventional 00:00:00 to 23:59:59. bad.24
= TRUE resets the time stamp which is not allowed in some time series classes or
functions.

correct.time Numerical correction (in seconds) for imported date. AURN data is logged ret-
rospectively. For 1 hour average data, correct.time = -3600 resets this to the
start of the sampling period.

output Output style. Default "final" using import().

data.order A vector of names defining the order of data types. AURN files typically include
three data types, actual data and associated data quality and measurement unit
reports. Here, these are defined as "value", "status" and "unit", respectively.

simplify.names A logical (default TRUE) prompting the function to try to simply data frame
names using common chemical shorthand. FALSE retains names from original
file, although these may be modified if they contain unallowed characters or
non-unique names.

... Other parameters. Passed onto and handled by import().

Details

The importAURN() function was developed for use with air quality monitoring site data files down-
loaded in standard hourly (or 1 hour average) format using the Air Quality Archive email service.
Argument defaults are set to common values to simplify both the import operation and use with
openair.

Similar file structures can also be imported using this function with argument modification.

Value

The function returns a data frame for use in openair. By comparison to the original file, the re-
sulting data frame is modified as follows: Time and date information will combined in a single
column "date", formatted as a conventional timeseries (as.POSIXct). Time adjustments may also
be made, subject to "bad.24" and "correct.time" argument settings. Using default settings, the argu-
ment correct.time = - 3600 resets the time stamp to the start of the measurement period. If name
simplification was requested (simplify.names = TRUE), common chemical names will be simpli-
fied. For example, "carbon monoxide" will be reset to "co". Currently, this option only applies
to inorganics and particulates, not organics. Non-value information will be rationalised according
to data.order. For example, for the default, data.order = c("value", "status", "unit"), the
status and unit columns following the "co" column will be automatically renamed "unit.co" and
"status.co", respectively. An additional "site" column will be generated. Multiple "site" files are
allowed. Additional information (as defined in "misc.info") and data adjustments (as defined by
"bad.24" and "correct.time") are retained in the data frame comment.

40 importAURNCsv

Author(s)

Karl Ropkins

See Also

Generic import function import, or direct (on-line) data import function importAURN. Other dedi-
cated import functions available for other file types, e.g.: importKCL, importADMS, etc.

Examples

##########
#example 1
##########
#data obtained from email service:
#http://www.airquality.co.uk/archive/data_selector.php
#or
#http://www.airquality.co.uk/archive/data_and_statistics.php?action=step_pre_1
#example file "AirQualityDataHourly.csv" Brighton Roadside and Brighton Preston Park 2008.

#import data as mydata
mydata <- importAURN.csv("AirQualityDataHourly.csv")

#read additional information retained by importAURN
comment(mydata)

#analysis data by site
boxplot(nox ~ site, data = mydata)

##########
#example 2
##########
#example using data from url

#import data as otherdata
otherdata <- importAURN.csv(
"http://www.airquality.co.uk/archive/data_files/site_data/HG1_2007.csv")

#use openair function
summarise(otherdata)

##########
#example 3
##########
#example of importing other similar data formats

#import 15 min average so2 data from Bexley using url
so2.15min.data <- importAURN.csv(
"http://www.airquality.co.uk/archive/data_files/15min_site_data/BEX_2008.csv",
correct.time = -900)

importEurope 41

#note: correct.time amended for 15 min offset/correction.

#additional comments
comment(so2.15min.data)

#analysis
diurnal.error(so2.15min.data, pollutant="so2")

#wrapper for above operation
##(e.g. if you have to do this -or similar- a lot of time)
my.import.wrapper <- function(file, correct.time = -900, ...)
{ importAURN.csv(file = file, correct.time = correct.time, ...) }

#same as above
so2.15min.data.again <- my.import.wrapper(
"http://www.airquality.co.uk/archive/data_files/15min_site_data/BEX_2008.csv")

#analysis
timeVariation(so2.15min.data.again, pollutant="so2")

importEurope Import air quality data from European database

Description

This function is a simplified version of the saqgetr package (see https://github.com/skgrange/
saqgetr) for accessing European air quality data. The function only returns valid hourly data and
is meant as a fast and convenient way of accessing the most common type of hourly air quality data.
The function works in the same way as other openair functions that import air quality data that
generally need a site code and year to be supplied.

Usage

importEurope(
site = "debw118",
year = 2018,
tz = "UTC",
meta = FALSE,
to_narrow = FALSE

)

Arguments

site The code of the site(s).

year Year or years to import. To import a sequence of years from 1990 to 2000 use
year = 1990:2000. To import several specific years use year = c(1990, 1995,
2000) for example.

https://github.com/skgrange/saqgetr
https://github.com/skgrange/saqgetr

42 importKCL

tz Not used

meta Should meta data be returned? If TRUE the site type, latitude and longitude are
returned.

to_narrow By default the returned data has a column for each pollutant/variable. When
to_narrow = TRUE the data are stacked into a narrow format with a column iden-
tifying the pollutant name.

Details

The function can however return key site meta data.

The saqgetr package is much more comprehensive and provides data at other time averages e.g.
daily data.

Value

A tibble of data.

Examples

import data for Stuttgart Am Neckartor (S)
Not run: stuttgart <- importEurope("debw118", year = 2010:2019, meta = TRUE)

importKCL Import data from King’s College London networks

Description

Function for importing hourly mean data from King’s College London networks. Files are imported
from a remote server operated by King’s College London that provides air quality data files as R
data objects.

Usage

importKCL(
site = "my1",
year = 2009,
pollutant = "all",
met = FALSE,
units = "mass",
extra = FALSE,
meta = FALSE,
to_narrow = FALSE

)

importKCL 43

Arguments

site Site code of the network site to import e.g. "my1" is Marylebone Road. Several
sites can be imported with site = c("my1", "kc1") — to import Marylebone
Road and North Kensignton for example.

year Year or years to import. To import a sequence of years from 1990 to 2000 use
year = 1990:2000. To import several specfic years use year = c(1990, 1995,
2000) for example.

pollutant Pollutants to import. If omitted will import all pollutants from a site. To import
only NOx and NO2 for example use pollutant = c("nox", "no2").

met Should meteorological data be added to the import data? The default is FALSE. If
TRUE wind speed (m/s), wind direction (degrees), solar radiation and rain amount
are available. See details below.
Access to reliable and free meteorological data is problematic.

units By default the returned data frame expresses the units in mass terms (ug/m3
for NOx, NO2, O3, SO2; mg/m3 for CO). Use units = "volume" to use ppb
etc. PM10_raw TEOM data are multiplied by 1.3 and PM2.5 have no correction
applied. See details below concerning PM10 concentrations.

extra Not currently used.

meta Should meta data be returned? If TRUE the site type, latitude and longitude are
returned.

to_narrow By default the returned data has a column for each pollutant/variable. When
to_narrow = TRUE the data are stacked into a narrow format with a column iden-
tifying the pollutant name.

Details

The importKCL function has been written to make it easy to import data from the King’s College
London air pollution networks. KCL have provided .RData files (R workspaces) of all individual
sites and years for the KCL networks. These files are updated on a weekly basis. This approach
requires a link to the Internet to work.

There are several advantages over the web portal approach where .csv files are downloaded. First, it
is quick to select a range of sites, pollutants and periods (see examples below). Second, storing the
data as .RData objects is very efficient as they are about four times smaller than .csv files — which
means the data downloads quickly and saves bandwidth. Third, the function completely avoids any
need for data manipulation or setting time formats, time zones etc. Finally, it is easy to import many
years of data beyond the current limit of about 64,000 lines. The final point makes it possible to
download several long time series in one go. The function also has the advantage that the proper
site name is imported and used in openair functions.

The site codes and pollutant names can be upper or lower case. The function will issue a warning
when data less than six months old is downloaded, which may not be ratified.

The data are imported by stacking sites on top of one another and will have field names date, site,
code (the site code) and pollutant(s). Sometimes it is useful to have columns of site data. This can
be done using the reshape function — see examples below.

The situation for particle measurements is not straightforward given the variety of methods used
to measure particle mass and changes in their use over time. The importKCL function imports two

44 importKCL

measures of PM10 where available. PM10_raw are TEOM measurements with a 1.3 factor applied to
take account of volatile losses. The PM10 data is a current best estimate of a gravimetric equivalent
measure as described below. NOTE! many sites have several instruments that measure PM10 or
PM2.5. In the case of FDMS measurements, these are given as separate site codes (see below). For
example "MY1" will be TEOM with VCM applied and "MY7" is the FDMS data.

Where FDMS data are used the volatile and non-volatile components are separately reported i.e.
v10 = volatile PM10, v2.5 = volatile PM2.5, nv10 = non-volatile PM10 and nv2.5 = non-volatile
PM2.5. Therefore, PM10 = v10 + nv10 and PM2.5 = v2.5 + nv2.5.

For the assessment of the EU Limit Values, PM10 needs to be measured using the reference method
or one shown to be equivalent to the reference method. Defra carried out extensive trials between
2004 and 2006 to establish which types of particulate analysers in use in the UK were equiva-
lent. These trials found that measurements made using Partisol, FDMS, BAM and SM200 in-
struments were shown to be equivalent to the PM10 reference method. However, correction fac-
tors need to be applied to measurements from the SM200 and BAM instruments. Importantly,
the TEOM was demonstrated as not being equivalent to the reference method due to the loss of
volatile PM, even when the 1.3 correction factor was applied. The Volatile Correction Model
(VCM) was developed for Defra at King’s to allow measurements of PM10 from TEOM instru-
ments to be converted to reference equivalent; it uses the measurements of volatile PM made using
nearby FDMS instruments to correct the measurements made by the TEOM. It passed the equiv-
alence testing using the same methodology used in the Defra trials and is now the recommended
method for correcting TEOM measurements (Defra, 2009). VCM correction of TEOM measure-
ments can only be applied after 1st January 2004, when sufficiently widespread measurements of
volatile PM became available. The 1.3 correction factor is now considered redundant for measure-
ments of PM10 made after 1st January 2004. Further information on the VCM can be found at
http://www.volatile-correction-model.info/.

All PM10 statistics on the LondonAir web site, including the bulletins and statistical tools (and in
the RData objects downloaded using importKCL), now report PM10 results as reference equivalent.
For PM10 measurements made by BAM and SM200 analysers the applicable correction factors
have been applied. For measurements from TEOM analysers the 1.3 factor has been applied up to
1st January 2004, then the VCM method has been used to convert to reference equivalent.

The meteorological data are meant to represent ’typical’ conditions in London, but users may prefer
to use their own data. The data provide a an estimate of general meteorological conditions across
Greater London. For meteorological species (wd, ws, rain, solar) each data point is formed by
averaging measurements from a subset of LAQN monitoring sites that have been identified as having
minimal disruption from local obstacles and a long term reliable dataset. The exact sites used varies
between species, but include between two and five sites per species. Therefore, the data should
represent ’London scale’ meteorology, rather than local conditions.

While the function is being developed, the following site codes should help with selection. We will
also make available other meta data such as site type and location to make it easier to select sites
based on other information. Note that these codes need to be refined because only the common
species are available for export currently i.e. NOx, NO2, O3, CO, SO2, PM10, PM2.5.

• A30 | Kingston - Kingston Bypass A3 | Roadside

• AD1 | Shoreham-by-Sea | Kerbside

• AR1 | Chichester - Lodsworth | Rural

• AR2 | Wealden - Isfield | Rural

http://www.volatile-correction-model.info/

importKCL 45

• AS1 | Bath Aethalometer | Urban Background

• BA1 | Basildon - Gloucester Park | Roadside

• BB1 | Broxbourne (Roadside) | Roadside

• BE0 | Belfast - Carbon | Urban Background

• BE1 | Belfast Centre AURN | Urban Background

• BE3 | Belfast Centre Aethalometer | Urban Background

• BE7 | Belfast Centre FDMS trial | Urban Background

• BE8 | Belfast - Nitrate | Urban Background

• BE9 | Belfast - Partisol SO4 | Urban Background

• BF1 | Bedford Stewartby (Rural) | Industrial

• BF3 | Bedford - Kempston | Industrial

• BF4 | Bedford - Prebend Street | Roadside

• BF5 | Bedford - Lurke Street | Roadside

• BG1 | Barking and Dagenham - Rush Green | Suburban

• BG2 | Barking and Dagenham - Scrattons Farm | Suburban

• BG3 | Barking and Dagenham - North Street | Kerbside

• BH0 | Brighton Preston Park AURN | Urban Background

• BH1 | Brighton Roadside | Roadside

• BH2 | Brighton and Hove - Hove Town Hall | Roadside

• BH3 | Brighton and Hove - Foredown Tower | Urban Background

• BH5 | Brighton Mobile (Preston Fire Station) | Roadside

• BH6 | Brighton Mobile (Lewes Road) | Roadside

• BH7 | Brighton Mobile (Gloucester Road) | Roadside

• BH8 | Brighton and Hove - Stanmer Park | Rural

• BH9 | Brighton Mobile Beaconsfield Road | Roadside

• BI1 | Birmingham Tyburn CPC | Urban Background

• BL0 | Camden - Bloomsbury | Urban Background

• BL1 | Bloomsbury AURN SMPS | Urban Background

• BM1 | Ballymena - Ballykeel | Suburban

• BM2 | Ballymena - North Road | Roadside

• BN1 | Barnet - Tally Ho Corner | Kerbside

• BN2 | Barnet - Finchley | Urban Background

• BN3 | Barnet - Strawberry Vale | Urban Background

• BO1 | Ballymoney 1 | Suburban

• BP0 | Westminster - Bridge Place | Urban Background

• BQ5 | Bexley - Manor Road West Gravimetric | Industrial

• BQ6 | Bexley - Manor Road East Gravimetric | Industrial

46 importKCL

• BQ7 | Belvedere West | Urban Background

• BQ8 | Belvedere West FDMS | Urban Background

• BT1 | Brent - Kingsbury | Suburban

• BT2 | Brent - Ikea Car Park | Roadside

• BT3 | Brent - Harlesden | Roadside

• BT4 | Brent - Ikea | Roadside

• BT5 | Brent - Neasden Lane | Industrial

• BT6 | Brent - John Keble Primary School | Roadside

• BT7 | Brent - St Marys Primary School | Urban Background

• BW1 | Brentwood - Brentwood Town Hall | Urban Background

• BX0 | Bexley - Belvedere FDMS | Suburban

• BX1 | Bexley - Slade Green | Suburban

• BX2 | Bexley - Belvedere | Suburban

• BX3 | Bexley - Thamesmead | Suburban

• BX4 | Bexley - Erith | Industrial

• BX5 | Bexley - Bedonwell | Suburban

• BX6 | Bexley - Thames Road North FDMS | Roadside

• BX7 | Bexley - Thames Road North | Roadside

• BX8 | Bexley - Thames Road South | Roadside

• BX9 | Bexley - Slade Green FDMS | Suburban

• BY1 | Bromley - Rent Office | Urban Background

• BY4 | Bromley - Tweedy Rd | Roadside

• BY5 | Bromley - Biggin Hill | Suburban

• BY7 | Bromley - Harwood Avenue | Roadside

• CA1 | Crawley Background | Urban Background

• CA2 | Crawley - Gatwick Airport | Urban Background

• CB1 | Chelmsford - Fire Station | Roadside

• CB2 | Chelmsford - Springfield Road | Roadside

• CB3 | Chelmsford - Chignal St James | Urban Background

• CB4 | Chelmsford - Baddow Road | Roadside

• CC1 | Colchester - Lucy Lane South | Roadside

• CC2 | Colchester - Brook Street | Roadside

• CC3 | Colchester - Mersea Road | Roadside

• CD1 | Camden - Swiss Cottage | Kerbside

• CD3 | Camden - Shaftesbury Avenue | Roadside

• CD4 | Camden - St Martins College (NOX 1) | Urban Background

• CD5 | Camden - St Martins College (NOX 2) | Urban Background

importKCL 47

• CD7 | Camden - Swiss Cottage Partisol | Kerbside

• CD9 | Camden - Euston Road | Roadside

• CF1 | Cardiff Aethalometer | Urban Background

• CH1 | Cheltenham | Urban Background

• CI1 | Chichester - A27 Chichester Bypass | Roadside

• CI4 | Chichester - Orchard Street | Roadside

• CK1 | Cookstown | Suburban

• CP1 | Castle Point - Canvey Island | Urban Background

• CR2 | Croydon - Purley Way | Roadside

• CR3 | Croydon - Thornton Heath | Suburban

• CR4 | Croydon - George Street | Roadside

• CR5 | Croydon - Norbury | Kerbside

• CR6 | Croydon - Euston Road | Suburban

• CT1 | City of London - Senator House | Urban Background

• CT2 | City of London - Farringdon Street | Kerbside

• CT3 | City of London - Sir John Cass School | Urban Background

• CT4 | City of London - Beech Street | Roadside

• CT6 | City of London - Walbrook Wharf | Roadside

• CT8 | City of London - Upper Thames Street | Roadside

• CY1 | Crystal Palace - Crystal Palace Parade | Roadside

• DC1 | Dacorum 1 Hemel Hempstead (Background) | Urban Background

• DC2 | Dacorum 2 Hemel Hempstead (Background) | Urban Background

• DC3 | High Street Northchurch | Roadside

• DE1 | Derry City - Brandywell | Urban Background

• DE2 | Derry City - Dales Corner | Roadside

• DM1 | Dunmurry Aethalometer | Urban Background

• EA0 | Ealing - Acton Town Hall FDMS | Roadside

• EA1 | Ealing - Ealing Town Hall | Urban Background

• EA2 | Ealing - Acton Town Hall | Roadside

• EA3 | Ealing 3 - A40 East Acton | Roadside

• EA4 | Ealing Mobile - Hamilton Road | Roadside

• EA5 | Ealing Mobile - Southall | Roadside

• EA6 | Ealing - Hanger Lane Gyratory | Roadside

• EA7 | Ealing - Southall | Urban Background

• EA8 | Ealing - Horn Lane | Industrial

• EA9 | Ealing - Court Way | Roadside

• EB1 | Eastbourne - Devonshire Park | Urban Background

48 importKCL

• EB3 | Eastbourne - Holly Place | Urban Background

• EH1 | E Herts Throcking (Rural) | Rural

• EH2 | East Herts Sawbridgeworth (Background) | Urban Background

• EH3 | East Herts Sawbridgeworth (Roadside) | Roadside

• EH4 | East Herts Ware | Roadside

• EH5 | East Herts Bishops Stortford | Roadside

• EI0 | Ealing - Greenford | Urban Background

• EI1 | Ealing - Western Avenue | Roadside

• EL1 | Elmbridge - Bell Farm Hersham | Urban Background

• EL2 | Elmbridge - Esher High Street | Roadside

• EL3 | Elmbridge - Hampton Court Parade | Roadside

• EL4 | Elmbridge - Walton High Street | Kerbside

• EN1 | Enfield - Bushhill Park | Suburban

• EN2 | Enfield - Church Street | Roadside

• EN3 | Enfield - Salisbury School | Urban Background

• EN4 | Enfield - Derby Road | Roadside

• EN5 | Enfield - Bowes Primary School | Roadside

• FB1 | Rushmoor - Medway Drive | Roadside

• GB0 | Greenwich and Bexley - Falconwood FDMS | Roadside

• GB6 | Greenwich and Bexley - Falconwood | Roadside

• GL1 | Glasgow Centre | Suburban

• GL4 | Glasgow Centre Aethalometer | Suburban

• GN0 | Greenwich - A206 Burrage Grove | Roadside

• GN2 | Greenwich - Millennium Village | Industrial

• GN3 | Greenwich - Plumstead High Street | Roadside

• GN4 | Greenwich - Fiveways Sidcup Rd A20 | Roadside

• GR4 | Greenwich - Eltham | Suburban

• GR5 | Greenwich - Trafalgar Road | Roadside

• GR7 | Greenwich - Blackheath | Roadside

• GR8 | Greenwich - Woolwich Flyover | Roadside

• GR9 | Greenwich - Westhorne Avenue | Roadside

• HA0 | Harwell - Carbon | Rural

• HA1 | Harwell Rural AURN | Rural

• HA2 | Harwell Rural PARTISOL | Rural

• HA4 | Harwell Rural SMPS | Rural

• HA9 | Harwell - Partisol SO4 | Urban Background

• HF1 | Hammersmith and Fulham - Broadway | Roadside

importKCL 49

• HF2 | Hammersmith and Fulham - Brook Green | Urban Background

• HF3 | Hammersmith and Fulham - Scrubs Lane | Kerbside

• HG1 | Haringey - Haringey Town Hall | Roadside

• HG2 | Haringey - Priory Park | Urban Background

• HG3 | Haringey - Bounds Green | Roadside

• HI0 | Hillingdon - Sipson Road | Suburban

• HI1 | Hillingdon - South Ruislip | Roadside

• HI2 | Hillingdon - Hillingdon Hospital | Roadside

• HI3 | Hillingdon - Oxford Avenue | Roadside

• HK4 | Hackney - Clapton | Urban Background

• HK6 | Hackney - Old Street | Roadside

• HL1 | Halifax Aethalometer | Urban Background

• HM1 | Hertsmere Borehamwood 1 (Background) | Urban Background

• HM4 | Hertsmere - Borehamwood | Urban Background

• HO1 | Horsham Background | Urban Background

• HO2 | Horsham - Park Way | Roadside

• HO4 | Horsham - Storrington | Roadside

• HO5 | Horsham - Cowfold | Roadside

• HR1 | Harrow - Stanmore | Urban Background

• HR2 | Harrow - Pinner Road | Roadside

• HS1 | Hounslow - Brentford | Roadside

• HS2 | Hounslow - Cranford | Suburban

• HS3 | Hounslow - Brentford | Roadside

• HS4 | Hounslow - Chiswick High Road | Roadside

• HS5 | Hounslow - Brentford | Roadside

• HS6 | Hounslow - Heston Road | Roadside

• HS7 | Hounslow - Hatton Cross | Urban Background

• HS9 | Hounslow - Feltham | Roadside

• HT1 | Hastings - Bulverhythe | Roadside

• HT2 | Hastings - Fresh Fields | Roadside

• HV1 | Havering - Rainham | Roadside

• HV2 | Havering - Harold Hill | Suburban

• HV3 | Havering - Romford | Roadside

• HX0 | Birmingham Tyburn Aethalometer | Urban Background

• IC6 | City of London - Walbrook Wharf Indoor | Roadside

• IG4 | Greenwich - Eltham Ecology Centre Indoor | Urban Background

• IS1 | Islington - Upper Street | Urban Background

50 importKCL

• IS2 | Islington - Holloway Road | Roadside

• IS4 | Islington - Foxham Gardens | Urban Background

• IS5 | Islington - Duncan Terrace | Roadside

• IS6 | Islington - Arsenal | Urban Background

• IT2 | Tower Hamlets - Mile End Road | Roadside

• KB1 | South Kirkby Aethalometer | Urban Background

• KC0 | North Kensington - Carbon | Urban Background

• KC1 | Kensington and Chelsea - North Ken | Urban Background

• KC2 | Kensington and Chelsea - Cromwell Road | Roadside

• KC3 | Kensington and Chelsea - Knightsbridge | Roadside

• KC4 | Kensington and Chelsea - Kings Road | Roadside

• KC5 | Kensington and Chelsea - Earls Court Rd | Kerbside

• KC7 | Kensington and Chelsea - North Ken FDMS | Urban Background

• KC9 | North Kensington - Partisol SO4 | Urban Background

• KT1 | Kingston - Chessington | Suburban

• KT2 | Kingston - Town Centre | Roadside

• LA1 | Luton Airport | Urban Background

• LB1 | Lambeth - Christchurch Road | Roadside

• LB2 | Lambeth - Vauxhall Cross | Roadside

• LB3 | Lambeth - Loughborough Junct | Urban Background

• LB4 | Lambeth - Brixton Road | Kerbside

• LB5 | Lambeth - Bondway Interchange | Roadside

• LB6 | Lambeth - Streatham Green | Urban Background

• LH0 | Hillingdon - Harlington | Urban Background

• LH2 | Heathrow Airport | Urban Background

• LL1 | Lullington Heath Rural AURN | Rural

• LN1 | Luton - Challney Community College | Urban Background

• LS1 | Lewes - Telscombe Cliffs | Roadside

• LS2 | Lewes - Commercial Square | Roadside

• LS4 | Newhaven - Denton School | Urban Background

• LW1 | Lewisham - Catford | Urban Background

• LW2 | Lewisham - New Cross | Roadside

• LW3 | Lewisham - Mercury Way | Industrial

• MA1 | Manchester Piccadilly CPC | Urban Background

• MA2 | Manchester Piccadilly | Urban Background

• MD1 | Mid Beds Biggleswade (Roadside) | Roadside

• MD2 | Mid Beds Silsoe (Rural) | Rural

importKCL 51

• MD3 | Central Beds - Sandy | Roadside

• MD4 | Central Beds - Marston Vale | Rural

• ME1 | Merton - Morden Civic Centre | Roadside

• MP1 | Marchwood Power - Marchwood | Industrial

• MP2 | Marchwood Power - Millbrook Rd Soton | Industrial

• MR3 | Marylebone Road Aethalometer | Kerbside

• MV1 | Mole Valley - Leatherhead | Rural

• MV2 | Mole Valley - Lower Ashtead | Suburban

• MV3 | Mole Valley - Dorking | Urban Background

• MW1 | Windsor and Maidenhead - Frascati Way | Roadside

• MW2 | Windsor and Maidenhead - Clarence Road | Roadside

• MW3 | Windsor and Maidenhead - Ascot | Rural

• MY0 | Marylebone Road - Carbon | Kerbside

• MY1 | Westminster - Marylebone Road | Kerbside

• MY7 | Westminster - Marylebone Road FDMS | Kerbside

• NA5 | Newtownabbey- Mallusk | Urban Background

• NA6 | Newtownabbey- Shore Road | Roadside

• NE2 | Port Talbot TEOM and CPC | Urban Background

• NF1 | New Forest - Holbury | Industrial

• NF2 | New Forest - Fawley | Industrial

• NF3 | New Forest - Ringwood | Urban Background

• NF4 | New Forest - Totton | Roadside

• NF5 | New Forest - Lyndhurst | Roadside

• NH1 | North Herts Mobile - Baldock 1 | Roadside

• NH2 | North Herts Mobile - Baldock 2 | Roadside

• NH3 | North Herts Mobile - Royston | Urban Background

• NH4 | North Herts - Breechwood Green | Urban Background

• NH5 | North Herts - Baldock Roadside | Roadside

• NH6 | North Herts - Hitchin Library | Roadside

• NK1 | North Kensington - CPC | Urban Background

• NK3 | North Kensington Aethalometer | Urban Background

• NK6 | North Kensington - URG | Urban Background

• NM1 | Newham - Tant Avenue | Urban Background

• NM2 | Newham - Cam Road | Roadside

• NM3 | Newham - Wren Close | Urban Background

• NW1 | Norwich Centre Aethalometer | Urban Background

• OX0 | Oxford Centre Roadside AURN | Urban Background

52 importKCL

• OX1 | South Oxfordshire - Henley | Roadside

• OX2 | South Oxfordshire - Wallingford | Roadside

• OX3 | South Oxfordshire - Watlington | Roadside

• OX4 | Oxford St Ebbes AURN | Urban Background

• PO1 | Portsmouth Background AURN | Urban Background

• PT6 | Port Talbot Dyffryn School | Industrial

• RB1 | Redbridge - Perth Terrace | Urban Background

• RB2 | Redbridge - Ilford Broadway | Kerbside

• RB3 | Redbridge - Fullwell Cross | Kerbside

• RB4 | Redbridge - Gardner Close | Roadside

• RB5 | Redbridge - South Woodford | Roadside

• RD0 | Reading AURN - New Town | Urban Background

• RD1 | Reading - Caversham Road | Roadside

• RD2 | Reading - Kings Road | Roadside

• RD3 | Reading - Oxford Road | Roadside

• RG1 | Reigate and Banstead - Horley | Suburban

• RG2 | Reigate and Banstead - Horley South | Suburban

• RG3 | Reigate and Banstead - Poles Lane | Rural

• RG4 | Reigate and Banstead - Reigate High St | Kerbside

• RHA | Richmond - Lower Mortlake Road | Roadside

• RHB | Richmond - Lower Mortlake Road | Roadside

• RI1 | Richmond - Castelnau | Roadside

• RI2 | Richmond - Barnes Wetlands | Suburban

• RI5 | Richmond Mobile - St Margarets | Kerbside

• RI6 | Richmond Mobile - St Margarets | Kerbside

• RI7 | Richmond Mobile - Richmond Park | Suburban

• RI8 | Richmond Mobile - Richmond Park | Suburban

• RIA | Richmond Mobile - George Street | Kerbside

• RIB | Richmond Mobile - George Street | Kerbside

• RIC | Richmond Mobile - Kew Rd | Kerbside

• RID | Richmond Mobile - Kew Rd | Kerbside

• RIE | Richmond Mobile - Richmond Rd Twickenham | Roadside

• RIF | Richmond Mobile - Richmond Rd Twickenham | Roadside

• RIG | Richmond Mobile - Upper Teddington Rd | Roadside

• RIH | Richmond Mobile - Upper Teddington Rd | Roadside

• RII | Richmond Mobile - Somerset Rd Teddington | Urban Background

• RIJ | Richmond Mobile - Somerset Rd Teddington | Urban Background

importKCL 53

• RIK | Richmond Mobile - St. Margarets Grove | Urban Background

• RIL | Richmond Mobile - St. Margarets Grove | Urban Background

• RIM | Richmond Mobile - Petersham Rd Ham | Roadside

• RIN | Richmond Mobile - Petersham Rd Ham | Roadside

• RIO | Richmond Mobile - Stanley Rd Twickenham | Roadside

• RIP | Richmond Mobile - Stanley Rd Twickenham | Roadside

• RIQ | Richmond Mobile - Richmond Rd Twickenham | Roadside

• RIR | Richmond Mobile - Richmond Rd Twickenham | Roadside

• RIS | Richmond Mobile - Lincoln Ave Twickenham | Roadside

• RIU | Richmond Mobile - Mortlake Rd Kew | Roadside

• RIW | Richmond - Upper Teddington Road | Roadside

• RIY | Richmond - Hampton Court Road | Kerbside

• RO1 | Rochford - Rayleigh High Street | Roadside

• RY1 | Rother - Rye Harbour | Rural

• RY2 | Rother - De La Warr Road | Roadside

• SA1 | St Albans - Fleetville | Urban Background

• SB1 | South Beds - Dunstable | Urban Background

• SC1 | Sevenoaks 1 | Suburban

• SD1 | Southend-on-Sea AURN | Urban Background

• SE1 | Stevenage - Lytton Way | Roadside

• SH1 | Southampton Background AURN | Urban Background

• SH2 | Southampton - Redbridge | Roadside

• SH3 | Southampton - Onslow Road | Roadside

• SH4 | Southampton - Bitterne | Urban Background

• SK1 | Southwark - Larcom Street | Urban Background

• SK2 | Southwark - Old Kent Road | Roadside

• SK5 | Southwark - A2 Old Kent Road | Roadside

• SL1 | Sunderland Aethalometer | Urban Background

• ST1 | Sutton - Robin Hood School | Roadside

• ST2 | Sutton - North Cheam | Urban Background

• ST3 | Sutton - Carshalton | Suburban

• ST4 | Sutton - Wallington | Kerbside

• ST5 | Sutton - Beddington Lane | Industrial

• ST6 | Sutton - Worcester Park | Kerbside

• ST7 | Sutton - Therapia Lane | Industrial

• SU1 | Sussex Mobile10 Stockbridge | Kerbside

• SU2 | Sussex Mobile11 Jct Whitley Rd | Kerbside

54 importKCL

• SU3 | Sussex Mobile12 Cowfold | Kerbside

• SU4 | Sussex Mobile 13 Newhaven | Roadside

• SU5 | Sussex Mobile 14 Crawley | Roadside

• SU6 | Sussex Mobile15 Chichester County Hall | Urban Background

• SU7 | Sussex Mobile 16 Warnham | Rural

• SU8 | Sussex Mobile 17 Newhaven Paradise Park | Roadside

• SX1 | Sussex Mobile 1 | Urban Background

• SX2 | Sussex Mobile 2 North Berstead | Roadside

• SX3 | Sussex Mobile 3 | Roadside

• SX4 | Sussex Mobile 4 Adur | Roadside

• SX5 | Sussex Mobile 5 Fresh Fields Rd Hastings | Roadside

• SX6 | Sussex Mobile 6 Orchard St Chichester | Roadside

• SX7 | Sussex Mobile 7 New Road Newhaven | Roadside

• SX8 | Sussex Mobile 8 Arundel | Kerbside

• SX9 | Sussex Mobile 9 Newhaven Kerbside | Kerbside

• TD0 | Richmond - National Physical Laboratory | Suburban

• TE0 | Tendring St Osyth AURN | Rural

• TE1 | Tendring - Town Hall | Roadside

• TH1 | Tower Hamlets - Poplar | Urban Background

• TH2 | Tower Hamlets - Mile End Road | Roadside

• TH3 | Tower Hamlets - Bethnal Green | Urban Background

• TH4 | Tower Hamlets - Blackwall | Roadside

• TK1 | Thurrock - London Road (Grays) | Urban Background

• TK2 | Thurrock - Purfleet | Roadside

• TK3 | Thurrock - Stanford-le-Hope | Roadside

• TK8 | Thurrock - London Road (Purfleet) | Roadside

• TR1 | Three Rivers - Rickmansworth | Urban Background

• UT1 | Uttlesford - Saffron Walden Fire Station | Roadside

• UT2 | Uttlesford - Takeley | Urban Background

• UT3 | Uttlesford - Broxted Farm | Rural

• VS1 | Westminster - Victoria Street | Kerbside

• WA1 | Wandsworth - Garratt Lane | Roadside

• WA2 | Wandsworth - Town Hall | Urban Background

• WA3 | Wandsworth - Roehampton | Rural

• WA4 | Wandsworth - High Street | Roadside

• WA6 | Wandsworth - Tooting | Roadside

• WA7 | Wandsworth - Putney High Street | Kerbside

importKCL 55

• WA8 | Wandsworth - Putney High Street Facade | Roadside

• WA9 | Wandsworth - Putney | Urban Background

• WE0 | Kensington and Chelsea - Pembroke Road | Urban Background

• WF1 | Watford (Roadside) | Roadside

• WF2 | Watford - Watford Town Hall | Roadside

• WH1 | Welwyn Hatfield - Council Offices | Urban Background

• WL1 | Waltham Forest - Dawlish Road | Urban Background

• WL2 | Waltham Forest - Mobile | Roadside

• WL3 | Waltham Forest - Chingford | Roadside

• WL4 | Waltham Forest - Crooked Billet | Kerbside

• WL5 | Waltham Forest - Leyton | Roadside

• WM0 | Westminster - Horseferry Road | Urban Background

• WM3 | Westminster - Hyde Park Partisol | Roadside

• WM4 | Westminster - Charing Cross Library | Roadside

• WM5 | Westminster - Covent Garden | Urban Background

• WM6 | Westminster - Oxford St | Kerbside

• WR1 | Bradford Town Hall Aethalometer | Urban Background

• WT1 | Worthing - Grove Lodge | Kerbside

• XB1 | Bletchley | Rural

• XS1 | Shukri Outdoor | Industrial

• XS2 | Shukri Indoor | Industrial

• XS3 | Osiris mobile | Urban Background

• YH1 | Harrogate Roadside | Roadside

• ZA1 | Ashford Rural - Pluckley | Rural

• ZA2 | Ashford Roadside | Roadside

• ZA3 | Ashford Background | Urban Background

• ZA4 | Ashford M20 Background | Urban Background

• ZC1 | Chatham Roadside - A2 | Roadside

• ZD1 | Dover Roadside - Town Hall | Roadside

• ZD2 | Dover Roadside - Townwall Street | Roadside

• ZD3 | Dover Background - Langdon Cliff | Urban Background

• ZD4 | Dover Background - East Cliff | Urban Background

• ZD5 | Dover Coast Guard Met | Urban Background

• ZD6 | Dover Docks | Industrial

• ZF1 | Folkestone Suburban - Cheriton | Suburban

• ZG1 | Gravesham Backgrnd - Northfleet | Urban Background

• ZG2 | Gravesham Roadside - A2 | Roadside

56 importKCL

• ZG3 | Gravesham Ind Bgd - Northfleet | Urban Background

• ZH1 | Thanet Rural - Minster | Rural

• ZH2 | Thanet Background - Margate | Urban Background

• ZH3 | Thanet Airport - Manston | Urban Background

• ZH4 | Thanet Roadside - Ramsgate | Roadside

• ZL1 | Luton Background | Urban Background

• ZM1 | Maidstone Meteorological | Urban Background

• ZM2 | Maidstone Roadside - Fairmeadow | Kerbside

• ZM3 | Maidstone Rural - Detling | Rural

• ZR1 | Dartford Roadside - St Clements | Kerbside

• ZR2 | Dartford Roadside 2 - Town Centre | Roadside

• ZR3 | Dartford Roadside 3 - Bean Interchange | Roadside

• ZS1 | Stoke Rural AURN | Rural

• ZT1 | Tonbridge Roadside - Town Centre | Roadside

• ZT2 | Tunbridge Wells Background - Town Hall | Urban Background

• ZT3 | Tunbridge Wells Rural - Southborough | Rural

• ZT4 | Tunbridge Wells Roadside - St Johns | Roadside

• ZT5 | Tonbridge Roadside 2 - High St | Roadside

• ZV1 | Sevenoaks - Greatness Park | Urban Background

• ZV2 | Sevenoaks - Bat and Ball | Roadside

• ZW1 | Swale Roadside - Ospringe A2 | Roadside

• ZW2 | Swale Background - Sheerness | Urban Background

• ZW3 | Swale Roadside 2 - Ospringe Street | Roadside

• ZY1 | Canterbury Backgrnd - Chaucer TS | Urban Background

• ZY2 | Canterbury Roadside - St Dunstans | Roadside

• ZY4 | Canterbury St Peters Place | Roadside

Value

Returns a data frame of hourly mean values with date in POSIXct class and time zone GMT.

Author(s)

David Carslaw and Ben Barratt

See Also

importAURN, importADMS, importSAQN

importMeta 57

Examples

import all pollutants from Marylebone Rd from 1990:2009
Not run: mary <- importKCL(site = "my1", year = 2000:2009)

import nox, no2, o3 from Marylebone Road and North Kensignton for 2000
Not run: thedata <- importKCL(site = c("my1", "kc1"), year = 2000,
pollutant = c("nox", "no2", "o3"))
End(Not run)

import met data too...
Not run: my1 <- importKCL(site = "my1", year = 2008, met = TRUE)

importMeta Import monitoring site meta data for the UK and European networks

Description

Function to import meta data for air quality monitoring sites

Usage

importMeta(source = "aurn", all = FALSE)

Arguments

source The data source for the meta data. Can be “aurn”, “saqn” (or “saqd”), “aqe”,
“waqn”, “ni”, “kcl” or “europe”; upper or lower case.

all When all = FALSE only the site code, site name, latitude and longitude and site
type are imported. Setting all = TRUE will import all available meta data and
provide details (when available) or the individual pollutants measured at each
site.

Details

This function imports site meta data from several networks in the UK and Europe:

• “aurn”, The UK Automatic Urban and Rural Network.

• “saqn”, The Scottish Air Quality Network.

• “waqn”, The Welsh Air Quality Network.

• “ni”, The Northern Ireland Air Quality Network.

• “aqe”, The Air Quality England Network.

• “kcl”, King’s College London networks.

58 importTraj

• “europe”, Import hourly European data (Airbase/e-reporting) based on a simplified version of
the saqgetr package.

By default, the function will return the site latitude, longitude and site type. If the option all = TRUE
is used, much more detailed information is returned. For most networks, this detailed information
includes per-pollutant summaries, opening and closing dates of sites etc.

Thanks go to Trevor Davies (Ricardo), Dr Stuart Grange (EMPA) and Dr Ben Barratt (KCL) and
for making these data available.

Value

A data frame with meta data.

Author(s)

David Carslaw

See Also

importAURN, importKCL and importSAQN for importing air quality data from each network.

Examples

basic data

Not run:
meta <- importMeta(source = "aurn")

more detailed information:
meta <- importMeta(source = "aurn", all = TRUE)

from the Scottish Air Quality Network
meta <- importMeta(source = "saqn", all = TRUE)

End(Not run)

importTraj Import pre-calculated HYSPLIT 96-hour back trajectories

Description

Function to import pre-calculated back trajectories using the NOAA HYSPLIT model. The trajec-
tories have been calculated for a select range of locations which will expand in time. They cover
the last 20 years or so and can be used together with other openair functions.

Usage

importTraj(site = "london", year = 2009, local = NA)

importTraj 59

Arguments

site Site code of the network site to import e.g. "london". Only one site can be
imported at a time. The following sites are typically available from 2000-2012,
although some UK ozone sites go back to 1988 (code, location, lat, lon, year):

abudhabi Abu Dhabi 24.43000 54.408000 2012-2013
ah Aston Hill 52.50385 -3.041780 1988-2013
auch Auchencorth Moss 55.79283 -3.242568 2006-2013
berlin Berlin, Germany 52.52000 13.400000 2000-2013
birm Birmigham Centre 52.47972 -1.908078 1990-2013
boston Boston, USA 42.32900 -71.083000 2008-2013
bot Bottesford 52.93028 -0.814722 1990-2013
bukit Bukit Kototabang, Indonesia -0.19805 100.318000 1996-2013
chittagong Chittagong, Bangladesh 22.37000 91.800000 2010-2013
dhaka Dhaka, Bangladesh 23.70000 90.375000 2010-2013
ed Edinburgh 55.95197 -3.195775 1990-2013
elche Elche, Spain 38.27000 -0.690000 2004-2013
esk Eskdalemuir 55.31530 -3.206110 1998-2013
gibraltar Gibraltar 36.13400 -5.347000 2005-2010
glaz Glazebury 53.46008 -2.472056 1998-2013
groningen Groningen 53.40000 6.350000 2007-2013
har Harwell 51.57108 -1.325283 1988-2013
hk Hong Kong 22.29000 114.170000 1998-2013
hm High Muffles 54.33500 -0.808600 1988-2013
kuwait Kuwait City 29.36700 47.967000 2008-2013
lb Ladybower 53.40337 -1.752006 1988-2013
london Central London 51.50000 -0.100000 1990-2013
lh Lullington Heath 50.79370 0.181250 1988-2013
ln Lough Navar 54.43951 -7.900328 1988-2013
mh Mace Head 53.33000 -9.900000 1988-2013
ny-alesund Ny-Alesund, Norway 78.91763 11.894653 2009-2013
oslo Oslo 59.90000 10.750000 2010-2013
paris Paris, France 48.86200 2.339000 2000-2013
roch Rochester Stoke 51.45617 0.634889 1988-2013
rotterdam Rotterdam 51.91660 4.475000 2010-2013
saopaulo Sao Paulo -23.55000 -46.640000 2000-2013
sib Sibton 52.29440 1.463970 1988-2013
sv Strath Vaich 57.73446 -4.776583 1988-2013
wuhan Wuhan, China 30.58300 114.280000 2008-2013
yw Yarner Wood 50.59760 -3.716510 1988-2013

year Year or years to import. To import a sequence of years from 1990 to 2000 use
year = 1990:2000. To import several specfic years use year = c(1990, 1995,
2000) for example.

local File path to .RData trajectory files run by user and not stored on the Ricardo web
server. These files would have been generated from the Hysplit trajectory code
shown in the appendix of the openair manual. An example would be local =
'c:/users/david/TrajFiles/'.

60 importTraj

Details

This function imports pre-calculated back trajectories using the HYSPLIT trajectory model (Hybrid
Single Particle Lagrangian Integrated Trajectory Model http://ready.arl.noaa.gov/HYSPLIT.
php). Back trajectories provide some very useful information for air quality data analysis. However,
while they are commonly calculated by researchers it is generally difficult for them to be calculated
on a routine basis and used easily. In addition, the availability of back trajectories over several years
can be very useful, but again difficult to calculate.

Trajectories are run at 3-hour intervals and stored in yearly files (see below). The trajectories are
started at ground-level (10m) and propagated backwards in time.

These trajectories have been calculated using the Global NOAA-NCEP/NCAR reanalysis data
archives. The global data are on a latitude-longitude grid (2.5 degree). Note that there are many
different meteorological data sets that can be used to run HYSPLIT e.g. including ECMWF data.
However, in order to make it practicable to run and store trajectories for many years and sites,
the NOAA-NCEP/NCAR reanalysis data is most useful. In addition, these archives are avail-
able for use widely, which is not the case for many other data sets e.g. ECMWF. HYSPLIT
calculated trajectories based on archive data may be distributed without permission (see http:
//ready.arl.noaa.gov/HYSPLIT_agreement.php). For those wanting, for example, to consider
higher resolution meteorological data sets it may be better to run the trajectories separately.

We are extremely grateful to NOAA for making HYSPLIT available to produce back trajectories in
an open way. We ask that you cite HYSPLIT if used in published work.

Users can supply their own trajectory files to plot in openair. These files must have the following
fields: date, lat, lon and hour.inc (see details below).

The files consist of the following information:

date This is the arrival point time and is repeated the number of times equal to the length of the
back trajectory — typically 96 hours (except early on in the file). The format is POSIXct. It is
this field that should be used to link with air quality data. See example below.

receptor Receptor number, currently only 1.

year The year

month Month 1-12

day Day of the month 1-31

hour Hour of the day 0-23 GMT

hour.inc Number of hours back in time e.g. 0 to -96.

lat Latitude in decimal format.

lon Longitude in decimal format.

height Height of trajectory (m).

pressure Pressure of trajectory (kPa).

Value

Returns a data frame with pre-calculated back trajectories.

http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT_agreement.php
http://ready.arl.noaa.gov/HYSPLIT_agreement.php

kernelExceed 61

Note

The trajectories were run using the February 2011 HYSPLIT model. The function is primarily
written to investigate a single site at a time for a single year. The trajectory files are quite large and
care should be exercised when importing several years and/or sites.

Author(s)

David Carslaw

See Also

trajPlot, importAURN, importKCL,importADMS, importSAQN

Examples

import trajectory data for London in 2009
Not run: mytraj <- importTraj(site = "london", year = 2009)

combine with measurements
Not run: theData <- importAURN(site = "kc1", year = 2009)
mytraj <- merge(mytraj, theData, by = "date")
End(Not run)

kernelExceed Kernel density plot for daily mean exceedance statistics

Description

This function is used to explore the conditions leading to exeedances of air quality limits. Currently
the focus is on understanding the conditions under which daily limit values for PM10 are in excess
of a specified threshold. Kernel density estimates are calculated and plotted to highlight those
conditions.

Usage

kernelExceed(
polar,
x = "wd",
y = "ws",
pollutant = "pm10",
type = "default",
by = c("day", "dayhour", "all"),
limit = 50,
data.thresh = 0,
more.than = TRUE,
cols = "default",

62 kernelExceed

nbin = 256,
auto.text = TRUE,
...

)

Arguments

polar A data frame minimally containing date and at least three other numeric vari-
ables, typically ws, wd and a pollutant.

x x-axis variable. Mandatory.
y y-axis variable. Mandatory
pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should

be supplied e.g. pollutant = "nox"

type The type of analysis to be done. The default is will produce a single plot using
the entire data. Other types include "hour" (for hour of the day), "weekday" (for
day of the week) and "month" (for month of the year), "year" for a polarPlot for
each year. It is also possible to choose type as another variable in the data frame.
For example, type = "o3" will plot four kernel exceedance plots for different
levels of ozone, split into four quantiles (approximately equal numbers of counts
in each of the four splits). This offers great flexibility for understanding the
variation of different variables dependent on another. See function cutData for
further details.

by by determines how data above the limit are selected. by = "day" will select all
data (typically hours) on days where the daily mean value is above limit. by
= "dayhour" will select only those data above limit on days where the daily
mean value is above limit. by = "hour" will select all data above limit.

limit The threshold above which the pollutant concentration will be considered.
data.thresh The data capture threshold to use (the data using timeAverage to daily means.

A value of zero means that all available data will be used in a particular period
regardless if of the number of values available. Conversely, a value of 100 will
mean that all data will need to be present for the average to be calculated, else it
is recorded as NA.

more.than If TRUE data will be selected that are greater than limit. If FALSE data will be
selected that less than limit.

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"spectral", "hue", "brewer1" and user defined (see manual for more details). The
same line colour can be set for all pollutant e.g. cols = "black".

nbin number of bins to be used for the kernel density estimate.
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters passed onto lattice:levelplot and cutData. For
example, kernelExceed passes the option hemisphere = "southern" on to
cutData to provide southern (rather than default northern) hemisphere handling
of type = "season". Similarly, common axis and title labelling options (such
as xlab, ylab, main) are passed to levelplot via quickText to handle routine
formatting.

kernelExceed 63

Details

The kernelExceed functions is for exploring the conditions under which exceedances of air pol-
lution limits occur. Currently it is focused on the daily mean (European) Limit Value for PM10 of
50~ug/m3 not to be exceeded on more than 35 days. However, the function is sufficiently flexible
to consider other limits e.g. could be used to explore days where the daily mean are greater than
100~ug/m3.

By default the function will plot the kernel density estimate of wind speed and wind directions for
all days where the concentration of pollutant is greater than limit. Understanding the conditions
where exceedances occur can help with source identification.

The function offers different ways of selecting the data on days where the pollutant are greater
than limit through setting by. By default it will select all data on days where pollutant is greater
than limit. With the default setting of by it will select all data on those days where pollutant is
greater than limit, even if individual data (e.g. hours) are less than limit. Setting by = "dayhour"
will additionally ensure that all data on the those dates are also greater than limit. Finally, by =
"all" will select all values of pollutant above limit, regardless of when they occur.

The usefulness of the function is greatly enhanced through using type, which conditions the data
according to the level of another variable. For example, type = "season" will show the kernel
density estimate by spring, summer, autumn and winter and type = "so2" will attempt to show the
kernel density estimates by quantiles of SO2 concentration. By considering different values of type
it is possible to develop a good understanding of the conditions under which exceedances occur.

To aid interpretation the plot will also show the estimated number of days or hours where ex-
eedances occur. For type = "default" the number of days should exactly correspond to the actual
number of exceedance days. However, with different values of type the number of days is an esti-
mate. It is an estimate because conditioning breaks up individual days and the estimate is based on
the proportion of data calculated for each level of type.

Value

To be completed.

Note

This function automatically chooses the bandwidth for the kernel density estimate. We generally
find that most data sets are not overly sensitive to the choice of bandwidth. One important reason
for this insensitivity is likley to be the characteristics of air pollution itself. Due to atmospheric
dispersion processes, pollutant plumes generally mix rapidly in the atmosphere. This means that
pollutant concentrations are ‘smeared-out’ and extra fidelity brought about by narrower bandwidths
do not recover any more detail.

Author(s)

David Carslaw

See Also

polarAnnulus, polarFreq, polarPlot

64 linearRelation

Examples

Note! the manual contains other examples that are more illuminating
basic plot
kernelExceed(mydata, pollutant = "pm10")

condition by NOx concentrations
Not run: kernelExceed(mydata, pollutant = "pm10", type = "nox")

linearRelation Linear relations between pollutants

Description

This function considers linear relationships between two pollutants. The relationships are calcu-
lated on different times bases using a linear model. The slope and 95 in slope relationships by
time unit are plotted in many ways. The function is particularly useful when considering whether
relationships are consistent with emissions inventories.

Usage

linearRelation(
mydata,
x = "nox",
y = "no2",
period = "month",
condition = FALSE,
n = 20,
rsq.thresh = 0,
ylab = paste0("slope from ", y, " = m.", x, " + c"),
auto.text = TRUE,
cols = "grey30",
date.breaks = 5,
...

)

Arguments

mydata A data frame minimally containing date and two pollutants.

x First pollutant that when plotted would appear on the x-axis of a relationship
e.g. x = "nox".

y Second pollutant that when plotted would appear on the y-axis of a relationship
e.g. y = "pm10".

linearRelation 65

period A range of different time periods can be analysed. The default is month but
can be year and week. For increased flexibility an integer can be used e.g. for
3-month values period = "3 month". Other cases include "hour" will show
the diurnal relationship between x and y and “weekday” the day of the week
relationship between x and y. “day.hour” will plot the relationship by weekday
and hour of the day.

condition For period = "hour", period = "day" and period = "day.hour", setting condition
= TRUE will plot the relationships split by year. This is useful for seeing how the
relationships may be changing over time.

n The minimum number of points to be sent to the linear model. Because there
may only be a few points e.g. hours where two pollutants are available over one
week, n can be set to ensure that at least n points are sent to the linear model. If
a period has hours < n that period will be ignored.

rsq.thresh The minimum correlation coefficient (R2) allowed. If the relationship between
x and y is not very good for a particular period, setting rsq.thresh can help to
remove those periods where the relationship is not strong. Any R2 values below
rsq.thresh will not be plotted.

ylab y-axis title, specified by the user.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

cols Colour for the points and uncertainty intervals.

date.breaks Number of major x-axis intervals to use. The function will try and choose a sen-
sible number of dates/times as well as formatting the date/time appropriately to
the range being considered. This does not always work as desired automatically.
The user can therefore increase or decrease the number of intervals by adjusting
the value of date.breaks up or down.

... Other graphical parameters. A useful one to remove the strip with the date range
on at the top of the plot is to set strip = FALSE.

Details

The relationships between pollutants can yield some very useful information about source emis-
sions and how they change. A scatterPlot between two pollutants is the usual way to investigate
the relationship. A linear regression is useful to test the strength of the relationship. However, con-
siderably more information can be gleaned by considering different time periods, such as how the
relationship between two pollutants vary over time, by day of the week, diurnally and so on. The
linearRelation function does just that - it fits a linear relationship between two pollutants over a
wide range of time periods determined by period.

linearRelation function is particularly useful if background concentrations are first removed from
roadside concentrations, as the increment will relate more directly with changes in emissions. In
this respect, using linearRelation can provide valuable information on how emissions may have
changed over time, by hour of the day etc. Using the function in this way will require users to do
some basic manipulation with their data first.

If a data frame is supplied that contains nox, no2 and o3, the y can be chosen as y = "ox". In
function will therefore consider total oxidant slope (sum of NO2 + O3), which can provide valuable

66 modStats

information on likely vehicle primary NO emissions. Note, however, that most roadside sites do not
have ozone measurements and calcFno2 is the alternative.

Value

As well as generating the plot itself, linearRelation also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the data
frame of summarised information used to make the plot; and plot, the plot itself. If retained, e.g.
using output <- linearRelation(mydata, "nox", "no2"), this output can be used to recover the
data, reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

See Also

calcFno2

Examples

monthly relationship between NOx and SO2 - note rapid fall in
ratio at the beginning of the series
linearRelation(mydata, x = "nox", y = "so2")
monthly relationship between NOx and SO2 - note rapid fall in
ratio at the beginning of the series
Not run: linearRelation(mydata, x = "nox", y = "ox")

diurnal oxidant slope by year # clear change in magnitude
starting 2003, but the diurnal profile has also changed: the
morning and evening peak hours are more important, presumably
due to change in certain vehicle types
Not run: linearRelation(mydata, x = "nox", y = "ox", period = "hour", condition = TRUE)

PM2.5/PM10 ratio, but only plot where monthly R2 >= 0.8
Not run: linearRelation(mydata, x = "pm10", y = "pm25", rsq.thresh = 0.8)

modStats Calculate common model evaluation statistics

Description

Function to calculate common numerical model evaluation statistics with flexible conditioning

modStats 67

Usage

modStats(
mydata,
mod = "mod",
obs = "obs",
statistic = c("n", "FAC2", "MB", "MGE", "NMB", "NMGE", "RMSE", "r", "COE", "IOA"),
type = "default",
rank.name = NULL,
...

)

Arguments

mydata A data frame.

mod Name of a variable in mydata that respresents modelled values.

obs Name of a variable in mydata that respresents measured values.

statistic The statistic to be calculated. See details below for a description of each.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce statistics using the entire data. type can be one of the
built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and so
on. For example, type = "season" will produce four sets of statistics — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
More than one type can be considered e.g. type = c("season","weekday")
will produce statistics split by season and day of the week.

rank.name Simple model ranking can be carried out if rank.name is supplied. rank.name
will generally refer to a column representing a model name, which is to ranked.
The ranking is based the COE performance, as that indicator is arguably the best
single model performance indicator available.

... Other aruments to be passed to cutData e.g. hemisphere = "southern"

Details

This function is under development and currently provides some common model evaluation statis-
tics. These include (to be mathematically defined later):

• n, the number of complete pairs of data.

• FAC2, fraction of predictions within a factor of two.

• MB, the mean bias.

• MGE, the mean gross error.

68 modStats

• NMB, the normalised mean bias.

• NMGE, the normalised mean gross error.

• RMSE, the root mean squared error.

• r, the Pearson correlation coefficient. Note, can also supply and aurument method e.g. method
= "spearman"

• COE, the Coefficient of Efficiency based on Legates and McCabe (1999, 2012). There have
been many suggestions for measuring model performance over the years, but the COE is a
simple formulation which is easy to interpret.
A perfect model has a COE = 1. As noted by Legates and McCabe although the COE has no
lower bound, a value of COE = 0.0 has a fundamental meaning. It implies that the model is
no more able to predict the observed values than does the observed mean. Therefore, since
the model can explain no more of the variation in the observed values than can the observed
mean, such a model can have no predictive advantage.
For negative values of COE, the model is less effective than the observed mean in predicting
the variation in the observations.

• IOA, the Index of Agreement based on Willmott et al. (2011), which spans between -1 and
+1 with values approaching +1 representing better model performance.
An IOA of 0.5, for example, indicates that the sum of the error-magnitudes is one half of the
sum of the observed-deviation magnitudes. When IOA = 0.0, it signifies that the sum of the
magnitudes of the errors and the sum of the observed-deviation magnitudes are equivalent.
When IOA = -0.5, it indicates that the sum of the error-magnitudes is twice the sum of the per-
fect model-deviation and observed-deviation magnitudes. Values of IOA near -1.0 can mean
that the model-estimated deviations about O are poor estimates of the observed deviations;
but, they also can mean that there simply is little observed variability - so some caution is
needed when the IOA approaches -1.

All statistics are based on complete pairs of mod and obs.

Conditioning is possible through setting type, which can be a vector e.g. type = c("weekday",
"season").

Details of the formulas are given in the openair manual.

Value

Returns a data frame with model evaluation statistics.

Author(s)

David Carslaw

References

Legates DR, McCabe GJ. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and
hydroclimatic model validation. Water Resources Research 35(1): 233-241.

Legates DR, McCabe GJ. (2012). A refined index of model performance: a rejoinder, International
Journal of Climatology.

Willmott, C.J., Robeson, S.M., Matsuura, K., 2011. A refined index of model performance. Inter-
national Journal of Climatology.

mydata 69

Examples

the example below is somewhat artificial --- assuming the observed
values are given by NOx and the predicted values by NO2.

modStats(mydata, mod = "no2", obs = "nox")

evaluation stats by season

modStats(mydata, mod = "no2", obs = "nox", type = "season")

mydata Example data for openair

Description

The mydata dataset is provided as an example dataset as part of the openair package. The dataset
contains hourly measurements of air pollutant concentrations, wind speed and wind direction col-
lected at the Marylebone (London) air quality monitoring supersite between 1st January 1998 and
23rd June 2005. The data set is a tibble.

Format

Data frame with 65533 observations (rows) on the following 10 variables:

list("date") Observation date/time stamp in year-month-day hour:minute:second format (POSIXct).
list("ws") Wind speed, in m/s, as numeric vector.
list("wd") Wind direction, in degrees from North, as a numeric vector.
list("nox") Oxides of nitrogen concentration, in ppb, as a numeric vector.
list("no2") Nitrogen dioxide concentration, in ppb, as a numeric vector.
list("o3") Ozone concentration, in ppb, as a numeric vector.
list("pm10") Particulate PM10 fraction measurement, in ug/m3 (raw TEOM), as a numeric vector.
list("so2") Sulfur dioxide concentration, in ppb, as a numeric vector.
list("co") Carbon monoxide concentration, in ppm, as a numeric vector.
list("pm25") Particulate PM2.5 fraction measurement, in ug/m3, as a numeric vector.

Details

mydata is supplied with the openair package as an example dataset for use with documented
examples.

Note

openair functions generally require data frames with a field "date" that can be in either POSIXct
or Date format but should be GMT time zone. This can be hourly data or higher resolution data.

70 openair

Source

mydata was compiled from data archived in the London Air Quality Archive. See https://www.
londonair.org.uk for site details.

The same data is also provide in '.csv' format via the openair project web site https://davidcarslaw.
github.io/openair/.

Examples

#basic structure
head(mydata)

openair Tools for the analysis of air pollution data

Description

This is a UK Natural Environment Research Council (NERC) funded knowledge exchange project
that aims to make available innovative analysis tools for air pollution data; with additional support
from Defra. The tools have generally been developed to analyse data of hourly resolution (or at least
a regular time series) both for air pollution monitoring and dispersion modelling. The availability
of meteorological data at the same time resolution greatly enhances the capabilities of these tools.

Details

openair contains collection of functions to analyse air pollution data. Typically it is expected that
data are hourly means, although most functions consider other time periods. The principal aim to
make available analysis techniques that most users of air quality data and model output would not
normally have access to. The functions consist of those developed by the authors and a growing
number from other researchers.

The package also provides access to a wide range of data sources including the UK Automatic
Urban and Rural Network (AURN), networks run by King’s College London (e.g. the LAQN) and
the Scottish Air Quality Network (SAQN).

The package has a number of requirements for input data and these are discussed in the manual
(available on the openair website at https://davidcarslaw.github.io/openair/). The key
requirements are that a date or date-time field must have the name ‘date’ (and can be Date or
POSIXct format), that wind speed is represented as ‘ws’ and that wind direction is ‘wd’.

Most functions work in a very straightforward way, but offer many options for finer control and
perhaps more in-depth analysis.

The openair package depends on several other packages written by other people to function prop-
erly.

To ensure that these other packages are available, they need to be installed, and this requires a
connection to the internet. Other packages required come with the R base system. If there are

https://www.londonair.org.uk
https://www.londonair.org.uk
https://davidcarslaw.github.io/openair/
https://davidcarslaw.github.io/openair/
https://davidcarslaw.github.io/openair/

openColours 71

problems with the automatic download of these packages, see https://davidcarslaw.github.
io/openair/ for more details.

NOTE: openair assumes that data are not expressed in local time where ’Daylight Saving Time’
is used. All functions check that this is the case and issue a warning if TRUE. It is recommended
that data are expressed in UTC/GMT (or a fixed offset from) to avoid potential problems with R and
openair functions. The openair manual provides advice on these issues (available on the website).

To check to see if openair has been correctly installed, try some of the examples below.

Author(s)

David Carslaw with initial support from Karl Ropkins

References

Most reference details are given under the specific functions. The principal reference is below but
users may also wish to cite the manual (details for doing this are contained in the manual itself).

Carslaw, D.C. and K. Ropkins, (2012) openair — an R package for air quality data analysis. Envi-
ronmental Modelling & Software. Volume 27-28, 52-61.

See Also

See https://davidcarslaw.github.io/openair/ for up to date information on the project.

Examples

load example data from package
data(mydata)

summarise the data in a compact way
Not run: summaryPlot(mydata)

traditional wind rose
windRose(mydata)

basic plot
Not run: polarPlot(mydata, pollutant = "nox")

openColours openair colours

Description

Pre-defined openair colours and definition of user-defined colours

Usage

openColours(scheme = "default", n = 100)

https://davidcarslaw.github.io/openair/
https://davidcarslaw.github.io/openair/
https://davidcarslaw.github.io/openair/

72 openColours

Arguments

scheme The pre-defined schemes are "increment", "default", "brewer1", "heat", "jet",
"hue", "greyscale", or a vector of R colour names e.g. c("green", "blue"). It is
also possible to supply colour schemes from the RColorBrewer package. This
package defines three types of colour schemes: sequential, diverging or qualita-
tive. See https://colorbrewer2.org/ for more details concerning the orginal
work on which this is based.
Simplified versions of the viridis colours are also available. These include
"viridis", "plasma", "magma", "inferno" and "cividis".
Sequential colours are useful for ordered data where there is a need to show a
difference between low and high values with colours going from light to dark.
The pre-defined colours that can be supplied are: "Blues", "BuGn", "BuPu",
"GnBu", "Greens", "Greys", "Oranges", "OrRd", "PuBu", "PuBuGn", "PuRd",
"Purples", "RdPu", "Reds", "YlGn", "YlGnBu", "YlOrBr", "YlOrRd".
Diverging palettes put equal emphasis on mid-range critical values and extremes
at both ends of the data range. Pre-defined values are: "BrBG", "PiYG", "PRGn",
"PuOr", "RdBu", "RdGy", "RdYlBu", "RdYlGn", "Spectral".
Qualitative palettes are useful for differentiating between categorical data types.
The pre-defined schemes are "Accent", "Dark2", "Paired", "Pastel1", "Pastel2",
"Set1", "Set2", "Set3".
A colorblind safe pallette "cbPalette" is available based on the work of: http://jfly.iam.u-
tokyo.ac.jp/color/
Note that because of the way these schemes have been developed they only exist
over certain number of colour gradations (typically 3–10) — see ?brewer.pal
for actual details. If less than or more than the required number of colours is
supplied then openair will interpolate the colours.

n number of colours required.

Details

This in primarily an internal openair function to make it easy for users to select particular colour
schemes, or define their own range of colours of a user-defined length.

Each of the pre-defined schemes have merits and their use will depend on a particular situation. For
showing incrementing concentrations e.g. high concentrations emphasised, then "default", "heat",
"jet" and "increment" are very useful. See also the description of RColorBrewer schemes for the
option scheme.

To colour-code categorical-type problems e.g. colours for different pollutants, "hue" and "brewer1"
are useful.

When publishing in black and white, "greyscale" is often convenient. With most openair functions,
as well as generating a greyscale colour gradient, it also resets strip background and other coloured
text and lines to greyscale values.

Failing that, the user can define their own schemes based on R colour names. To see the full list of
names, type colors() into R.

Value

Returns colour values - see examples below.

https://colorbrewer2.org/

percentileRose 73

Author(s)

David Carslaw

References

https://colorbrewer2.org/

Examples

to return 5 colours from the "jet" scheme:
cols <- openColours("jet", 5)
cols

to interpolate between named colours e.g. 10 colours from yellow to
green to red:
cols <- openColours(c("yellow", "green", "red"), 10)
cols

percentileRose Function to plot percentiles by wind direction

Description

percentileRose plots percentiles by wind direction with flexible conditioning. The plot can dis-
play mutiple percentile lines or filled areas.

Usage

percentileRose(
mydata,
pollutant = "nox",
wd = "wd",
type = "default",
percentile = c(25, 50, 75, 90, 95),
smooth = FALSE,
method = "default",
cols = "default",
angle = 10,
mean = TRUE,
mean.lty = 1,
mean.lwd = 3,
mean.col = "grey",
fill = TRUE,
intervals = NULL,
angle.scale = 45,

https://colorbrewer2.org/

74 percentileRose

auto.text = TRUE,
key.header = NULL,
key.footer = "percentile",
key.position = "bottom",
key = TRUE,
...

)

Arguments

mydata A data frame minimally containing wd and a numeric field to plot — pollutant.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should
be supplied e.g. pollutant = "nox". More than one pollutant can be supplied
e.g. pollutant = c("no2", "o3") provided there is only one type.

wd Name of the wind direction field.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

percentile The percentile value(s) to plot. Must be between 0–100. If percentile = NA
then only a mean line will be shown.

smooth Should the wind direction data be smoothed using a cyclic spline?

method When method = "default" the supplied percentiles by wind direction are cal-
culated. When method = "cpf" the conditional probability function (CPF) is
plotted and a single (usually high) percentile level is supplied. The CPF is de-
fined as CPF = my/ny, where my is the number of samples in the wind sector
y with mixing ratios greater than the overall percentile concentration, and ny is
the total number of samples in the same wind sector (see Ashbaugh et al., 1985).

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

angle Default angle of “spokes” is when smooth = FALSE.

mean Show the mean by wind direction as a line?

mean.lty Line type for mean line.

percentileRose 75

mean.lwd Line width for mean line.
mean.col Line colour for mean line.
fill Should the percentile intervals be filled (default) or should lines be drawn (fill

= FALSE).
intervals User-supplied intervals for the scale e.g. intervals = c(0, 10, 30, 50)

angle.scale The pollutant scale is by default shown at a 45 degree angle. Sometimes the
placement of the scale may interfere with an interesting feature. The user can
therefore set angle.scale to another value (between 0 and 360 degrees) to
mitigate such problems. For example angle.scale = 315 will draw the scale
heading in a NW direction.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

key.header Adds additional text/labels to the scale key. For example, passing options key.header
= "header",key.footer = "footer" adds addition text above and below the
scale key. These arguments are passed to drawOpenKey via quickText, apply-
ing the auto.text argument, to handle formatting.

key.footer key.header.
key.position Location where the scale key is to plotted. Allowed arguments currently include

"top", "right", "bottom" and "left".
key Fine control of the scale key via drawOpenKey. See drawOpenKey for further

details.
... Other graphical parameters are passed onto cutData and lattice:xyplot. For

example, percentileRose passes the option hemisphere = "southern" on to
cutData to provide southern (rather than default northern) hemisphere handling
of type = "season". Similarly, common graphical arguments, such as xlim and
ylim for plotting ranges and lwd for line thickness when using fill = FALSE,
are passed on xyplot, although some local modifications may be applied by
openair. For example, axis and title labelling options (such as xlab, ylab and
main) are passed to xyplot via quickText to handle routine formatting.

Details

percentileRose calculates percentile levels of a pollutant and plots them by wind direction. One
or more percentile levels can be calculated and these are displayed as either filled areas or as lines.

The wind directions are rounded to the nearest 10 degrees, consistent with surface data from the UK
Met Office before a smooth is fitted. The levels by wind direction are optionally calculated using a
cyclic smooth cubic spline using the option smooth. If smooth = FALSE then the data are shown in
10 degree sectors.

The percentileRose function compliments other similar functions including windRose, pollutionRose,
polarFreq or polarPlot. It is most useful for showing the distribution of concentrations by wind
direction and often can reveal different sources e.g. those that only affect high percentile concen-
trations such as a chimney stack.

Similar to other functions, flexible conditioning is available through the type option. It is easy
for example to consider multiple percentile values for a pollutant by season, year and so on. See
examples below.

76 percentileRose

percentileRose also offers great flexibility with the scale used and the user has fine control over
both the range, interval and colour.

Value

As well as generating the plot itself, percentileRose also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. If retained,
e.g. using output <- percentileRose(mydata, "nox"), this output can be used to recover the
data, reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

References

Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur
concentrations at ground canyon national park. Atmospheric Environment 19 (8), 1263-1270.

See Also

See Also as windRose, pollutionRose, polarFreq, polarPlot

Examples

basic percentile plot
percentileRose(mydata, pollutant = "o3")

50/95th percentiles of ozone, with different colours
percentileRose(mydata, pollutant = "o3", percentile = c(50, 95), col = "brewer1")

Not run:
percentiles of ozone by year, with different colours
percentileRose(mydata, type = "year", pollutant = "o3", col = "brewer1")

percentile concentrations by season and day/nighttime..
percentileRose(mydata, type = c("season", "daylight"), pollutant = "o3", col = "brewer1")

End(Not run)

polarAnnulus 77

polarAnnulus Bivariate polarAnnulus plot

Description

Typically plots the concentration of a pollutant by wind direction and as a function of time as
an annulus. The function is good for visualising how concentrations of pollutants vary by wind
direction and a time period e.g. by month, day of week.

Usage

polarAnnulus(
mydata,
pollutant = "nox",
resolution = "fine",
local.tz = NULL,
period = "hour",
type = "default",
statistic = "mean",
percentile = NA,
limits = c(0, 100),
cols = "default",
width = "normal",
min.bin = 1,
exclude.missing = TRUE,
date.pad = FALSE,
force.positive = TRUE,
k = c(20, 10),
normalise = FALSE,
key.header = "",
key.footer = pollutant,
key.position = "right",
key = TRUE,
auto.text = TRUE,
...

)

Arguments

mydata A data frame minimally containing date, wd and a pollutant.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should
be supplied e.g. pollutant = "nox". There can also be more than one pollutant
specified e.g. pollutant = c("nox", "no2"). The main use of using two or
more pollutants is for model evaluation where two species would be expected to
have similar concentrations. This saves the user stacking the data and it is possi-
ble to work with columns of data directly. A typical use would be pollutant =

78 polarAnnulus

c("obs","mod") to compare two columns “obs” (the observations) and “mod”
(modelled values).

resolution Two plot resolutions can be set: “normal” and “fine” (the default).

local.tz Should the results be calculated in local time that includes a treatment of day-
light savings time (DST)? The default is not to consider DST issues, provided
the data were imported without a DST offset. Emissions activity tends to occur
at local time e.g. rush hour is at 8 am every day. When the clocks go forward
in spring, the emissions are effectively released into the atmosphere typically 1
hour earlier during the summertime i.e. when DST applies. When plotting diur-
nal profiles, this has the effect of “smearing-out” the concentrations. Sometimes,
a useful approach is to express time as local time. This correction tends to pro-
duce better-defined diurnal profiles of concentration (or other variables) and al-
lows a better comparison to be made with emissions/activity data. If set to FALSE
then GMT is used. Examples of usage include local.tz = "Europe/London",
local.tz = "America/New_York". See cutData and import for more details.

period This determines the temporal period to consider. Options are “hour” (the de-
fault, to plot diurnal variations), “season” to plot variation throughout the year,
“weekday” to plot day of the week variation and “trend” to plot the trend by
wind direction.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "site") will produce a
2x2 plot split by season and site. The use of two types is mostly meant for
situations where there are several sites. Note, when two types are provided the
first forms the columns and the second the rows.
Also note that for the polarAnnulus function some type/period combinations
are forbidden or make little sense. For example, type = "season" and period
= "trend" (which would result in a plot with too many gaps in it for sensible
smoothing), or type = "weekday" and period = "weekday".

statistic The statistic that should be applied to each wind speed/direction bin. Can be
“mean” (default), “median”, “max” (maximum), “frequency”. “stdev” (stan-
dard deviation), “weighted.mean” or “cpf” (Conditional Probability Function).
Because of the smoothing involved, the colour scale for some of these statistics
is only to provide an indication of overall pattern and should not be interpreted in
concentration units e.g. for statistic = "weighted.mean" where the bin mean
is multiplied by the bin frequency and divided by the total frequency. In many
cases using polarFreq will be better. Setting statistic = "weighted.mean"
can be useful because it provides an indication of the concentration * frequency

polarAnnulus 79

of occurrence and will highlight the wind speed/direction conditions that domi-
nate the overall mean.

percentile If statistic = "percentile" or statistic = "cpf" then percentile is used,
expressed from 0 to 100. Note that the percentile value is calculated in the wind
speed, wind direction ‘bins’. For this reason it can also be useful to set min.bin
to ensure there are a sufficient number of points available to estimate a per-
centile. See quantile for more details of how percentiles are calculated.

limits Limits for colour scale.
cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,

“jet” and user defined. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example would
be cols = c("yellow", "green","blue")

width The width of the annulus; can be “normal” (the default), “thin” or “fat”.
min.bin The minimum number of points allowed in a wind speed/wind direction bin.

The default is 1. A value of two requires at least 2 valid records in each bin an
so on; bins with less than 2 valid records are set to NA. Care should be taken
when using a value > 1 because of the risk of removing real data points. It is
recommended to consider your data with care. Also, the polarFreq function
can be of use in such circumstances.

exclude.missing

Setting this option to TRUE (the default) removes points from the plot that are
too far from the original data. The smoothing routines will produce predictions
at points where no data exist i.e. they predict. By removing the points too far
from the original data produces a plot where it is clear where the original data
lie. If set to FALSE missing data will be interpolated.

date.pad For type = "trend" (default), date.pad = TRUE will pad-out missing data to the
beginning of the first year and the end of the last year. The purpose is to ensure
that the trend plot begins and ends at the beginning or end of year.

force.positive The default is TRUE. Sometimes if smoothing data with steep gradients it is pos-
sible for predicted values to be negative. force.positive = TRUE ensures that
predictions remain postive. This is useful for several reasons. First, with lots
of missing data more interpolation is needed and this can result in artifacts be-
cause the predictions are too far from the original data. Second, if it is known
beforehand that the data are all postive, then this option carries that assumption
through to the prediction. The only likely time where setting force.positive
= FALSE would be if background concentrations were first subtracted resulting
in data that is legitimately negative. For the vast majority of situations it is ex-
pected that the user will not need to alter the default option.

k The smoothing value supplied to gam for the temporal and wind direction com-
ponents, respectively. In some cases e.g. a trend plot with less than 1-year of
data the smoothing with the default values may become too noisy and affected
more by outliers. Choosing a lower value of k (say 10) may help produce a
better plot.

normalise If TRUE concentrations are normalised by dividing by their mean value. This is
done after fitting the smooth surface. This option is particularly useful if one
is interested in the patterns of concentrations for several pollutants on different
scales e.g. NOx and CO. Often useful if more than one pollutant is chosen.

80 polarAnnulus

key.header Adds additional text/labels to the scale key. For example, passing the options
key.header = "header", key.footer = "footer1" adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.header.

key.position Location where the scale key is to plotted. Allowed arguments currently include
“top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See drawOpenKey for further
details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters passed onto lattice:levelplot and cutData. For
example, polarAnnulus passes the option hemisphere = "southern" on to
cutData to provide southern (rather than default northern) hemisphere handling
of type = "season". Similarly, common axis and title labelling options (such
as xlab, ylab, main) are passed to levelplot via quickText to handle routine
formatting.

Details

The polarAnnulus function shares many of the properties of the polarPlot. However, polarAnnulus
is focussed on displaying information on how concentrations of a pollutant (values of another vari-
able) vary with wind direction and time. Plotting as an annulus helps to reduce compression of
information towards the centre of the plot. The circular plot is easy to interpret because wind direc-
tion is most easily understood in polar rather than Cartesian coordinates.

The inner part of the annulus represents the earliest time and the outer part of the annulus the latest
time. The time dimension can be shown in many ways including "trend", "hour" (hour or day),
"season" (month of the year) and "weekday" (day of the week). Taking hour as an example, the plot
will show how concentrations vary by hour of the day and wind direction. Such plots can be very
useful for understanding how different source influences affect a location.

For type = "trend" the amount of smoothing does not vary linearly with the length of the time
series i.e. a certain amount of smoothing per unit interval in time. This is a deliberate choice
because should one be interested in a subset (in time) of data, more detail will be provided for the
subset compared with the full data set. This allows users to investigate specific periods in more
detail. Full flexibility is given through the smoothing parameter k.

Value

As well as generating the plot itself, polarAnnulus also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. If retained,
e.g. using output <- polarAnnulus(mydata, "nox"), this output can be used to recover the data,
reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

polarCluster 81

Author(s)

David Carslaw

See Also

polarPlot, polarFreq, pollutionRose and percentileRose

Examples

load example data from package
data(mydata)

diurnal plot for PM10 at Marylebone Rd
Not run: polarAnnulus(mydata, pollutant = "pm10",
main = "diurnal variation in pm10 at Marylebone Road")
End(Not run)

seasonal plot for PM10 at Marylebone Rd
Not run: polarAnnulus(mydata, poll="pm10", period = "season")

trend in coarse particles (PMc = PM10 - PM2.5), calculate PMc first

mydata$pmc <- mydata$pm10 - mydata$pm25
Not run: polarAnnulus(mydata, poll="pmc", period = "trend",
main = "trend in pmc at Marylebone Road")
End(Not run)

polarCluster K-means clustering of bivariate polar plots

Description

Function for identifying clusters in bivariate polar plots (polarPlot); identifying clusters in the
original data for subsequent processing.

Usage

polarCluster(
mydata,
pollutant = "nox",
x = "ws",
wd = "wd",
n.clusters = 6,
after = NA,
cols = "Paired",

82 polarCluster

angle.scale = 315,
units = x,
auto.text = TRUE,
...

)

Arguments

mydata A data frame minimally containing wd, another variable to plot in polar coordi-
nates (the default is a column “ws” — wind speed) and a pollutant. Should also
contain date if plots by time period are required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should
be supplied e.g. pollutant = "nox". Only one pollutant can be chosen.

x Name of variable to plot against wind direction in polar coordinates, the default
is wind speed, “ws”.

wd Name of wind direction field.

n.clusters Number of clusters to use. If n.clusters is more than length 1, then a lattice
panel plot will be output showing the clusters identified for each one of n.clusters.

after The function can be applied to differences between polar plot surfaces (see po-
larDiff for details). If an after data frame is supplied, the clustering will be
carried out on the differences between after and mydata in the same way as
polarDiff.

cols Colours to be used for plotting. Useful options for categorical data are avil-
able from RColorBrewer colours — see the openair openColours function for
more details. Useful schemes include “Accent”, “Dark2”, “Paired”, “Pastel1”,
“Pastel2”, “Set1”, “Set2”, “Set3” — but see ?brewer.pal for the maximum
useful colours in each. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example would
be cols = c("yellow", "green", "blue").

angle.scale The wind speed scale is by default shown at a 315 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The user
can therefore set angle.scale to another value (between 0 and 360 degrees)
to mitigate such problems. For example angle.scale = 45 will draw the scale
heading in a NE direction.

units The units shown on the polar axis scale.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters passed onto polarPlot, lattice:levelplot and
cutData. Common axis and title labelling options (such as xlab, ylab, main)
are passed via quickText to handle routine formatting.

Details

Bivariate polar plots generated using the polarPlot function provide a very useful graphical tech-
nique for identifying and characterising different air pollution sources. While bivariate polar plots

polarCluster 83

provide a useful graphical indication of potential sources, their location and wind-speed or other
variable dependence, they do have several limitations. Often, a ‘feature’ will be detected in a plot
but the subsequent analysis of data meeting particular wind speed/direction criteria will be based
only on the judgement of the investigator concerning the wind speed-direction intervals of inter-
est. Furthermore, the identification of a feature can depend on the choice of the colour scale used,
making the process somewhat arbitrary.

polarCluster applies Partition Around Medoids (PAM) clustering techniques to polarPlot sur-
faces to help identify potentially interesting features for further analysis. Details of PAM can be
found in the cluster package (a core R package that will be pre-installed on all R systems). PAM
clustering is similar to k-means but has several advantages e.g. is more robust to outliers. The
clustering is based on the equal contribution assumed from the u and v wind components and the
associated concentration. The data are standardized before clustering takes place.

The function works best by first trying different numbers of clusters and plotting them. This is
achieved by setting n.clusters to be of length more than 1. For example, if n.clusters = 2:10
then a plot will be output showing the 9 cluster levels 2 to 10.

The clustering can also be applied to differences in polar plot surfaces (see polarDiff). On this case
a second data frame (after) should be supplied.

Note that clustering is computationally intensive and the function can take a long time to run —
particularly when the number of clusters is increased. For this reason it can be a good idea to run a
few clusters first to get a feel for it e.g. n.clusters = 2:5.

Once the number of clusters has been decided, the user can then run polarCluster to return the
original data frame together with a new column cluster, which gives the cluster number as a
character (see example). Note that any rows where the value of pollutant is NA are ignored so that
the returned data frame may have fewer rows than the original.

Note that there are no automatic ways in ensuring the most appropriate number of clusters as this
is application dependent. However, there is often a-priori information available on what different
features in polar plots correspond to. Nevertheless, the appropriateness of different clusters is best
determined by post-processing the data. The Carslaw and Beevers (2012) paper discusses these
issues in more detail.

Note that unlike most other openair functions only a single type “default” is allowed.

Value

As well as generating the plot itself, polarCluster also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
original data frame with a new field cluster identifying the cluster; and plot, the plot itself. Note
that any rows where the value of pollutant is NA are ignored so that the returned data frame may
have fewer rows than the original.

If the clustering is carried out considering differences i.e. an after data frame is supplied, the
output also includes the after data frame with cluster identified.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

84 polarDiff

References

Carslaw, D.C., Beevers, S.D, Ropkins, K and M.C. Bell (2006). Detecting and quantifying aircraft
and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international
airport. Atmospheric Environment. 40/28 pp 5424-5434.

Carslaw, D.C., & Beevers, S.D. (2013). Characterising and understanding emission sources using
bivariate polar plots and k-means clustering. Environmental Modelling & Software, 40, 325-329.
doi:10.1016/j.envsoft.2012.09.005

See Also

polarPlot

Examples

Not run:
load example data from package
data(mydata)

plot 2-8 clusters. Warning! This can take several minutes...

polarCluster(mydata, pollutant = "nox", n.clusters = 2:8)

basic plot with 6 clusters
results <- polarCluster(mydata, pollutant = "nox", n.clusters = 6)

get results, could read into a new data frame to make it easier to refer to
e.g. results <- results$data...
head(results$data)

how many points are there in each cluster?
table(results$data$cluster)

plot clusters 3 and 4 as a timeVariation plot using SAME colours as in
cluster plot
timeVariation(subset(results$data, cluster %in% c("3", "4")), pollutant = "nox",
group = "cluster", col = openColours("Paired", 6)[c(3, 4)])

End(Not run)

polarDiff Polar plots considering changes in concentrations between two time
periods

polarDiff 85

Description

This function provides a way of showing the differences in concentrations between two time periods
as a polar plot. There are several uses of this function, but the most common will be to see how
source(s) may have changed between two periods.

Usage

polarDiff(before, after, pollutant = "nox", x = "ws", limits = NA, ...)

Arguments

before A data frame that represents the "before" case. See polarPlot for details of
different input requirements.

after A data frame that represents the "after" case. See polarPlot for details of
different input requirements.

pollutant The pollutant to analyse.

x The variable used for the radial axis (default = "ws").

limits The colour scale limits e.g. limits = c(-10, 10).

... Other arguments to polarPlot.

Details

While the function is primarily intended to compare two time periods at the same location, it can
be used for any two data sets that contain the same pollutant. For example, data from two sites that
are close to one another, or two co-located instruments.

The analysis works by calculating the polar plot surface for the before and after periods and then
subtracting the before surface from the after surface.

Value

Only plot at the moment.

Examples

Not run:

before_data <- selectByDate(mydata, year = 2002)
after_data <- selectByDate(mydata, year = 2003)

polarDiff(before_data, after_data, pollutant = "no2")

with some options
polarDiff(before_data, after_data, pollutant = "no2", cols = "RdYlBu", limits = c(-20, 20))

End(Not run)

86 polarFreq

polarFreq Function to plot wind speed/direction frequencies and other statistics

Description

polarFreq primarily plots wind speed-direction frequencies in ‘bins’. Each bin is colour-coded
depending on the frequency of measurements. Bins can also be used to show the concentration of
pollutants using a range of commonly used statistics.

Usage

polarFreq(
mydata,
pollutant = "",
statistic = "frequency",
ws.int = 1,
wd.nint = 36,
grid.line = 5,
breaks = seq(0, 5000, 500),
cols = "default",
trans = TRUE,
type = "default",
min.bin = 1,
ws.upper = NA,
offset = 10,
border.col = "transparent",
key.header = statistic,
key.footer = pollutant,
key.position = "right",
key = TRUE,
auto.text = TRUE,
...

)

Arguments

mydata A data frame minimally containing ws, wd and date.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should
be supplied e.g. pollutant = "nox"

statistic The statistic that should be applied to each wind speed/direction bin. Can be
“frequency”, “mean”, “median”, “max” (maximum), “stdev” (standard devia-
tion) or “weighted.mean”. The option “frequency” (the default) is the simplest
and plots the frequency of wind speed/direction in different bins. The scale
therefore shows the counts in each bin. The option “mean” will plot the mean
concentration of a pollutant (see next point) in wind speed/direction bins, and so
on. Finally, “weighted.mean” will plot the concentration of a pollutant weighted

polarFreq 87

by wind speed/direction. Each segment therefore provides the percentage over-
all contribution to the total concentration. More information is given in the
examples. Note that for options other than “frequency”, it is necessary to also
provide the name of a pollutant. See function cutData for further details.

ws.int Wind speed interval assumed. In some cases e.g. a low met mast, an interval of
0.5 may be more appropriate.

wd.nint Number of intervals of wind direction.

grid.line Radial spacing of grid lines.

breaks The user can provide their own scale. breaks expects a sequence of numbers
that define the range of the scale. The sequence could represent one with equal
spacing e.g. breaks = seq(0, 100,10) - a scale from 0-10 in intervals of 10,
or a more flexible sequence e.g. breaks = c(0, 1, 5, 7, 10), which may be
useful for some situations.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

trans Should a transformation be applied? Sometimes when producing plots of this
kind they can be dominated by a few high points. The default therefore is TRUE
and a square-root transform is applied. This results in a non-linear scale and
(usually) a better representation of the distribution. If set to FALSE a linear scale
is used.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

min.bin The minimum number of points allowed in a wind speed/wind direction bin.
The default is 1. A value of two requires at least 2 valid records in each bin an
so on; bins with less than 2 valid records are set to NA. Care should be taken
when using a value > 1 because of the risk of removing real data points. It is
recommended to consider your data with care. Also, the polarPlot function
can be of use in such circumstances.

ws.upper A user-defined upper wind speed to use. This is useful for ensuring a consistent
scale between different plots. For example, to always ensure that wind speeds
are displayed between 1-10, set ws.int = 10.

88 polarFreq

offset offset controls the size of the ‘hole’ in the middle and is expressed as a per-
centage of the maximum wind speed. Setting a higher offset e.g. 50 is useful
for statistic = "weighted.mean" when ws.int is greater than the maximum
wind speed. See example below.

border.col The colour of the boundary of each wind speed/direction bin. The default is
transparent. Another useful choice sometimes is "white".

key.header, key.footer

Adds additional text/labels to the scale key. For example, passing options key.header
= "header", key.footer = "footer" adds addition text above and below the
scale key. These arguments are passed to drawOpenKey via quickText, apply-
ing the auto.text argument, to handle formatting.

key.position Location where the scale key is to plotted. Allowed arguments currently include
"top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for further
details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters passed onto lattice:xyplot and cutData. For ex-
ample, polarFreq passes the option hemisphere = "southern" on to cutData
to provide southern (rather than default northern) hemisphere handling of type
= "season". Similarly, common axis and title labelling options (such as xlab,
ylab, main) are passed to xyplot via quickText to handle routine formatting.

Details

polarFreq is its default use provides details of wind speed and direction frequencies. In this respect
it is similar to windRose, but considers wind direction intervals of 10 degrees and a user-specified
wind speed interval. The frequency of wind speeds/directions formed by these ‘bins’ is represented
on a colour scale.

The polarFreq function is more flexible than either windRose or polarPlot. It can, for example,
also consider pollutant concentrations (see examples below). Instead of the number of data points
in each bin, the concentration can be shown. Further, a range of statistics can be used to describe
each bin - see statistic above. Plotting mean concentrations is useful for source identification
and is the same as polarPlot but without smoothing, which may be preferable for some data.
Plotting with statistic = "weighted.mean" is particularly useful for understanding the relative
importance of different source contributions. For example, high mean concentrations may be ob-
served for high wind speed conditions, but the weighted mean concentration may well show that
the contribution to overall concentrations is very low.

polarFreq also offers great flexibility with the scale used and the user has fine control over both
the range, interval and colour.

Value

As well as generating the plot itself, polarFreq also returns an object of class “openair”. The object
includes three main components: call, the command used to generate the plot; data, the data frame
of summarised information used to make the plot; and plot, the plot itself. If retained, e.g. using

polarFreq 89

output <- polarFreq(mydata, "nox"), this output can be used to recover the data, reproduce or
rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

References

~put references to the literature/web site here ~

See Also

See Also as windRose, polarPlot

Examples

basic wind frequency plot
polarFreq(mydata)

wind frequencies by year
Not run: polarFreq(mydata, type = "year")

mean SO2 by year, showing only bins with at least 2 points
Not run: polarFreq(mydata, pollutant = "so2", type = "year", statistic = "mean", min.bin = 2)

weighted mean SO2 by year, showing only bins with at least 2 points
Not run: polarFreq(mydata, pollutant = "so2", type = "year", statistic = "weighted.mean",
min.bin = 2)
End(Not run)

#windRose for just 2000 and 2003 with different colours
Not run: polarFreq(subset(mydata, format(date, "%Y") %in% c(2000, 2003)),
type = "year", cols = "jet")
End(Not run)

user defined breaks from 0-700 in intervals of 100 (note linear scale)
Not run: polarFreq(mydata, breaks = seq(0, 700, 100))

more complicated user-defined breaks - useful for highlighting bins
with a certain number of data points
Not run: polarFreq(mydata, breaks = c(0, 10, 50, 100, 250, 500, 700))

source contribution plot and use of offset option
Not run: polarFreq(mydata, pollutant = "pm25", statistic
="weighted.mean", offset = 50, ws.int = 25, trans = FALSE)
End(Not run)

90 polarPlot

polarPlot Function for plotting bivariate polar plots with smoothing.

Description

Function for plotting pollutant concentration in polar coordinates showing concentration by wind
speed (or another numeric variable) and direction. Mean concentrations are calculated for wind
speed-direction ‘bins’ (e.g. 0-1, 1-2 m/s,... and 0-10, 10-20 degrees etc.). To aid interpretation, gam
smoothing is carried out using mgcv.

Usage

polarPlot(
mydata,
pollutant = "nox",
x = "ws",
wd = "wd",
type = "default",
statistic = "mean",
limits = NA,
exclude.missing = TRUE,
uncertainty = FALSE,
percentile = NA,
cols = "default",
weights = c(0.25, 0.5, 0.75),
min.bin = 1,
mis.col = "grey",
alpha = 1,
upper = NA,
angle.scale = 315,
units = x,
force.positive = TRUE,
k = 100,
normalise = FALSE,
key.header = "",
key.footer = pollutant,
key.position = "right",
key = TRUE,
auto.text = TRUE,
ws_spread = 1.5,
wd_spread = 5,
x_error = NA,
y_error = NA,
kernel = "gaussian",
tau = 0.5,

polarPlot 91

...
)

Arguments

mydata A data frame minimally containing wd, another variable to plot in polar coordi-
nates (the default is a column “ws” — wind speed) and a pollutant. Should also
contain date if plots by time period are required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame should
be supplied e.g. pollutant = "nox". There can also be more than one pollutant
specified e.g. pollutant = c("nox","no2"). The main use of using two or
more pollutants is for model evaluation where two species would be expected to
have similar concentrations. This saves the user stacking the data and it is possi-
ble to work with columns of data directly. A typical use would be pollutant =
c("obs", "mod") to compare two columns “obs” (the observations) and “mod”
(modelled values). When pair-wise statistics such as Pearson correlation and
regression techniques are to be plotted, pollutant takes two elements too. For
example, pollutant = c("bc", "pm25") where "bc" is a function of "pm25".

x Name of variable to plot against wind direction in polar coordinates, the default
is wind speed, “ws”.

wd Name of wind direction field.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

statistic The statistic that should be applied to each wind speed/direction bin. Because
of the smoothing involved, the colour scale for some of these statistics is only
to provide an indication of overall pattern and should not be interpreted in con-
centration units e.g. for statistic = "weighted.mean" where the bin mean
is multiplied by the bin frequency and divided by the total frequency. In many
cases using polarFreq will be better. Setting statistic = "weighted.mean"
can be useful because it provides an indication of the concentration * frequency
of occurrence and will highlight the wind speed/direction conditions that domi-
nate the overall mean.Can be:

• “mean” (default), “median”, “max” (maximum), “frequency”. “stdev” (stan-
dard deviation), “weighted.mean”.

92 polarPlot

• statistic = "nwr" Implements the Non-parametric Wind Regression ap-
proach of Henry et al. (2009) that uses kernel smoothers. The openair
implementation is not identical because Gaussian kernels are used for both
wind direction and speed. The smoothing is controlled by ws_spread and
wd_spread.

• statistic = "cpf" the conditional probability function (CPF) is plotted
and a single (usually high) percentile level is supplied. The CPF is defined
as CPF = my/ny, where my is the number of samples in the y bin (by default
a wind direction, wind speed interval) with mixing ratios greater than the
overall percentile concentration, and ny is the total number of samples in
the same wind sector (see Ashbaugh et al., 1985). Note that percentile
intervals can also be considered; see percentile for details.

• When statistic = "r" or statistic = "Pearson", the Pearson correla-
tion coefficient is calculated for two pollutants. The calculation involves
a weighted Pearson correlation coefficient, which is weighted by Gaussian
kernels for wind direction an the radial variable (by default wind speed).
More weight is assigned to values close to a wind speed-direction interval.
Kernel weighting is used to ensure that all data are used rather than relying
on the potentially small number of values in a wind speed-direction interval.

• When statistic = "Spearman", the Spearman correlation coefficient is
calculated for two pollutants. The calculation involves a weighted Spear-
man correlation coefficient, which is weighted by Gaussian kernels for wind
direction an the radial variable (by default wind speed). More weight is as-
signed to values close to a wind speed-direction interval. Kernel weighting
is used to ensure that all data are used rather than relying on the potentially
small number of values in a wind speed-direction interval.

• "robust_slope" is another option for pair-wise statistics and "quantile.slope",
which uses quantile regression to estimate the slope for a particular quantile
level (see also tau for setting the quantile level).

• "york_slope" is another option for pair-wise statistics which uses the York
regression method to estimate the slope. In this method the uncertainties
in x and y are used in the determination of the slope. The uncertainties are
provided by x_error and y_error — see below.

limits The function does its best to choose sensible limits automatically. However,
there are circumstances when the user will wish to set different ones. An exam-
ple would be a series of plots showing each year of data separately. The limits
are set in the form c(lower, upper), so limits = c(0, 100) would force the
plot limits to span 0-100.

exclude.missing

Setting this option to TRUE (the default) removes points from the plot that are
too far from the original data. The smoothing routines will produce predictions
at points where no data exist i.e. they predict. By removing the points too far
from the original data produces a plot where it is clear where the original data
lie. If set to FALSE missing data will be interpolated.

uncertainty Should the uncertainty in the calculated surface be shown? If TRUE three plots
are produced on the same scale showing the predicted surface together with the
estimated lower and upper uncertainties at the 95 understand whether features

polarPlot 93

are real or not. For example, at high wind speeds where there are few data there
is greater uncertainty over the predicted values. The uncertainties are calculated
using the GAM and weighting is done by the frequency of measurements in each
wind speed-direction bin. Note that if uncertainties are calculated then the type
is set to "default".

percentile If statistic = "percentile" then percentile is used, expressed from 0 to
100. Note that the percentile value is calculated in the wind speed, wind direc-
tion ‘bins’. For this reason it can also be useful to set min.bin to ensure there are
a sufficient number of points available to estimate a percentile. See quantile
for more details of how percentiles are calculated.
percentile is also used for the Conditional Probability Function (CPF) plots.
percentile can be of length two, in which case the percentile interval is con-
sidered for use with CPF. For example, percentile = c(90, 100) will plot the
CPF for concentrations between the 90 and 100th percentiles. Percentile inter-
vals can be useful for identifying specific sources. In addition, percentile can
also be of length 3. The third value is the ‘trim’ value to be applied. When
calculating percentile intervals many can cover very low values where there is
no useful information. The trim value ensures that values greater than or equal
to the trim * mean value are considered before the percentile intervals are calcu-
lated. The effect is to extract more detail from many source signatures. See the
manual for examples. Finally, if the trim value is less than zero the percentile
range is interpreted as absolute concentration values and subsetting is carried
out directly.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols
= c("yellow", "green", "blue"). cols can also take the values "viridis",
"magma", "inferno", or "plasma" which are the viridis colour maps ported
from Python’s Matplotlib library.

weights At the edges of the plot there may only be a few data points in each wind speed-
direction interval, which could in some situations distort the plot if the concen-
trations are high. weights applies a weighting to reduce their influence. For
example and by default if only a single data point exists then the weighting fac-
tor is 0.25 and for two points 0.5. To not apply any weighting and use the data
as is, use weights = c(1, 1, 1).
An alternative to down-weighting these points they can be removed altogether
using min.bin.

min.bin The minimum number of points allowed in a wind speed/wind direction bin.
The default is 1. A value of two requires at least 2 valid records in each bin an
so on; bins with less than 2 valid records are set to NA. Care should be taken
when using a value > 1 because of the risk of removing real data points. It is
recommended to consider your data with care. Also, the polarFreq function
can be of use in such circumstances.

mis.col When min.bin is > 1 it can be useful to show where data are removed on the
plots. This is done by shading the missing data in mis.col. To not highlight
missing data when min.bin > 1 choose mis.col = "transparent".

94 polarPlot

alpha The alpha transparency to use for the plotting surface (a value between 0 and 1
with zero being fully transparent and 1 fully opaque). Setting a value below 1
can be useful when plotting surfaces on a map using the package openairmapss.

upper This sets the upper limit wind speed to be used. Often there are only a relatively
few data points at very high wind speeds and plotting all of them can reduce the
useful information in the plot.

angle.scale The wind speed scale is by default shown at a 315 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The user
can therefore set angle.scale to another value (between 0 and 360 degrees)
to mitigate such problems. For example angle.scale = 45 will draw the scale
heading in a NE direction.

units The units shown on the polar axis scale.

force.positive The default is TRUE. Sometimes if smoothing data with steep gradients it is pos-
sible for predicted values to be negative. force.positive = TRUE ensures that
predictions remain positive. This is useful for several reasons. First, with lots
of missing data more interpolation is needed and this can result in artifacts be-
cause the predictions are too far from the original data. Second, if it is known
beforehand that the data are all positive, then this option carries that assumption
through to the prediction. The only likely time where setting force.positive
= FALSE would be if background concentrations were first subtracted resulting
in data that is legitimately negative. For the vast majority of situations it is ex-
pected that the user will not need to alter the default option.

k This is the smoothing parameter used by the gam function in package mgcv. Typ-
ically, value of around 100 (the default) seems to be suitable and will resolve
important features in the plot. The most appropriate choice of k is problem-
dependent; but extensive testing of polar plots for many different problems sug-
gests a value of k of about 100 is suitable. Setting k to higher values will not
tend to affect the surface predictions by much but will add to the computation
time. Lower values of k will increase smoothing. Sometimes with few data to
plot polarPlot will fail. Under these circumstances it can be worth lowering
the value of k.

normalise If TRUE concentrations are normalised by dividing by their mean value. This is
done after fitting the smooth surface. This option is particularly useful if one
is interested in the patterns of concentrations for several pollutants on different
scales e.g. NOx and CO. Often useful if more than one pollutant is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the options
key.header = "header", key.footer = "footer1" adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.footer.

key.position Location where the scale key is to plotted. Allowed arguments currently include
"top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for further
details.

polarPlot 95

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

ws_spread The value of sigma used for Gaussian kernel weighting of wind speed when
statistic = "nwr" or when correlation and regression statistics are used such
as r. Default is 0.5.

wd_spread The value of sigma used for Gaussian kernel weighting of wind direction when
statistic = "nwr" or when correlation and regression statistics are used such
as r. Default is 4.

x_error The x error / uncertainty used when statistic = "york_slope".

y_error The y error / uncertainty used when statistic = "york_slope".

kernel Type of kernel used for the weighting procedure for when correlation or re-
gression techniques are used. Only "gaussian" is supported but this may be
enhanced in the future.

tau The quantile to be estimated when statistic is set to "quantile.slope". De-
fault is 0.5 which is equal to the median and will be ignored if "quantile.slope"
is not used.

... Other graphical parameters passed onto lattice:levelplot and cutData. For
example, polarPlot passes the option hemisphere = "southern" on to cutData
to provide southern (rather than default northern) hemisphere handling of type
= "season". Similarly, common axis and title labelling options (such as xlab,
ylab, main) are passed to levelplot via quickText to handle routine format-
ting.

Details

The bivariate polar plot is a useful diagnostic tool for quickly gaining an idea of potential sources.
Wind speed is one of the most useful variables to use to separate source types (see references).
For example, ground-level concentrations resulting from buoyant plumes from chimney stacks tend
to peak under higher wind speed conditions. Conversely, ground-level, non-buoyant plumes such
as from road traffic, tend to have highest concentrations under low wind speed conditions. Other
sources such as from aircraft engines also show differing characteristics by wind speed.

The function has been developed to allow variables other than wind speed to be plotted with wind
direction in polar coordinates. The key issue is that the other variable plotted against wind direction
should be discriminating in some way. For example, temperature can help reveal high-level sources
brought down to ground level in unstable atmospheric conditions, or show the effect a source emis-
sion dependent on temperature e.g. biogenic isoprene.

The plots can vary considerably depending on how much smoothing is done. The approach adopted
here is based on the very flexible and capable mgcv package that uses Generalized Additive Models.
While methods do exist to find an optimum level of smoothness, they are not necessarily useful.
The principal aim of polarPlot is as a graphical analysis rather than for quantitative purposes. In
this respect the smoothing aims to strike a balance between revealing interesting (real) features and
overly noisy data. The defaults used in polarPlot are based on the analysis of data from many
different sources. More advanced users may wish to modify the code and adopt other smoothing
approaches.

96 polarPlot

Various statistics are possible to consider e.g. mean, maximum, median. statistic = "max" is
often useful for revealing sources. Pair-wise statistics between two pollutants can also be calculated.

The function can also be used to compare two pollutant species through a range of pair-wise statis-
tics (see help on statistic) and Grange et al. (2016) (open-access publication link below).

Wind direction is split up into 10 degree intervals and the other variable (e.g. wind speed) 30
intervals. These 2D bins are then used to calculate the statistics.

These plots often show interesting features at higher wind speeds (see references below). For these
conditions there can be very few measurements and therefore greater uncertainty in the calculation
of the surface. There are several ways in which this issue can be tackled. First, it is possible to
avoid smoothing altogether and use polarFreq in the package openair. Second, the effect of
setting a minimum number of measurements in each wind speed-direction bin can be examined
through min.bin. It is possible that a single point at high wind speed conditions can strongly affect
the surface prediction. Therefore, setting min.bin = 3, for example, will remove all wind speed-
direction bins with fewer than 3 measurements before fitting the surface. Third, consider setting
uncertainty = TRUE. This option will show the predicted surface together with upper and lower 95
which take account of the frequency of measurements.

Variants on polarPlot include polarAnnulus and polarFreq.

Value

As well as generating the plot itself, polarPlot also returns an object of class “openair”. The object
includes three main components: call, the command used to generate the plot; data, the data frame
of summarised information used to make the plot; and plot, the plot itself. If retained, e.g. using
output <- polarPlot(mydata, "nox"), this output can be used to recover the data, reproduce or
rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

polarPlot surface data can also be extracted directly using the results, e.g. results(object)
for output <- polarPlot(mydata, "nox"). This returns a data frame with four set columns: cond,
conditioning based on type; u and v, the translational vectors based on ws and wd; and the local
pollutant estimate.

Author(s)

David Carslaw

References

Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur
concentrations at ground canyon national park. Atmospheric Environment 19 (8), 1263-1270.

Carslaw, D.C., Beevers, S.D, Ropkins, K and M.C. Bell (2006). Detecting and quantifying aircraft
and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international
airport. Atmospheric Environment. 40/28 pp 5424-5434.

Carslaw, D.C., & Beevers, S.D. (2013). Characterising and understanding emission sources using
bivariate polar plots and k-means clustering. Environmental Modelling & Software, 40, 325-329.
doi:10.1016/j.envsoft.2012.09.005

polarPlot 97

Henry, R.C., Chang, Y.S., Spiegelman, C.H., 2002. Locating nearby sources of air pollution by non-
parametric regression of atmospheric concentrations on wind direction. Atmospheric Environment
36 (13), 2237-2244.

Henry, R., Norris, G.A., Vedantham, R., Turner, J.R., 2009. Source region identification using Ker-
nel smoothing. Environ. Sci. Technol. 43 (11), 4090e4097. http:// dx.doi.org/10.1021/es8011723.

Uria-Tellaetxe, I. and D.C. Carslaw (2014). Source identification using a conditional bivariate Prob-
ability function. Environmental Modelling & Software, Vol. 59, 1-9.

Westmoreland, E.J., N. Carslaw, D.C. Carslaw, A. Gillah and E. Bates (2007). Analysis of air
quality within a street canyon using statistical and dispersion modelling techniques. Atmospheric
Environment. Vol. 41(39), pp. 9195-9205.

Yu, K.N., Cheung, Y.P., Cheung, T., Henry, R.C., 2004. Identifying the impact of large urban
airports on local air quality by nonparametric regression. Atmospheric Environment 38 (27), 4501-
4507.

Grange, S. K., Carslaw, D. C., & Lewis, A. C. 2016. Source apportionment advances with bivari-
ate polar plots, correlation, and regression techniques. Atmospheric Environment. 145, 128-134.
https://www.sciencedirect.com/science/article/pii/S1352231016307166

See Also

The openair package for many more functions for analysing air pollution data.

Examples

Use openair 'mydata'

basic plot
polarPlot(openair::mydata, pollutant = "nox")
Not run:

polarPlots by year on same scale
polarPlot(mydata, pollutant = "so2", type = "year", main = "polarPlot of so2")

set minimum number of bins to be used to see if pattern remains similar
polarPlot(mydata, pollutant = "nox", min.bin = 3)

plot by day of the week
polarPlot(mydata, pollutant = "pm10", type = "weekday")

show the 95% confidence intervals in the surface fitting
polarPlot(mydata, pollutant = "so2", uncertainty = TRUE)

Pair-wise statistics
Pearson correlation
polarPlot(mydata, pollutant = c("pm25", "pm10"), statistic = "r")

Robust regression slope, takes a bit of time
polarPlot(mydata, pollutant = c("pm25", "pm10"), statistic = "robust.slope")

https://www.sciencedirect.com/science/article/pii/S1352231016307166

98 quickText

Least squares regression works too but it is not recommended, use robust
regression
polarPlot(mydata, pollutant = c("pm25", "pm10"), statistic = "slope")

End(Not run)

quickText Automatic text formatting for openair

Description

Workhorse function that automatically applies routine text formatting to common expressions and
data names used in openair.

Usage

quickText(text, auto.text = TRUE)

Arguments

text A character vector.

auto.text A logical option. The default, TRUE, applies quickText to text and returns the
result. The alternative, FALSE, returns text unchanged. (A number of openair
functions enable/unenable quickText using this option.

Details

quickText is routine formatting lookup table. It screens the supplied character vector text and
automatically applies formatting to any recognised character sub-series. The function is used in a
number of openair functions and can also be used directly by users to format text components of
their own graphs (see below).

Value

The function returns an expression for graphical evaluation.

Author(s)

Karl Ropkins.

Examples

#example 1
##see axis formatting in an openair plot, e.g.:
scatterPlot(mydata, x = "no2", y = "pm10")

rollingMean 99

#example 2
##using quickText in other plots
plot(mydata$no2, mydata$pm10, xlab = quickText("my no2 label"),

ylab = quickText("pm10 [ug.m-3]"))

rollingMean Calculate rollingMean values

Description

Calculate rollingMean values taking account of data capture thresholds

Usage

rollingMean(
mydata,
pollutant = "o3",
width = 8,
new.name = "rolling",
data.thresh = 75,
align = "centre",
...

)

Arguments

mydata A data frame containing a date field. mydata must contain a date field in Date
or POSIXct format. The input time series must be regular e.g. hourly, daily.

pollutant The name of a pollutant e.g. pollutant = "o3".

width The averaging period (rolling window width) to use e.g. width = 8 will generate
8-hour rolling mean values when hourly data are analysed.

new.name The name given to the new rollingMean variable. If not supplied it will create a
name based on the name of the pollutant and the averaging period used.

data.thresh The data capture threshold in calculated if data capture over the period of interest
is less than this value. For example, with width = 8 and data.thresh = 75 at
least 6 hours are required to calculate the mean, else NA is returned.

align specifyies how the moving window should be aligned. "right" means that the
previous hours (including the current) are averaged. This seems to be the default
for UK air quality rolling mean statistics. "left" means that the forward hours
are averaged, and "centre" or "center", which is the default.

... other arguments, currently unused.

100 scatterPlot

Details

This is a utility function mostly designed to calculate rolling mean statistics relevant to some pollu-
tant limits e.g. 8 hour rolling means for ozone and 24 hour rolling means for PM10. However, the
function has a more general use in helping to display rolling mean values in flexible ways e.g. with
the rolling window width left, right or centre aligned.

The function will try and fill in missing time gaps to get a full time sequence but return a data frame
with the same number of rows supplied.

Author(s)

David Carslaw

Examples

rolling 8-hour mean for ozone
mydata <- rollingMean(mydata, pollutant = "o3", width = 8, new.name =
"rollingo3", data.thresh = 75, align = "right")

scatterPlot Flexible scatter plots

Description

Scatter plots with conditioning and three main approaches: conventional scatterPlot, hexagonal
binning and kernel density estimates. The former also has options for fitting smooth fits and linear
models with uncertainties shown.

Usage

scatterPlot(
mydata,
x = "nox",
y = "no2",
z = NA,
method = "scatter",
group = NA,
avg.time = "default",
data.thresh = 0,
statistic = "mean",
percentile = NA,
type = "default",
smooth = FALSE,
spline = FALSE,
linear = FALSE,

scatterPlot 101

ci = TRUE,
mod.line = FALSE,
cols = "hue",
plot.type = "p",
key = TRUE,
key.title = group,
key.columns = 1,
key.position = "right",
strip = TRUE,
log.x = FALSE,
log.y = FALSE,
x.inc = NULL,
y.inc = NULL,
limits = NULL,
windflow = NULL,
y.relation = "same",
x.relation = "same",
ref.x = NULL,
ref.y = NULL,
k = NA,
dist = 0.02,
map = FALSE,
auto.text = TRUE,
...

)

Arguments

mydata A data frame containing at least two numeric variables to plot.
x Name of the x-variable to plot. Note that x can be a date field or a factor. For

example, x can be one of the openair built in types such as "year" or "season".
y Name of the numeric y-variable to plot.
z Name of the numeric z-variable to plot for method = "scatter" or method =

"level". Note that for method = "scatter" points will be coloured accord-
ing to a continuous colour scale, whereas for method = "level" the surface is
coloured.

method Methods include “scatter” (conventional scatter plot), “hexbin” (hexagonal bin-
ning using the hexbin package). “level” for a binned or smooth surface plot and
“density” (2D kernel density estimates).

group The grouping variable to use, if any. Setting this to a variable in the data frame
has the effect of plotting several series in the same panel using different sym-
bols/colours etc. If set to a variable that is a character or factor, those categories
or factor levels will be used directly. If set to a numeric variable, it will split that
variable in to quantiles.

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”, “day”,
“DSTday”, “week”, “month”, “quarter” or “year”. For much increased flex-
ibility a number can precede these options followed by a space. For exam-
ple, a timeAverage of 2 months would be period = "2 month". See function

102 scatterPlot

timeAverage for further details on this. This option se useful as one method by
which the number of points plotted is reduced i.e. by choosing a longer averag-
ing time.

data.thresh The data capture threshold to use (the data using avg.time. A value of zero
means that all available data will be used in a particular period regardless if of
the number of values available. Conversely, a value of 100 will mean that all
data will need to be present for the average to be calculated, else it is recorded
as NA. Not used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is the mean. Can be one
of "mean", "max", "min", "median", "frequency", "sd", "percentile". Note that
"sd" is the standard deviation and "frequency" is the number (frequency) of valid
records in the period. "percentile" is the percentile level (using the "percentile"
option - see below. Not used if avg.time = "default".

percentile The percentile level in % used when statistic = "percentile" and when ag-
gregating the data with avg.time. The default is 95. Not used if avg.time =
"default".

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season","weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

smooth A smooth line is fitted to the data if TRUE; optionally with 95% confidence in-
tervals shown. For method = "level" a smooth surface will be fitted to binned
data.

spline A smooth spline is fitted to the data if TRUE. This is particularly useful when
there are fewer data points or when a connection line between a sequence of
points is required.

linear A linear model is fitted to the data if TRUE; optionally with 95% confidence
intervals shown. The equation of the line and R2 value is also shown.

ci Should the confidence intervals for the smooth/linear fit be shown?

mod.line If TRUE three lines are added to the scatter plot to help inform model evaluation.
The 1:1 line is solid and the 1:0.5 and 1:2 lines are dashed. Together these lines
help show how close a group of points are to a 1:1 relationship and also show
the points that are within a factor of two (FAC2). mod.line is appropriately
transformed when x or y axes are on a log scale.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for

scatterPlot 103

more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

plot.type lattice plot type. Can be “p” (points — default), “l” (lines) or “b” (lines and
points).

key Should a key be drawn? The default is TRUE.

key.title The title of the key (if used).

key.columns Number of columns to be used in the key. With many pollutants a single column
can make to key too wide. The user can thus choose to use several columns by
setting columns to be less than the number of pollutants.

key.position Location where the scale key is to plotted. Allowed arguments currently include
“top”, “right”, “bottom” and “left”.

strip Should a strip be drawn? The default is TRUE.

log.x Should the x-axis appear on a log scale? The default is FALSE. If TRUE a well-
formatted log10 scale is used. This can be useful for checking linearity once
logged.

log.y Should the y-axis appear on a log scale? The default is FALSE. If TRUE a well-
formatted log10 scale is used. This can be useful for checking linearity once
logged.

x.inc The x-interval to be used for binning data when method = "level".

y.inc The y-interval to be used for binning data when method = "level".

limits For method = "level" the function does its best to choose sensible limits au-
tomatically. However, there are circumstances when the user will wish to set
different ones. The limits are set in the form c(lower, upper), so limits =
c(0, 100) would force the plot limits to span 0-100.

windflow This option allows a scatter plot to show the wind speed/direction shows as
an arrow. The option is a list e.g. windflow = list(col = "grey", lwd = 2,
scale = 0.1). This option requires wind speed (ws) and wind direction (wd) to
be available.
The maximum length of the arrow plotted is a fraction of the plot dimension
with the longest arrow being scale of the plot x-y dimension. Note, if the plot
size is adjusted manually by the user it should be re-plotted to ensure the correct
wind angle. The list may contain other options to panel.arrows in the lattice
package. Other useful options include length, which controls the length of the
arrow head and angle, which controls the angle of the arrow head.
This option works best where there are not too many data to ensure over-plotting
does not become a problem.

y.relation This determines how the y-axis scale is plotted. “same” ensures all panels use
the same scale and “free” will use panel-specific scales. The latter is a useful
setting when plotting data with very different values.

x.relation This determines how the x-axis scale is plotted. “same” ensures all panels use
the same scale and “free” will use panel-specific scales. The latter is a useful
setting when plotting data with very different values.

ref.x See ref.y for details.

104 scatterPlot

ref.y A list with details of the horizontal lines to be added representing reference
line(s). For example, ref.y = list(h = 50, lty = 5) will add a dashed horizon-
tal line at 50. Several lines can be plotted e.g. ref.y = list(h = c(50,100),
lty = c(1, 5), col = c("green", "blue")). See panel.abline in the lattice
package for more details on adding/controlling lines.

k Smoothing parameter supplied to gam for fitting a smooth surface when method
= "level".

dist When plotting smooth surfaces (method = "level" and smooth = TRUE, dist
controls how far from the original data the predictions should be made. See
exclude.too.far from the mgcv package. Data are first transformed to a unit
square. Values should be between 0 and 1.

map Should a base map be drawn? This option is under development.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters are passed onto cutData and an appropriate lattice
plot function (xyplot, levelplot or hexbinplot depending on method). For
example, scatterPlot passes the option hemisphere = "southern" on to cutData
to provide southern (rather than default northern) hemisphere handling of type
= "season". Similarly, for the default case method = "scatter" common axis
and title labelling options (such as xlab, ylab, main) are passed to xyplot via
quickText to handle routine formatting. Other common graphical parameters,
e.g. layout for panel arrangement, pch for plot symbol and lwd and lty for
line width and type, as also available (see examples below).
For method = "hexbin" it can be useful to transform the scale if it is dominated
by a few very high values. This is possible by supplying two functions: one that
that applies the transformation and the other that inverses it. For log scaling (the
default) for example, trans = function(x) log(x) and inv = function(x)
exp(x). For a square root transform use trans = sqrt and inv = function(x)
x^2. To not carry out any transformation the options trans = NULL and inv =
NULL should be used.

Details

The scatterPlot is the basic function for plotting scatter plots in flexible ways in openair. It is
flexible enough to consider lots of conditioning variables and takes care of fitting smooth or linear
relationships to the data.

There are four main ways of plotting the relationship between two variables, which are set using the
method option. The default "scatter" will plot a conventional scatterPlot. In cases where there are
lots of data and over-plotting becomes a problem, then method = "hexbin" or method = "density"
can be useful. The former requires the hexbin package to be installed.

There is also a method = "level" which will bin the x and y data according to the intervals set for
x.inc and y.inc and colour the bins according to levels of a third variable, z. Sometimes however,
a far better understanding of the relationship between three variables (x, y and z) is gained by fitting
a smooth surface through the data. See examples below.

scatterPlot 105

A smooth fit is shown if smooth = TRUE which can help show the overall form of the data e.g.
whether the relationship appears to be linear or not. Also, a linear fit can be shown using linear =
TRUE as an option.

The user has fine control over the choice of colours and symbol type used.

Another way of reducing the number of points used in the plots which can sometimes be useful is
to aggregate the data. For example, hourly data can be aggregated to daily data. See timePlot for
examples here.

By default plots are shown with a colour key at the bottom and in the case of conditioning, strips on
the top of each plot. Sometimes this may be overkill and the user can opt to remove the key and/or
the strip by setting key and/or strip to FALSE. One reason to do this is to maximise the plotting
area and therefore the information shown.

Value

As well as generating the plot itself, scatterPlot also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. If retained,
e.g. using output <- scatterPlot(mydata, "nox", "no2"), this output can be used to recover
the data, reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

See Also

linearRelation, timePlot and timeAverage for details on selecting averaging times and other
statistics in a flexible way

Examples

load openair data if not loaded already
dat2004 <- selectByDate(mydata, year = 2004)

basic use, single pollutant

scatterPlot(dat2004, x = "nox", y = "no2")
Not run:
scatterPlot by year
scatterPlot(mydata, x = "nox", y = "no2", type = "year")

End(Not run)

scatterPlot by day of the week, removing key at bottom
scatterPlot(dat2004, x = "nox", y = "no2", type = "weekday", key =
FALSE)

106 scatterPlot

example of the use of continuous where colour is used to show
different levels of a third (numeric) variable
plot daily averages and choose a filled plot symbol (pch = 16)
select only 2004
Not run:

scatterPlot(dat2004, x = "nox", y = "no2", z = "co", avg.time = "day", pch = 16)

show linear fit, by year
scatterPlot(mydata, x = "nox", y = "no2", type = "year", smooth =
FALSE, linear = TRUE)

do the same, but for daily means...
scatterPlot(mydata, x = "nox", y = "no2", type = "year", smooth =
FALSE, linear = TRUE, avg.time = "day")

log scales
scatterPlot(mydata, x = "nox", y = "no2", type = "year", smooth =
FALSE, linear = TRUE, avg.time = "day", log.x = TRUE, log.y = TRUE)

also works with the x-axis in date format (alternative to timePlot)
scatterPlot(mydata, x = "date", y = "no2", avg.time = "month",
key = FALSE)

multiple types and grouping variable and continuous colour scale
scatterPlot(mydata, x = "nox", y = "no2", z = "o3", type = c("season", "weekend"))

use hexagonal binning

library(hexbin)
basic use, single pollutant
scatterPlot(mydata, x = "nox", y = "no2", method = "hexbin")

scatterPlot by year
scatterPlot(mydata, x = "nox", y = "no2", type = "year", method =
"hexbin")

bin data and plot it - can see how for high NO2, O3 is also high

scatterPlot(mydata, x = "nox", y = "no2", z = "o3", method = "level", dist = 0.02)

fit surface for clearer view of relationship - clear effect of
increased O3

scatterPlot(mydata, x = "nox", y = "no2", z = "o3", method = "level",
x.inc = 10, y.inc = 2, smooth = TRUE)

End(Not run)

selectByDate 107

selectByDate Subset a data frame based on date

Description

Utility function to make it easier to select periods from a data frame before sending to a function

Usage

selectByDate(
mydata,
start = "1/1/2008",
end = "31/12/2008",
year = 2008,
month = 1,
day = "weekday",
hour = 1

)

Arguments

mydata A data frame containing a date field in hourly or high resolution format.

start A start date string in the form d/m/yyyy e.g. “1/2/1999” or in ‘R’ format i.e.
“YYYY-mm-dd”, “1999-02-01”

end See start for format.

year A year or years to select e.g. year = 1998:2004 to select 1998-2004 inclusive
or year = c(1998, 2004) to select 1998 and 2004.

month A month or months to select. Can either be numeric e.g. month = 1:6 to se-
lect months 1-6 (January to June), or by name e.g. month = c("January",
"December"). Names can be abbreviated to 3 letters and be in lower or up-
per case.

day A day name or or days to select. day can be numeric (1 to 31) or character. For
example day = c("Monday", "Wednesday") or day = 1:10 (to select the 1st to
10th of each month). Names can be abbreviated to 3 letters and be in lower
or upper case. Also accepts “weekday” (Monday - Friday) and “weekend” for
convenience.

hour An hour or hours to select from 0-23 e.g. hour = 0:12 to select hours 0 to 12
inclusive.

Details

This function makes it much easier to select periods of interest from a data frame based on dates in
a British format. Selecting date/times in R format can be intimidating for new users. This function
can be used to select quite complex dates simply - see examples below.

108 selectRunning

Dates are assumed to be inclusive, so start = "1/1/1999" means that times are selected from hour
zero. Similarly, end = "31/12/1999" will include all hours of the 31st December. start and end
can also be in standard R format as a string i.e. "YYYY-mm-dd", so start = "1999-01-01" is fine.

All options are applied in turn making it possible to select quite complex dates

Author(s)

David Carslaw

Examples

select all of 1999
data.1999 <- selectByDate(mydata, start = "1/1/1999", end = "31/12/1999")
head(data.1999)
tail(data.1999)

or...
data.1999 <- selectByDate(mydata, start = "1999-01-01", end = "1999-12-31")

easier way
data.1999 <- selectByDate(mydata, year = 1999)

more complex use: select weekdays between the hours of 7 am to 7 pm
sub.data <- selectByDate(mydata, day = "weekday", hour = 7:19)

select weekends between the hours of 7 am to 7 pm in winter (Dec, Jan, Feb)
sub.data <- selectByDate(mydata, day = "weekend", hour = 7:19, month =
c("dec", "jan", "feb"))

selectRunning Function to extract run lengths greater than a threshold

Description

Utility function to extract user-defined run lengths (durations) above a threshold

Usage

selectRunning(
mydata,
pollutant = "nox",
criterion = ">",
run.len = 5,
threshold = 500,
result = c("yes", "no")

)

selectRunning 109

Arguments

mydata A data frame with a date field and at least one numeric pollutant field to
analyse.

pollutant Name of variable to process. Mandatory.

criterion Condition to select run lengths e.g. ">" with select data more than threshold.

run.len Run length for extracting contiguous values of pollutant above the threshold
value.

threshold The threshold value for pollutant above which data should be extracted.

result A new column criterion is returned with string to identity whether condition
was met.

Details

This is a utility function to extract runs of values above a certain threshold. For example, for a data
frame of hourly NOx values we would like to extract all those hours where the concentration is at
least 500ppb for contiguous periods of 5 or more hours.

This function is useful, for example, for selecting pollution episodes from a data frame i.e. where
concentrations remain elevated for a certain period of time. It may also be of more general use when
analysing air pollution data. For example, selectRunning could be used to extract continuous
periods of rainfall — which could be important for particle concentrations.

Value

Returns a data frame that meets the chosen criteria. See examples below.

Author(s)

David Carslaw

Examples

extract those hours where there are at least 5 consecutive NOx
concentrations above 500ppb

mydata <- selectRunning(mydata, run.len = 5, threshold = 500)

make a polar plot of those conditions...shows that those
conditions are dominated by low wind speeds, not
in-canyon recirculation
Not run: polarPlot(mydata, pollutant = "nox", type = "criterion")

110 smoothTrend

smoothTrend Calculate nonparametric smooth trends

Description

Use non-parametric methods to calculate time series trends

Usage

smoothTrend(
mydata,
pollutant = "nox",
deseason = FALSE,
type = "default",
statistic = "mean",
avg.time = "month",
percentile = NA,
data.thresh = 0,
simulate = FALSE,
n = 200,
autocor = FALSE,
cols = "brewer1",
shade = "grey95",
xlab = "year",
y.relation = "same",
ref.x = NULL,
ref.y = NULL,
key.columns = length(percentile),
name.pol = pollutant,
ci = TRUE,
alpha = 0.2,
date.breaks = 7,
auto.text = TRUE,
k = NULL,
...

)

Arguments

mydata A data frame containing the field date and at least one other parameter for which
a trend test is required; typically (but not necessarily) a pollutant.

pollutant The parameter for which a trend test is required. Mandatory.

deseason Should the data be de-deasonalized first? If TRUE the function stl is used (sea-
sonal trend decomposition using loess). Note that if TRUE missing data are first
imputed using a Kalman filter and Kalman smooth.

smoothTrend 111

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

statistic Statistic used for calculating monthly values. Default is “mean”, but can also be
“percentile”. See timeAverage for more details.

avg.time Can be “month” (the default), “season” or “year”. Determines the time over
which data should be averaged. Note that for “year”, six or more years are
required. For “season” the data are plit up into spring: March, April, May etc.
Note that December is considered as belonging to winter of the following year.

percentile Percentile value(s) to use if statistic = "percentile" is chosen. Can be a
vector of numbers e.g. percentile = c(5, 50, 95) will plot the 5th, 50th and
95th percentile values together on the same plot.

data.thresh The data capture threshold to use (the data using avg.time. A value of zero
means that all available data will be used in a particular period regardless if of
the number of values available. Conversely, a value of 100 will mean that all
data will need to be present for the average to be calculated, else it is recorded
as NA. Not used if avg.time = "default".

simulate Should simulations be carried out to determine the Mann-Kendall tau and p-
value. The default is FALSE. If TRUE, bootstrap simulations are undertaken,
which also account for autocorrelation.

n Number of bootstrap simulations if simulate = TRUE.

autocor Should autocorrelation be considered in the trend uncertainty estimates? The
default is FALSE. Generally, accounting for autocorrelation increases the uncer-
tainty of the trend estimate sometimes by a large amount.

cols Colours to use. Can be a vector of colours e.g. cols = c("black", "green")
or pre-defined openair colours — see openColours for more details.

shade The colour used for marking alternate years. Use “white” or “transparent” to
remove shading.

xlab x-axis label, by default “year”.

y.relation This determines how the y-axis scale is plotted. "same" ensures all panels use the
same scale and "free" will use panel-specfic scales. The latter is a useful setting
when plotting data with very different values. ref.x See ref.y for details. In
this case the correct date format should be used for a vertical line e.g. ref.x =
list(v = as.POSIXct("2000-06-15"), lty = 5).

112 smoothTrend

ref.x See ref.y.

ref.y A list with details of the horizontal lines to be added representing reference
line(s). For example, ref.y = list(h = 50,lty = 5) will add a dashed hori-
zontal line at 50. Several lines can be plotted e.g. ref.y = list(h = c(50,
100), lty = c(1, 5), col = c("green", "blue")). See panel.abline in the
lattice package for more details on adding/controlling lines.

key.columns Number of columns used if a key is drawn when using the option statistic =
"percentile".

name.pol Names to be given to the pollutant(s). This is useful if you want to give a fuller
description of the variables, maybe also including subscripts etc.

ci Should confidence intervals be plotted? The default is FALSE.

alpha The alpha transparency of shaded confidence intervals - if plotted. A value of 0
is fully transparent and 1 is fully opaque.

date.breaks Number of major x-axis intervals to use. The function will try and choose a sen-
sible number of dates/times as well as formatting the date/time appropriately to
the range being considered. This does not always work as desired automatically.
The user can therefore increase or decrease the number of intervals by adjusting
the value of date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

k This is the smoothing parameter used by the gam function in package mgcv. By
default it is not used and the amount of smoothing is optimised automatically.
However, sometimes it is useful to set the smoothing amount manually using k.

... Other graphical parameters are passed onto cutData and lattice:xyplot. For
example, smoothTrend passes the option hemisphere = "southern" on to cutData
to provide southern (rather than default northern) hemisphere handling of type
= "season". Similarly, common graphical arguments, such as xlim and ylim
for plotting ranges and pch and cex for plot symbol type and size, are passed on
xyplot, although some local modifications may be applied by openair. For ex-
ample, axis and title labelling options (such as xlab, ylab and main) are passed
to xyplot via quickText to handle routine formatting. One special case here
is that many graphical parameters can be vectors when used with statistic =
"percentile" and a vector of percentile values, see examples below.

Details

The smoothTrend function provides a flexible way of estimating the trend in the concentration
of a pollutant or other variable. Monthly mean values are calculated from an hourly (or higher
resolution) or daily time series. There is the option to deseasonalise the data if there is evidence of
a seasonal cycle.

smoothTrend uses a Generalized Additive Model (GAM) from the gam package to find the most
appropriate level of smoothing. The function is particularly suited to situations where trends are not
monotonic (see discussion with TheilSen for more details on this). The smoothTrend function is
particularly useful as an exploratory technique e.g. to check how linear or non-linear trends are.

smoothTrend 113

95 confidence intervals are also available through the simulate option. Residual resampling is
used.

Trends can be considered in a very wide range of ways, controlled by setting type - see examples
below.

Value

As well as generating the plot itself, smoothTrend also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. Note that
data is a list of two data frames: data (the original data) and fit (the smooth fit that has details
of the fit and teh uncertainties). If retained, e.g. using output <- smoothTrend(mydata, "nox"),
this output can be output <- smoothTrend(mydata, "nox"), this output can be used to recover
the data, reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summarise.

Author(s)

David Carslaw

See Also

TheilSen for an alternative method of calculating trends.

Examples

load example data from package
data(mydata)

trend plot for nox
smoothTrend(mydata, pollutant = "nox")

trend plot by each of 8 wind sectors
Not run: smoothTrend(mydata, pollutant = "o3", type = "wd", ylab = "o3 (ppb)")

several pollutants, no plotting symbol
Not run: smoothTrend(mydata, pollutant = c("no2", "o3", "pm10", "pm25"), pch = NA)

percentiles
Not run: smoothTrend(mydata, pollutant = "o3", statistic = "percentile",
percentile = 95)
End(Not run)

several percentiles with control over lines used
Not run: smoothTrend(mydata, pollutant = "o3", statistic = "percentile",
percentile = c(5, 50, 95), lwd = c(1, 2, 1), lty = c(5, 1, 5))
End(Not run)

114 splitByDate

splitByDate Divide up a data frame by time

Description

Utility function to prepare input data for use in openair functions

Usage

splitByDate(
mydata,
dates = "1/1/2003",
labels = c("before", "after"),
name = "split.by"

)

Arguments

mydata A data frame containing a date field in hourly or high resolution format.

dates A date or dates to split data by.

labels Labels for each time partition.

name The name to give the new column to identify the periods split

Details

This function partitions a data frame up into different time segments. It produces a new column
called controlled by name that can be used in many openair functions. Note that there must be one
more label than there are dates. See examples below and in full openair documentation.

Author(s)

David Carslaw

Examples

split data up into "before" and "after"
mydata <- splitByDate(mydata, dates = "1/04/2000",
labels = c("before", "after"))

split data into 3 partitions:
mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"),
labels = c("before", "during", "after"))

summaryPlot 115

summaryPlot Function to rapidly provide an overview of air quality data

Description

This function provides a quick graphical and numerical summary of data. The location pres-
ence/absence of data are shown, with summary statistics and plots of variable distributions. summaryPlot
can also provide summaries of a single pollutant across many sites.

Usage

summaryPlot(
mydata,
na.len = 24,
clip = TRUE,
percentile = 0.99,
type = "histogram",
pollutant = "nox",
period = "years",
avg.time = "day",
print.datacap = TRUE,
breaks = NULL,
plot.type = "l",
col.trend = "darkgoldenrod2",
col.data = "lightblue",
col.mis = rgb(0.65, 0.04, 0.07),
col.hist = "forestgreen",
cols = NULL,
date.breaks = 7,
auto.text = TRUE,
...

)

Arguments

mydata A data frame to be summarised. Must contain a date field and at least one other
parameter.

na.len Missing data are only shown with at least na.len contiguous missing vales.
The purpose of setting na.len is for clarity: with long time series it is difficult
to see where individual missing hours are. Furthermore, setting na.len = 96,
for example would show where there are at least 4 days of continuous missing
data.

clip When data contain outliers, the histogram or density plot can fail to show the
distribution of the main body of data. Setting clip = TRUE, will remove the top
1 yield what is often a better display of the overall distribution of the data. The
amount of clipping can be set with percentile.

116 summaryPlot

percentile This is used to clip the data. For example, percentile = 0.99 (the default) will
remove the top 1 percentile of values i.e. values greater than the 99th percentile
will not be used.

type type is used to determine whether a histogram (the default) or a density plot is
used to show the distribution of the data.

pollutant pollutant is used when there is a field site and there is more than one site in
the data frame.

period period is either years (the default) or months. Statistics are calculated depend-
ing on the period chosen.

avg.time This defines the time period to average the time series plots. Can be “sec”,
“min”, “hour”, “day” (the default), “week”, “month”, “quarter” or “year”. For
much increased flexibility a number can precede these options followed by a
space. For example, a timeAverage of 2 months would be avg.time = "2 month".

print.datacap Should the data capture % be shown for each period?

breaks Number of histogram bins. Sometime useful but not easy to set a single value
for a range of very different variables.

plot.type The lattice plot type, which is a line (plot.type = "l") by default. Another
useful option is plot.type = "h", which draws vertical lines.

col.trend Colour to be used to show the monthly trend of the data, shown as a shaded
region. Type colors() into R to see the full range of colour names.

col.data Colour to be used to show the presence of data. Type colors() into R to see
the full range of colour names.

col.mis Colour to be used to show missing data.

col.hist Colour for the histogram or density plot.

cols Predefined colour scheme, currently only enabled for "greyscale".

date.breaks Number of major x-axis intervals to use. The function will try and choose a sen-
sible number of dates/times as well as formatting the date/time appropriately to
the range being considered. This does not always work as desired automatically.
The user can therefore increase or decrease the number of intervals by adjusting
the value of date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters. Commonly used examples include the axis and
title labelling options (such as xlab, ylab and main), which are all passed to
the plot via quickText to handle routine formatting. As summaryPlot has two
components, the axis labels may be a vector. For example, the default case (type
= "histogram") sets y labels equivalent to ylab = c("","Percent of Total").

Details

summaryPlot produces two panels of plots: one showing the presence/absence of data and the
other the distributions. The left panel shows time series and codes the presence or absence of data
in different colours. By stacking the plots one on top of another it is easy to compare different

summaryPlot 117

pollutants/variables. Overall statistics are given for each variable: mean, maximum, minimum,
missing hours (also expressed as a percentage), median and the 95th percentile. For each year the
data capture rate (expressed as a percentage of hours in that year) is also given.

The right panel shows either a histogram or a density plot depending on the choice of type. Density
plots avoid the issue of arbitrary bin sizes that can sometimes provide a misleading view of the data
distribution. Density plots are often more appropriate, but their effectiveness will depend on the
data in question.

summaryPlot will only show data that are numeric or integer type. This is useful for checking
that data have been imported properly. For example, if for some reason a column representing
wind speed erroneosly had one or more fields with charcters in, the whole column would be either
character or factor type. The absence of a wind speed variable in the summaryPlot plot would
therefore indicate a problem with the input data. In this particular case, the user should go back to
the source data and remove the characters or remove them using R functions.

If there is a field site, which would generally mean there is more than one site, summaryPlot will
provide information on a single pollutant across all sites, rather than provide details on all pollutants
at a single site. In this case the user should also provide a name of a pollutant e.g. pollutant =
"nox". If a pollutant is not provided the first numeric field will automatically be chosen.

It is strongly recommended that the summaryPlot function is applied to all new imported data
sets to ensure the data are imported as expected.

Author(s)

David Carslaw

Examples

load example data from package
data(mydata)

do not clip density plot data
Not run: summaryPlot(mydata, clip = FALSE)

exclude highest 5 % of data etc.
Not run: summaryPlot(mydata, percentile = 0.95)

show missing data where there are at least 96 contiguous missing
values (4 days)
Not run: summaryPlot(mydata, na.len = 96)

show data in green
Not run: summaryPlot(mydata, col.data = "green")

show missing data in yellow
Not run: summaryPlot(mydata, col.mis = "yellow")

show density plot line in black
Not run: summaryPlot(mydata, col.dens = "black")

118 TaylorDiagram

TaylorDiagram Taylor Diagram for model evaluation with conditioning

Description

Function to draw Taylor Diagrams for model evaluation. The function allows conditioning by any
categorical or numeric variables, which makes the function very flexible.

Usage

TaylorDiagram(
mydata,
obs = "obs",
mod = "mod",
group = NULL,
type = "default",
normalise = FALSE,
cols = "brewer1",
rms.col = "darkgoldenrod",
cor.col = "black",
arrow.lwd = 3,
annotate = "centred\nRMS error",
text.obs = "observed",
key = TRUE,
key.title = group,
key.columns = 1,
key.pos = "right",
strip = TRUE,
auto.text = TRUE,
...

)

Arguments

mydata A data frame minimally containing a column of observations and a column of
predictions.

obs A column of observations with which the predictions (mod) will be compared.

mod A column of model predictions. Note, mod can be of length 2 i.e. two lots
of model predictions. If two sets of predictions are are present e.g. mod =
c("base","revised"), then arrows are shown on the Taylor Diagram which
show the change in model performance in going from the first to the second.
This is useful where, for example, there is interest in comparing how one model
run compares with another using different assumptions e.g. input data or model
set up. See examples below.

TaylorDiagram 119

group The group column is used to differentiate between different models and can be
a factor or character. The total number of models compared will be equal to the
number of unique values of group.
group can also be of length two e.g. group = c("model", "site"). In this case
all model-site combinations will be shown but they will only be differentiated by
colour/symbol by the first grouping variable ("model" in this case). In essence
the plot removes the differentiation by the second grouping variable. Because
there will be different values of obs for each group, normalise = TRUE should
be used.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season","weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.
Note that often it will make sense to use type = "site" when multiple sites are
available. This will ensure that each panel contains data specific to an individual
site.

normalise Should the data be normalised by dividing the standard deviation of the observa-
tions? The statistics can be normalised (and non-dimensionalised) by dividing
both the RMS difference and the standard deviation of the mod values by the
standard deviation of the observations (obs). In this case the “observed” point is
plotted on the x-axis at unit distance from the origin. This makes it possible to
plot statistics for different species (maybe with different units) on the same plot.
The normalisation is done by each group/type combination.

cols Colours to be used for plotting. Useful options for categorical data are avil-
able from RColorBrewer colours — see the openair openColours function for
more details. Useful schemes include “Accent”, “Dark2”, “Paired”, “Pastel1”,
“Pastel2”, “Set1”, “Set2”, “Set3” — but see ?brewer.pal for the maximum
useful colours in each. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example would
be cols = c("yellow", "green", "blue").

rms.col Colour for centred-RMS lines and text.

cor.col Colour for correlation coefficient lines and text.

arrow.lwd Width of arrow used when used for comparing two model outputs.

annotate Annotation shown for RMS error.

text.obs The plot annotation for observed values; default is "observed".

120 TaylorDiagram

key Should the key be shown?

key.title Title for the key.

key.columns Number of columns to be used in the key. With many pollutants a single column
can make to key too wide. The user can thus choose to use several columns by
setting columns to be less than the number of pollutants.

key.pos Position of the key e.g. “top”, “bottom”, “left” and “right”. See details in
lattice:xyplot for more details about finer control.

strip Should a strip be shown?

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

... Other graphical parameters are passed onto cutData and lattice:xyplot. For
example, TaylorDiagram passes the option hemisphere = "southern" on to
cutData to provide southern (rather than default northern) hemisphere han-
dling of type = "season". Similarly, common graphical parameters, such as
layout for panel arrangement and pch and cex for plot symbol type and size,
are passed on to xyplot. Most are passed unmodified, although there are some
special cases where openair may locally manage this process. For example,
common axis and title labelling options (such as xlab, ylab, main) are passed
via quickText to handle routine formatting.

Details

The Taylor Diagram is a very useful model evaluation tool. The diagram provides a way of showing
how three complementary model performance statistics vary simultaneously. These statistics are the
correlation coefficient R, the standard deviation (sigma) and the (centred) root-mean-square error.
These three statistics can be plotted on one (2D) graph because of the way they are related to one
another which can be represented through the Law of Cosines.

The openair version of the Taylor Diagram has several enhancements that increase its flexibility.
In particular, the straightforward way of producing conditioning plots should prove valuable under
many circumstances (using the type option). Many examples of Taylor Diagrams focus on model-
observation comparisons for several models using all the available data. However, more insight
can be gained into model performance by partitioning the data in various ways e.g. by season,
daylight/nighttime, day of the week, by levels of a numeric variable e.g. wind speed or by land-use
type etc.

To consider several pollutants on one plot, a column identifying the pollutant name can be used e.g.
pollutant. Then the Taylor Diagram can be plotted as (assuming a data frame thedata):

TaylorDiagram(thedata, obs = "obs", mod = "mod", group = "model", type = "pollutant")

which will give the model performance by pollutant in each panel.

Note that it is important that each panel represents data with the same mean observed data across dif-
ferent groups. Therefore TaylorDiagram(mydata, group = "model", type = "season") is OK,
whereas TaylorDiagram(mydata, group = "season", type = "model") is not because each panel
(representing a model) will have four different mean values — one for each season. Generally,
the option group is either missing (one model being evaluated) or represents a column giving the
model name. However, the data can be normalised using the normalise option. Normalisation is

TaylorDiagram 121

carried out on a per group/type basis making it possible to compare data on different scales e.g.
TaylorDiagram(mydata, group = "season", type = "model", normalise = TRUE). In this way
it is possible to compare different pollutants, sites etc. in the same panel.

Also note that if multiple sites are present it makes sense to use type = "site" to ensure that each
panel represents an individual site with its own specific standard deviation etc. If this is not the case
then select a single site from the data first e.g. subset(mydata, site == "Harwell").

Value

As well as generating the plot itself, TaylorDiagram also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. If retained,
e.g. using output <- TaylorDiagram(thedata, obs = "nox", mod = "mod"), this output can be
used to recover the data, reproduce or rework the original plot or undertake further analysis. For
example, output$data will be a data frame consisting of the group, type, correlation coefficient
(R), the standard deviation of the observations and measurements.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

References

Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys.
Res., 106, 7183-7192, 2001 (also see PCMDI Report 55).

IPCC, 2001: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the
Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y.
Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)].
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.

See Also

taylor.diagram from the plotrix package from which some of the annotation code was used.

Examples

in the examples below, most effort goes into making some artificial data
the function itself can be run very simply
Not run:
dummy model data for 2003
dat <- selectByDate(mydata, year = 2003)
dat <- data.frame(date = mydata$date, obs = mydata$nox, mod = mydata$nox)

now make mod worse by adding bias and noise according to the month
do this for 3 different models
dat <- transform(dat, month = as.numeric(format(date, "%m")))
mod1 <- transform(dat, mod = mod + 10 * month + 10 * month * rnorm(nrow(dat)),
model = "model 1")

122 TaylorDiagram

lag the results for mod1 to make the correlation coefficient worse
without affecting the sd
mod1 <- transform(mod1, mod = c(mod[5:length(mod)], mod[(length(mod) - 3) :
length(mod)]))

model 2
mod2 <- transform(dat, mod = mod + 7 * month + 7 * month * rnorm(nrow(dat)),
model = "model 2")
model 3
mod3 <- transform(dat, mod = mod + 3 * month + 3 * month * rnorm(nrow(dat)),
model = "model 3")

mod.dat <- rbind(mod1, mod2, mod3)

basic Taylor plot

TaylorDiagram(mod.dat, obs = "obs", mod = "mod", group = "model")

Taylor plot by season
TaylorDiagram(mod.dat, obs = "obs", mod = "mod", group = "model", type = "season")

now show how to evaluate model improvement (or otherwise)
mod1a <- transform(dat, mod = mod + 2 * month + 2 * month * rnorm(nrow(dat)),
model = "model 1")
mod2a <- transform(mod2, mod = mod * 1.3)
mod3a <- transform(dat, mod = mod + 10 * month + 10 * month * rnorm(nrow(dat)),
model = "model 3")
mod.dat2 <- rbind(mod1a, mod2a, mod3a)
mod.dat$mod2 <- mod.dat2$mod

now we have a data frame with 3 models, 1 set of observations
and TWO sets of model predictions (mod and mod2)

do for all models
TaylorDiagram(mod.dat, obs = "obs", mod = c("mod", "mod2"), group = "model")

End(Not run)
Not run:
all models, by season
TaylorDiagram(mod.dat, obs = "obs", mod = c("mod", "mod2"), group = "model",
type = "season")

consider two groups (model/month). In this case all months are shown by model
but are only differentiated by model.

TaylorDiagram(mod.dat, obs = "obs", mod = "mod", group = c("model", "month"))

End(Not run)

TheilSen 123

TheilSen Tests for trends using Theil-Sen estimates

Description

Theil-Sen slope estimates and tests for trend.

Usage

TheilSen(
mydata,
pollutant = "nox",
deseason = FALSE,
type = "default",
avg.time = "month",
statistic = "mean",
percentile = NA,
data.thresh = 0,
alpha = 0.05,
dec.place = 2,
xlab = "year",
lab.frac = 0.99,
lab.cex = 0.8,
x.relation = "same",
y.relation = "same",
data.col = "cornflowerblue",
trend = list(lty = c(1, 5), lwd = c(2, 1), col = c("red", "red")),
text.col = "darkgreen",
slope.text = NULL,
cols = NULL,
shade = "grey95",
auto.text = TRUE,
autocor = FALSE,
slope.percent = FALSE,
date.breaks = 7,
date.format = NULL,
plot = TRUE,
silent = FALSE,
...

)

Arguments

mydata A data frame containing the field date and at least one other parameter for which
a trend test is required; typically (but not necessarily) a pollutant.

pollutant The parameter for which a trend test is required. Mandatory.

124 TheilSen

deseason Should the data be de-deasonalized first? If TRUE the function stl is used (sea-
sonal trend decomposition using loess). Note that if TRUE missing data are first
imputed using a Kalman filter and Kalman smooth.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

avg.time Can be “month” (the default), “season” or “year”. Determines the time over
which data should be averaged. Note that for “year”, six or more years are
required. For “season” the data are split up into spring: March, April, May etc.
Note that December is considered as belonging to winter of the following year.

statistic Statistic used for calculating monthly values. Default is “mean”, but can also be
“percentile”. See timeAverage for more details.

percentile Single percentile value to use if statistic = "percentile" is chosen.

data.thresh The data capture threshold to use (the data using avg.time. A value of zero
means that all available data will be used in a particular period regardless if of
the number of values available. Conversely, a value of 100 will mean that all
data will need to be present for the average to be calculated, else it is recorded
as NA.

alpha For the confidence interval calculations of the slope. The default is 0.05. To
show 99% confidence intervals for the value of the trend, choose alpha = 0.01
etc.

dec.place The number of decimal places to display the trend estimate at. The default is 2.

xlab x-axis label, by default "year".

lab.frac Fraction along the y-axis that the trend information should be printed at, default
0.99.

lab.cex Size of text for trend information.

x.relation This determines how the x-axis scale is plotted. “same” ensures all panels use
the same scale and “free” will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

y.relation This determines how the y-axis scale is plotted. “same” ensures all panels use
the same scale and “free” will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

data.col Colour name for the data

TheilSen 125

trend list containing information on the line width, line type and line colour for the
main trend line and confidence intervals respectively.

text.col Colour name for the slope/uncertainty numeric estimates

slope.text The text shown for the slope (default is ‘units/year’).

cols Predefined colour scheme, currently only enabled for "greyscale".

shade The colour used for marking alternate years. Use “white” or “transparent” to
remove shading.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

autocor Should autocorrelation be considered in the trend uncertainty estimates? The
default is FALSE. Generally, accounting for autocorrelation increases the uncer-
tainty of the trend estimate — sometimes by a large amount.

slope.percent Should the slope and the slope uncertainties be expressed as a percentage change
per year? The default is FALSE and the slope is expressed as an average units/year
change e.g. ppb. Percentage changes can often be confusing and should be
clearly defined. Here the percentage change is expressed as 100 * (C.end/C.start
- 1) / (end.year - start.year). Where C.start is the concentration at the start date
and C.end is the concentration at the end date.
For avg.time = "year" (end.year - start.year) will be the total number of years
- 1. For example, given a concentration in year 1 of 100 units and a percentage
reduction of 5 units but the actual time span will be 6 years i.e. year 1 is used as
a reference year. Things are slightly different for monthly values e.g. avg.time
= "month", which will use the total number of months as a basis of the time span
and is therefore able to deal with partial years. There can be slight differences
in the depending on whether monthly or annual values are considered.

date.breaks Number of major x-axis intervals to use. The function will try and choose a sen-
sible number of dates/times as well as formatting the date/time appropriately to
the range being considered. This does not always work as desired automatically.
The user can therefore increase or decrease the number of intervals by adjusting
the value of date.breaks up or down.

date.format This option controls the date format on the x-axis. While TheilSen generally
sets the date format sensibly there can be some situations where the user wishes
to have more control. For format types see strptime. For example, to format
the date like “Jan-2012” set date.format = "%b-%Y".

plot Should a plot be produced. FALSE can be useful when analysing data to extract
trend components and plotting them in other ways.

silent When FALSE the function will give updates on trend-fitting progress.

... Other graphical parameters passed onto cutData and lattice:xyplot. For
example, TheilSen passes the option hemisphere = "southern" on to cutData
to provide southern (rather than default northern) hemisphere handling of type
= "season". Similarly, common axis and title labelling options (such as xlab,
ylab, main) are passed to xyplot via quickText to handle routine formatting.

126 TheilSen

Details

The TheilSen function provides a collection of functions to analyse trends in air pollution data. The
TheilSen function is flexible in the sense that it can be applied to data in many ways e.g. by day of
the week, hour of day and wind direction. This flexibility makes it much easier to draw inferences
from data e.g. why is there a strong downward trend in concentration from one wind sector and not
another, or why trends on one day of the week or a certain time of day are unexpected.

For data that are strongly seasonal, perhaps from a background site, or a pollutant such as ozone,
it will be important to deseasonalise the data (using the option deseason = TRUE.Similarly, for data
that increase, then decrease, or show sharp changes it may be better to use smoothTrend.

A minimum of 6 points are required for trend estimates to be made.

Note! that since version 0.5-11 openair uses Theil-Sen to derive the p values also for the slope.
This is to ensure there is consistency between the calculated p value and other trend parameters i.e.
slope estimates and uncertainties. The p value and all uncertainties are calculated through bootstrap
simulations.

Note that the symbols shown next to each trend estimate relate to how statistically significant the
trend estimate is: p $<$ 0.001 = ***, p $<$ 0.01 = **, p $<$ 0.05 = * and p $<$ 0.1 = $+$.

Some of the code used in TheilSen is based on that from Rand Wilcox. This mostly relates to the
Theil-Sen slope estimates and uncertainties. Further modifications have been made to take account
of correlated data based on Kunsch (1989). The basic function has been adapted to take account
of auto-correlated data using block bootstrap simulations if autocor = TRUE (Kunsch, 1989). We
follow the suggestion of Kunsch (1989) of setting the block length to n(1/3) where n is the length
of the time series.

The slope estimate and confidence intervals in the slope are plotted and numerical information
presented.

Value

As well as generating the plot itself, TheilSen also returns an object of class “openair”. The object
includes three main components: call, the command used to generate the plot; data, the data frame
of summarised information used to make the plot; and plot, the plot itself. If retained, e.g. using
output <- TheilSen(mydata, "nox"), this output can be used to recover the data, reproduce or
rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

The data component of the TheilSen output includes two subsets: main.data, the monthly data
res2 the trend statistics. For output <- TheilSen(mydata, "nox"), these can be extracted as
object$data$main.data and object$data$res2, respectively.

Note: In the case of the intercept, it is assumed the y-axis crosses the x-axis on 1/1/1970.

Author(s)

David Carslaw with some trend code from Rand Wilcox

TheilSen 127

References

Helsel, D., Hirsch, R., 2002. Statistical methods in water resources. US Geological Survey. Note
that this is a very good resource for statistics as applied to environmental data.

Hirsch, R. M., Slack, J. R., Smith, R. A., 1982. Techniques of trend analysis for monthly water-
quality data. Water Resources Research 18 (1), 107-121.

Kunsch, H. R., 1989. The jackknife and the bootstrap for general stationary observations. Annals
of Statistics 17 (3), 1217-1241.

Sen, P. K., 1968. Estimates of regression coefficient based on Kendall’s tau. Journal of the American
Statistical Association 63(324).

Theil, H., 1950. A rank invariant method of linear and polynomial regression analysis, i, ii, iii.
Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, Series A - Mathematical
Sciences 53, 386-392, 521-525, 1397-1412.

. . . see also several of the Air Quality Expert Group (AQEG) reports for the use of similar tests
applied to UK/European air quality data.

See Also

See smoothTrend for a flexible approach to estimating trends using nonparametric regression. The
smoothTrend function is suitable for cases where trends are not monotonic and is probably better
for exploring the shape of trends.

Examples

load example data from package
data(mydata)

trend plot for nox
TheilSen(mydata, pollutant = "nox")

trend plot for ozone with p=0.01 i.e. uncertainty in slope shown at
99 % confidence interval

Not run: TheilSen(mydata, pollutant = "o3", ylab = "o3 (ppb)", alpha = 0.01)

trend plot by each of 8 wind sectors
Not run: TheilSen(mydata, pollutant = "o3", type = "wd", ylab = "o3 (ppb)")

and for a subset of data (from year 2000 onwards)
Not run: TheilSen(selectByDate(mydata, year = 2000:2005), pollutant = "o3", ylab = "o3 (ppb)")

128 timeAverage

timeAverage Function to calculate time averages for data frames

Description

Function to flexibly aggregate or expand data frames by different time periods, calculating vector-
averaged wind direction where appropriate. The averaged periods can also take account of data
capture rates.

Usage

timeAverage(
mydata,
avg.time = "day",
data.thresh = 0,
statistic = "mean",
type = "default",
percentile = NA,
start.date = NA,
end.date = NA,
interval = NA,
vector.ws = FALSE,
fill = FALSE,
...

)

Arguments

mydata A data frame containing a date field . Can be class POSIXct or Date.
avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”, “day”,

“DSTday”, “week”, “month”, “quarter” or “year”. For much increased flexibil-
ity a number can precede these options followed by a space. For example, a
timeAverage of 2 months would be period = "2 month". In addition, avg.time
can equal “season”, in which case 3-month seasonal values are calculated with
spring defined as March, April, May and so on.
Note that avg.time can be less than the time interval of the original series,
in which case the series is expanded to the new time interval. This is useful,
for example, for calculating a 15-minute time series from an hourly one where
an hourly value is repeated for each new 15-minute period. Note that when
expanding data in this way it is necessary to ensure that the time interval of the
original series is an exact multiple of avg.time e.g. hour to 10 minutes, day
to hour. Also, the input time series must have consistent time gaps between
successive intervals so that timeAverage can work out how much ‘padding’ to
apply. To pad-out data in this way choose fill = TRUE.

data.thresh The data capture threshold to use (%). A value of zero means that all avail-
able data will be used in a particular period regardless if of the number of val-
ues available. Conversely, a value of 100 will mean that all data will need to

timeAverage 129

be present for the average to be calculated, else it is recorded as NA. See also
interval, start.date and end.date to see whether it is advisable to set these
other options.

statistic The statistic to apply when aggregating the data; default is the mean. Can be one
of “mean”, “max”, “min”, “median”, “frequency”, “sum”, “sd”, “percentile”.
Note that “sd” is the standard deviation, “frequency” is the number (frequency)
of valid records in the period and “data.cap” is the percentage data capture.
“percentile” is the percentile level (%) between 0-100, which can be set using
the “percentile” option — see below. Not used if avg.time = "default".

type type allows timeAverage to be applied to cases where there are groups of data
that need to be split and the function applied to each group. The most common
example is data with multiple sites identified with a column representing site
name e.g. type = "site". More generally, type should be used where the date
repeats for a particular grouping variable. However, if type is not supplied the
data will still be averaged but the grouping variables (character or factor) will be
dropped.

percentile The percentile level in % used when statistic = "percentile". The default
is 95.

start.date A string giving a start date to use. This is sometimes useful if a time series starts
between obvious intervals. For example, for a 1-minute time series that starts
“2009-11-29 12:07:00” that needs to be averaged up to 15-minute means, the
intervals would be “2009-11-29 12:07:00”, “2009-11-29 12:22:00” etc. Often,
however, it is better to round down to a more obvious start point e.g. “2009-11-
29 12:00:00” such that the sequence is then “2009-11-29 12:00:00”, “2009-11-
29 12:15:00” . . .start.date is therefore used to force this type of sequence.

end.date A string giving an end date to use. This is sometimes useful to make sure a time
series extends to a known end point and is useful when data.thresh > 0 but
the input time series does not extend up to the final full interval. For example,
if a time series ends sometime in October but annual means are required with a
data capture of >75% then it is necessary to extend the time series up until the
end of the year. Input in the format yyyy-mm-dd HH:MM.

interval The timeAverage function tries to determine the interval of the original time
series (e.g. hourly) by calculating the most common interval between time steps.
The interval is needed for calculations where the data.thresh >0. For the vast
majority of regular time series this works fine. However, for data with very poor
data capture or irregular time series the automatic detection may not work. Also,
for time series such as monthly time series where there is a variable difference
in time between months users should specify the time interval explicitly e.g.
interval = "month". Users can also supply a time interval to force on the time
series. See avg.time for the format.
This option can sometimes be useful with start.date and end.date to ensure
full periods are considered e.g. a full year when avg.time = "year".

vector.ws Should vector averaging be carried out on wind speed if available? The default is
FALSE and scalar averages are calculated. Vector averaging of the wind speed is
carried out on the u and v wind components. For example, consider the average
of two hours where the wind direction and speed of the first hour is 0 degrees

130 timeAverage

and 2m/s and 180 degrees and 2m/s for the second hour. The scalar average of
the wind speed is simply the arithmetic average = 2m/s and the vector average
is 0m/s. Vector-averaged wind speeds will always be lower than scalar-averaged
values.

fill When time series are expanded i.e. when a time interval is less than the original
time series, data are ‘padded out’ with NA. To ‘pad-out’ the additional data with
the first row in each original time interval, choose fill = TRUE.

... Additional arguments for other functions calling timeAverage.

Details

This function calculates time averages for a data frame. It also treats wind direction correctly
through vector-averaging. For example, the average of 350 degrees and 10 degrees is either 0 or
360 - not 180. The calculations therefore average the wind components.

When a data capture threshold is set through data.thresh it is necessary for timeAverage to know
what the original time interval of the input time series is. The function will try and calculate this
interval based on the most common time gap (and will print the assumed time gap to the screen).
This works fine most of the time but there are occasions where it may not e.g. when very few data
exist in a data frame or the data are monthly (i.e. non-regular time interval between months). In this
case the user can explicitly specify the interval through interval in the same format as avg.time
e.g. interval = "month". It may also be useful to set start.date and end.date if the time series
do not span the entire period of interest. For example, if a time series ended in October and annual
means are required, setting end.date to the end of the year will ensure that the whole period is
covered and that data.thresh is correctly calculated. The same also goes for a time series that
starts later in the year where start.date should be set to the beginning of the year.

timeAverage should be useful in many circumstances where it is necessary to work with different
time average data. For example, hourly air pollution data and 15-minute meteorological data. To
merge the two data sets timeAverage can be used to make the meteorological data 1-hour means
first. Alternatively, timeAverage can be used to expand the hourly data to 15 minute data - see
example below.

For the research community timeAverage should be useful for dealing with outputs from instru-
ments where there are a range of time periods used.

It is also very useful for plotting data using timePlot. Often the data are too dense to see patterns
and setting different averaging periods easily helps with interpretation.

Value

Returns a data frame with date in class POSIXct.

Author(s)

David Carslaw

See Also

See timePlot that plots time series data and uses timeAverage to aggregate data where necessary.

timePlot 131

Examples

daily average values
daily <- timeAverage(mydata, avg.time = "day")

daily average values ensuring at least 75 % data capture
i.e. at least 18 valid hours
Not run: daily <- timeAverage(mydata, avg.time = "day", data.thresh = 75)

2-weekly averages
Not run: fortnight <- timeAverage(mydata, avg.time = "2 week")

make a 15-minute time series from an hourly one
Not run:
min15 <- timeAverage(mydata, avg.time = "15 min", fill = TRUE)

End(Not run)

average by grouping variable
Not run:
dat <- importAURN(c("kc1", "my1"), year = 2011:2013)
timeAverage(dat, avg.time = "year", type = "site")

can also retain site code
timeAverage(dat, avg.time = "year", type = c("site", "code"))

or just average all the data, dropping site/code
timeAverage(dat, avg.time = "year")

End(Not run)

timePlot Plot time series

Description

Plot time series quickly, perhaps for multiple pollutants, grouped or in separate panels.

Usage

timePlot(
mydata,
pollutant = "nox",
group = FALSE,
stack = FALSE,
normalise = NULL,
avg.time = "default",
data.thresh = 0,
statistic = "mean",

132 timePlot

percentile = NA,
date.pad = FALSE,
type = "default",
cols = "brewer1",
plot.type = "l",
key = TRUE,
log = FALSE,
windflow = NULL,
smooth = FALSE,
ci = TRUE,
y.relation = "same",
ref.x = NULL,
ref.y = NULL,
key.columns = 1,
key.position = "bottom",
name.pol = pollutant,
date.breaks = 7,
date.format = NULL,
auto.text = TRUE,
...

)

Arguments

mydata A data frame of time series. Must include a date field and at least one variable
to plot.

pollutant Name of variable to plot. Two or more pollutants can be plotted, in which case
a form like pollutant = c("nox", "co") should be used.

group If more than one pollutant is chosen, should they all be plotted on the same graph
together? The default is FALSE, which means they are plotted in separate panels
with their own scaled. If TRUE then they are plotted on the same plot with the
same scale.

stack If TRUE the time series will be stacked by year. This option can be useful if
there are several years worth of data making it difficult to see much detail when
plotted on a single plot.

normalise Should variables be normalised? The default is is not to normalise the data.
normalise can take two values, either “mean” or a string representing a date
in UK format e.g. "1/1/1998" (in the format dd/mm/YYYY). If normalise =
"mean" then each time series is divided by its mean value. If a date is chosen,
then values at that date are set to 100 and the rest of the data scaled accordingly.
Choosing a date (say at the beginning of a time series) is very useful for showing
how trends diverge over time. Setting group = TRUE is often useful too to show
all time series together in one panel.

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”, “day”,
“DSTday”, “week”, “month”, “quarter” or “year”. For much increased flex-
ibility a number can precede these options followed by a space. For exam-
ple, a timeAverage of 2 months would be period = "2 month". See function
timeAverage for further details on this.

timePlot 133

data.thresh The data capture threshold to use (%) when aggregating the data using avg.time.
A value of zero means that all available data will be used in a particular period
regardless if of the number of values available. Conversely, a value of 100 will
mean that all data will need to be present for the average to be calculated, else it
is recorded as NA. Not used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is the mean. Can be
one of “mean”, “max”, “min”, “median”, “frequency”, “sd”, “percentile”. Note
that “sd” is the standard deviation and “frequency” is the number (frequency)
of valid records in the period. “percentile” is the percentile level (%) between
0-100, which can be set using the “percentile” option - see below. Not used if
avg.time = "default".

percentile The percentile level in % used when statistic = "percentile" and when ag-
gregating the data with avg.time. More than one percentile level is allowed
for type = "default" e.g. percentile = c(50, 95). Not used if avg.time =
"default".

date.pad Should missing data be padded-out? This is useful where a data frame con-
sists of two or more "chunks" of data with time gaps between them. By setting
date.pad = TRUE the time gaps between the chunks are shown properly, rather
than with a line connecting each chunk. For irregular data, set to FALSE. Note,
this should not be set for type other than default.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Only one type is currently allowed in timePlot.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

plot.type The lattice plot type, which is a line (plot.type = "l") by default. Another
useful option is plot.type = "h", which draws vertical lines.

key Should a key be drawn? The default is TRUE.

log Should the y-axis appear on a log scale? The default is FALSE. If TRUE a well-
formatted log10 scale is used. This can be useful for plotting data for several
different pollutants that exist on very different scales. It is therefore useful to
use log = TRUE together with group = TRUE.

windflow This option allows a scatter plot to show the wind speed/direction as an ar-
row. The option is a list e.g. windflow = list(col = "grey", lwd = 2, scale

134 timePlot

= 0.1). This option requires wind speed (ws) and wind direction (wd) to be
available.
The maximum length of the arrow plotted is a fraction of the plot dimension
with the longest arrow being scale of the plot x-y dimension. Note, if the plot
size is adjusted manually by the user it should be re-plotted to ensure the correct
wind angle. The list may contain other options to panel.arrows in the lattice
package. Other useful options include length, which controls the length of the
arrow head and angle, which controls the angle of the arrow head.
This option works best where there are not too many data to ensure over-plotting
does not become a problem.

smooth Should a smooth line be applied to the data? The default is FALSE.
ci If a smooth fit line is applied, then ci determines whether the 95% confidence

intervals are shown.
y.relation This determines how the y-axis scale is plotted. "same" ensures all panels use

the same scale and "free" will use panel-specific scales. The latter is a useful
setting when plotting data with very different values.

ref.x See ref.y for details. In this case the correct date format should be used for a
vertical line e.g. ref.x = list(v = as.POSIXct("2000-06-15"), lty = 5).

ref.y A list with details of the horizontal lines to be added representing reference
line(s). For example, ref.y = list(h = 50, lty = 5) will add a dashed horizon-
tal line at 50. Several lines can be plotted e.g. ref.y = list(h = c(50,100),
lty = c(1, 5), col = c("green", "blue")). See panel.abline in the lattice
package for more details on adding/controlling lines.

key.columns Number of columns to be used in the key. With many pollutants a single column
can make to key too wide. The user can thus choose to use several columns by
setting columns to be less than the number of pollutants.

key.position Location where the scale key is to plotted. Can include “top”, “bottom”, “right”
and “left”.

name.pol This option can be used to give alternative names for the variables plotted. In-
stead of taking the column headings as names, the user can supply replacements.
For example, if a column had the name “nox” and the user wanted a different de-
scription, then setting name.pol = "nox before change" can be used. If more
than one pollutant is plotted then use c e.g. name.pol = c("nox here", "o3
there").

date.breaks Number of major x-axis intervals to use. The function will try and choose a sen-
sible number of dates/times as well as formatting the date/time appropriately to
the range being considered. This does not always work as desired automatically.
The user can therefore increase or decrease the number of intervals by adjusting
the value of date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot generally
sets the date format sensibly there can be some situations where the user wishes
to have more control. For format types see strptime. For example, to format
the date like “Jan-2012” set date.format = "%b-%Y".

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

timePlot 135

... Other graphical parameters are passed onto cutData and lattice:xyplot. For
example, timePlot passes the option hemisphere = "southern" on to cutData
to provide southern (rather than default northern) hemisphere handling of type
= "season". Similarly, most common plotting parameters, such as layout for
panel arrangement and pch and cex for plot symbol type and size and lty and
lwd for line type and width, as passed to xyplot, although some maybe locally
managed by openair on route, e.g. axis and title labelling options (such as
xlab, ylab, main) are passed via quickText to handle routine formatting. See
examples below.

Details

The timePlot is the basic time series plotting function in openair. Its purpose is to make it quick
and easy to plot time series for pollutants and other variables. The other purpose is to plot potentially
many variables together in as compact a way as possible.

The function is flexible enough to plot more than one variable at once. If more than one variable is
chosen plots it can either show all variables on the same plot (with different line types) on the same
scale, or (if group = FALSE) each variable in its own panels with its own scale.

The general preference is not to plot two variables on the same graph with two different y-scales.
It can be misleading to do so and difficult with more than two variables. If there is in interest in
plotting several variables together that have very different scales, then it can be useful to normalise
the data first, which can be down be setting the normalise option.

The user has fine control over the choice of colours, line width and line types used. This is useful
for example, to emphasise a particular variable with a specific line type/colour/width.

timePlot works very well with selectByDate, which is used for selecting particular date ranges
quickly and easily. See examples below.

By default plots are shown with a colour key at the bottom and in the case of multiple pollutants or
sites, strips on the left of each plot. Sometimes this may be overkill and the user can opt to remove
the key and/or the strip by setting key and/or strip to FALSE. One reason to do this is to maximise
the plotting area and therefore the information shown.

Value

As well as generating the plot itself, timePlot also returns an object of class “openair”. The object
includes three main components: call, the command used to generate the plot; data, the data frame
of summarised information used to make the plot; and plot, the plot itself. If retained, e.g. using
output <- timePlot(mydata, "nox"), this output can be used to recover the data, reproduce or
rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Author(s)

David Carslaw

136 timePlot

See Also

TheilSen, smoothTrend, linearRelation, selectByDate and timeAverage for details on select-
ing averaging times and other statistics in a flexible way

Examples

basic use, single pollutant
timePlot(mydata, pollutant = "nox")

two pollutants in separate panels
Not run: timePlot(mydata, pollutant = c("nox", "no2"))

two pollutants in the same panel with the same scale
Not run: timePlot(mydata, pollutant = c("nox", "no2"), group = TRUE)

alternative by normalising concentrations and plotting on the same
scale

Not run:
timePlot(mydata, pollutant = c("nox", "co", "pm10", "so2"), group = TRUE, avg.time =

"year", normalise = "1/1/1998", lwd = 3, lty = 1)

End(Not run)

examples of selecting by date

plot for nox in 1999
Not run: timePlot(selectByDate(mydata, year = 1999), pollutant = "nox")

select specific date range for two pollutants
Not run:
timePlot(selectByDate(mydata, start = "6/8/2003", end = "13/8/2003"),
pollutant = c("no2", "o3"))

End(Not run)

choose different line styles etc
Not run: timePlot(mydata, pollutant = c("nox", "no2"), lty = 1)

choose different line styles etc
Not run:
timePlot(selectByDate(mydata, year = 2004, month = 6), pollutant =
c("nox", "no2"), lwd = c(1, 2), col = "black")

End(Not run)

different averaging times

#daily mean O3
Not run: timePlot(mydata, pollutant = "o3", avg.time = "day")

timeProp 137

daily mean O3 ensuring each day has data capture of at least 75%
Not run: timePlot(mydata, pollutant = "o3", avg.time = "day", data.thresh = 75)

2-week average of O3 concentrations
Not run: timePlot(mydata, pollutant = "o3", avg.time = "2 week")

timeProp Time series plot with categories shown as a stacked bar chart

Description

This function shows time series plots as stacked bar charts. The different categories in the bar chart
are made up from a character or factor variable in a data frame. The function is primarily developed
to support the plotting of cluster analysis output from polarCluster and trajCluster that con-
sider local and regional (back trajectory) cluster analysis respectively. However, the function has
more general use for understanding time series data.

Usage

timeProp(
mydata,
pollutant = "nox",
proportion = "cluster",
avg.time = "day",
type = "default",
statistic = "mean",
normalise = FALSE,
cols = "Set1",
date.breaks = 7,
date.format = NULL,
key.columns = 1,
key.position = "right",
key.title = proportion,
auto.text = TRUE,
...

)

Arguments

mydata A data frame containing the fields date, pollutant and a splitting variable
proportion

pollutant Name of the pollutant to plot contained in mydata.

proportion The splitting variable that makes up the bars in the bar chart e.g. proportion =
"cluster" if the output from polarCluster is being analysed. If proportion
is a numeric variable it is split into 4 quantiles (by default) by cutData. If
proportion is a factor or character variable then the categories are used directly.

138 timeProp

avg.time This defines the time period to average to. Can be “sec”, “min”, “hour”, “day”,
“DSTday”, “week”, “month”, “quarter” or “year”. For much increased flexibil-
ity a number can precede these options followed by a space. For example, a
timeAverage of 2 months would be period = "2 month". In addition, avg.time
can equal “season”, in which case 3-month seasonal values are calculated with
spring defined as March, April, May and so on.
Note that avg.time when used in timeProp should be greater than the time gap
in the original data. For example, avg.time = "day" for hourly data is OK, but
avg.time = "hour" for daily data is not.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. "season", "year", "weekday" and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
type must be of length one.

statistic Determines how the bars are calculated. The default (“mean”) will provide the
contribution to the overall mean for a time interval. statistic = "frequency"
will give the proportion in terms of counts.

normalise If normalise = TRUE then each time interval is scaled to 100. This is helpful to
show the relative (percentage) contribution of the proportions.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

date.breaks Number of major x-axis intervals to use. The function will try and choose a sen-
sible number of dates/times as well as formatting the date/time appropriately to
the range being considered. This does not always work as desired automatically.
The user can therefore increase or decrease the number of intervals by adjusting
the value of date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot generally
sets the date format sensibly there can be some situations where the user wishes
to have more control. For format types see strptime. For example, to format
the date like “Jan-2012” set date.format = "%b-%Y".

key.columns Number of columns to be used in the key. With many pollutants a single column
can make to key too wide. The user can thus choose to use several columns by
setting columns to be less than the number of pollutants.

key.position Location where the scale key is to plotted. Allowed arguments currently include
“top”, “right”, “bottom” and “left”.

key.title The title of the key.

timeVariation 139

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will automati-
cally try and format pollutant names and units properly e.g. by subscripting the
‘2’ in NO2.

... Other graphical parameters passed onto timeProp and cutData. For exam-
ple, timeProp passes the option hemisphere = "southern" on to cutData to
provide southern (rather than default northern) hemisphere handling of type =
"season". Similarly, common axis and title labelling options (such as xlab,
ylab, main) are passed to xyplot via quickText to handle routine formatting.

Details

In order to plot time series in this way, some sort of time aggregation is needed, which is controlled
by the option avg.time.

The plot shows the value of pollutant on the y-axis (averaged according to avg.time). The time
intervals are made up of bars split according to proportion. The bars therefore show how the total
value of pollutant is made up for any time interval.

Author(s)

David Carslaw

See Also

See timePlot for time series plotting, polarCluster for cluster analysis of bivariate polar plots
and trajCluster for cluster analysis of HYSPLIT back trajectories.

Examples

See manual for more examples e.g. related to clustering

monthly plot of SO2 showing the contribution by wind sector
timeProp(mydata, pollutant = "so2", avg.time = "month", proportion = "wd")

timeVariation Diurnal, day of the week and monthly variation

Description

Plots the diurnal, day of the week and monthly variation for different variables, typically pollutant
concentrations. Four separate plots are produced.

140 timeVariation

Usage

timeVariation(
mydata,
pollutant = "nox",
local.tz = NULL,
normalise = FALSE,
xlab = c("hour", "hour", "month", "weekday"),
name.pol = pollutant,
type = "default",
group = NULL,
difference = FALSE,
statistic = "mean",
conf.int = 0.95,
B = 100,
ci = TRUE,
cols = "hue",
ref.y = NULL,
key = NULL,
key.columns = 1,
start.day = 1,
auto.text = TRUE,
alpha = 0.4,
...

)

Arguments

mydata A data frame of hourly (or higher temporal resolution data). Must include a
date field and at least one variable to plot.

pollutant Name of variable to plot. Two or more pollutants can be plotted, in which case
a form like pollutant = c("nox", "co") should be used.

local.tz Should the results be calculated in local time that includes a treatment of day-
light savings time (DST)? The default is not to consider DST issues, provided
the data were imported without a DST offset. Emissions activity tends to occur
at local time e.g. rush hour is at 8 am every day. When the clocks go forward
in spring, the emissions are effectively released into the atmosphere typically 1
hour earlier during the summertime i.e. when DST applies. When plotting diur-
nal profiles, this has the effect of “smearing-out” the concentrations. Sometimes,
a useful approach is to express time as local time. This correction tends to pro-
duce better-defined diurnal profiles of concentration (or other variables) and al-
lows a better comparison to be made with emissions/activity data. If set to FALSE
then GMT is used. Examples of usage include local.tz = "Europe/London",
local.tz = "America/New_York". See cutData and import for more details.

normalise Should variables be normalised? The default is FALSE. If TRUE then the vari-
able(s) are divided by their mean values. This helps to compare the shape of the
diurnal trends for variables on very different scales.

xlab x-axis label; one for each sub-plot.

timeVariation 141

name.pol Names to be given to the pollutant(s). This is useful if you want to give a fuller
description of the variables, maybe also including subscripts etc.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Only one type is allowed intimeVariation.

group This sets the grouping variable to be used. For example, if a data frame had a
column site setting group = "site" will plot all sites together in each panel.
See examples below.

difference If two pollutants are chosen then setting difference = TRUE will also plot the
difference in means between the two variables as pollutant[2] - pollutant[1].
Bootstrap 95% confidence intervals of the difference in means are also calcu-
lated. A horizontal dashed line is shown at y = 0. The difference can also
be calculated if there is a column that identifies two groups e.g. having used
splitByDate. In this case it is possible to call timeVariation with the option
group = "split.by" and difference = TRUE.

statistic Can be “mean” (default) or “median”. If the statistic is ‘mean’ then the mean
line and the 95% confidence interval in the mean are plotted by default. If the
statistic is ‘median’ then the median line is plotted together with the 5/95 and
25/75th quantiles are plotted. Users can control the confidence intervals with
conf.int.

conf.int The confidence intervals to be plotted. If statistic = "mean" then the con-
fidence intervals in the mean are plotted. If statistic = "median" then the
conf.int and 1 -conf.int quantiles are plotted. conf.int can be of length 2,
which is most useful for showing quantiles. For example conf.int = c(0.75,
0.99) will yield a plot showing the median, 25/75 and 5/95th quantiles.

B Number of bootstrap replicates to use. Can be useful to reduce this value when
there are a large number of observations available to increase the speed of the
calculations without affecting the 95% confidence interval calculations by much.

ci Should confidence intervals be shown? The default is TRUE. Setting this to FALSE
can be useful if multiple pollutants are chosen where over-lapping confidence
intervals can over complicate plots.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

142 timeVariation

ref.y A list with details of the horizontal lines to be added representing reference
line(s). For example, ref.y = list(h = 50,lty = 5) will add a dashed hori-
zontal line at 50. Several lines can be plotted e.g. ref.y = list(h = c(50,
100), lty = c(1, 5), col = c("green", "blue")). See panel.abline in the
lattice package for more details on adding/controlling lines.

key By default timeVariation produces four plots on one page. While it is useful
to see these plots together, it is sometimes necessary just to use one for a report.
If key is TRUE, a key is added to all plots allowing the extraction of a single plot
with key. See below for an example.

key.columns Number of columns to be used in the key. With many pollutants a single column
can make to key too wide. The user can thus choose to use several columns by
setting columns to be less than the number of pollutants.

start.day What day of the week should the plots start on? The user can change the start
day by supplying an integer between 0 and 6. Sunday = 0, Monday = 1, . . . For
example to start the weekday plots on a Saturday, choose start.day = 6.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

alpha The alpha transparency used for plotting confidence intervals. 0 is fully trans-
parent and 1 is opaque. The default is 0.4

... Other graphical parameters passed onto lattice:xyplot and cutData. For
example, in the case of cutData the option hemisphere = "southern".

Details

The variation of pollutant concentrations by hour of the day and day of the week etc. can reveal
many interesting features that relate to source types and meteorology. For traffic sources, there are
often important differences in the way vehicles vary by vehicles type e.g. less heavy vehicles at
weekends.

The timeVariation function makes it easy to see how concentrations (and many other variable
types) vary by hour of the day and day of the week.

The plots also show the 95% confidence intervals in the mean. The 95% confidence intervals in the
mean are calculated through bootstrap simulations, which will provide more robust estimates of the
confidence intervals (particularly when there are relatively few data).

The function can handle multiple pollutants and uses the flexible type option to provide separate
panels for each ’type’ — see cutData for more details. timeVariation can also accept a group
option which is useful if data are stacked. This will work in a similar way to having multiple
pollutants in separate columns.

The user can supply their own ylim e.g. ylim = c(0, 200) that will be used for all plots. ylim can
also be a list of length four to control the y-limits on each individual plot e.g. ylim = list(c(-100,500),
c(200, 300), c(-400,400), c(50,70)). These pairs correspond to the hour, weekday, month and
day-hour plots respectively.

The option difference will calculate the difference in means of two pollutants together with boot-
strap estimates of the 95% confidence intervals in the difference in the mean. This works in two
ways: either two pollutants are supplied in separate columns e.g. pollutant = c("no2","o3"), or

timeVariation 143

there are two unique values of group. The difference is calculated as the second pollutant minus the
first and is labelled as such. Considering differences in this way can provide many useful insights
and is particularly useful for model evaluation when information is needed about where a model
differs from observations by many different time scales. The manual contains various examples of
using difference = TRUE.

Note also that the timeVariation function works well on a subset of data and in conjunction
with other plots. For example, a polarPlot may highlight an interesting feature for a particular
wind speed/direction range. By filtering for those conditions timeVariation can help determine
whether the temporal variation of that feature differs from other features — and help with source
identification.

In addition, timeVariation will work well with other variables if available. Examples include
meteorological and traffic flow data.

Depending on the choice of statistic, a subheading is added. Users can control the text in the
subheading through the use of sub e.g. sub = "" will remove any subheading.

Value

As well as generating the plot itself, timeVariation also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data used to make the four components of the plot (or subplots); and plot, the associated subplots.
If retained, e.g. using output <- timeVariation(mydata, "nox"), this output can be used to
recover the data, reproduce or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

The four components of timeVariation are: day.hour, hour, day and month. Associated data.frames
can be extracted directly using the subset option, e.g. as in plot(object, subset = "day.hour"),
summary(output, subset = "hour"), etc, for output <- timeVariation(mydata, "nox")

Author(s)

David Carslaw

See Also

polarPlot, linearRelation

Examples

basic use
timeVariation(mydata, pollutant = "nox")

for a subset of conditions
Not run:
timeVariation(subset(mydata, ws > 3 & wd > 100 & wd < 270),
pollutant = "pm10", ylab = "pm10 (ug/m3)")

End(Not run)

144 timeVariation

multiple pollutants with concentrations normalised
Not run: timeVariation(mydata, pollutant = c("nox", "co"), normalise = TRUE)

show BST/GMT variation (see ?cutData for more details)
the NOx plot shows the profiles are very similar when expressed in
local time, showing that the profile is dominated by a local source
that varies by local time and not by GMT i.e. road vehicle emissions

Not run: timeVariation(mydata, pollutant = "nox", type = "dst", local.tz = "Europe/London")

In this case it is better to group the results for clarity:
Not run: timeVariation(mydata, pollutant = "nox", group = "dst", local.tz = "Europe/London")

By contrast, a variable such as wind speed shows a clear shift when
expressed in local time. These two plots can help show whether the
variation is dominated by man-made influences or natural processes

Not run: timeVariation(mydata, pollutant = "ws", group = "dst", local.tz = "Europe/London")

It is also possible to plot several variables and set type. For
example, consider the NOx and NO2 split by levels of O3:

Not run: timeVariation(mydata, pollutant = c("nox", "no2"), type = "o3", normalise = TRUE)

difference in concentrations
Not run: timeVariation(mydata, poll= c("pm25", "pm10"), difference = TRUE)

It is also useful to consider how concentrations vary by
considering two different periods e.g. in intervention
analysis. In the following plot NO2 has clearly increased but much
less so at weekends - perhaps suggesting vehicles other than cars
are important because flows of cars are approximately invariant by
day of the week

Not run:
mydata <- splitByDate(mydata, dates= "1/1/2003", labels = c("before Jan. 2003", "After Jan. 2003"))
timeVariation(mydata, pollutant = "no2", group = "split.by", difference = TRUE)

End(Not run)

sub plots can be extracted from the openair object
Not run:
myplot <- timeVariation(mydata, pollutant = "no2")
plot(myplot, subset = "day.hour") # top weekday and plot

End(Not run)

individual plots
plot(myplot, subset="day.hour") for the weekday and hours subplot (top)
plot(myplot, subset="hour") for the diurnal plot
plot(myplot, subset="day") for the weekday plot
plot(myplot, subset="month") for the monthly plot

trajCluster 145

numerical results (mean, lower/upper uncertainties)
results(myplot, subset = "day.hour") # the weekday and hour data set
summary(myplot, subset = "hour") #summary of hour data set
head(myplot, subset = "day") #head/top of day data set
tail(myplot, subset = "month") #tail/top of month data set

plot quantiles and median
Not run:
timeVariation(mydata, stati="median", poll="pm10", col = "firebrick")

with different intervals
timeVariation(mydata, stati="median", poll="pm10", conf.int = c(0.75, 0.99),
col = "firebrick")

End(Not run)

trajCluster Calculate clusters for back tracectories

Description

This function carries out cluster analysis of HYSPLIT back trajectories. The function is specifically
designed to work with the trajectories imported using the openair importTraj function, which
provides pre-calculated back trajectories at specific receptor locations.

Usage

trajCluster(
traj,
method = "Euclid",
n.cluster = 5,
plot = TRUE,
type = "default",
cols = "Set1",
split.after = FALSE,
map.fill = TRUE,
map.cols = "grey40",
map.alpha = 0.4,
projection = "lambert",
parameters = c(51, 51),
orientation = c(90, 0, 0),
by.type = FALSE,
origin = TRUE,
...

)

146 trajCluster

Arguments

traj An openair trajectory data frame resulting from the use of importTraj.

method Method used to calculate the distance matrix for the back trajectories. There are
two methods available: “Euclid” and “Angle”.

n.cluster Number of clusters to calculate.

plot Should a plot be produced?

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season. Note that the cluster calculations are separately made of each level of
"type".

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet” and RColorBrewer colours — see the openair openColours function for
more details. For user defined the user can supply a list of colour names recog-
nised by R (type colours() to see the full list). An example would be cols =
c("yellow", "green", "blue")

split.after For type other than “default” e.g. “season”, the trajectories can either be calcu-
lated for each level of type independently or extracted after the cluster calcula-
tions have been applied to the whole data set.

map.fill Should the base map be a filled polygon? Default is to fill countries.

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples include map.fill
= "grey40" and map.fill = openColours("default", 10). The latter colours
the countries and can help differentiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full trans-
parency) to 1 (full opacity). Setting it below 1 can help view trajectories, trajec-
tory surfaces etc. and a filled base map.

projection The map projection to be used. Different map projections are possible through
the mapproj package. See?mapproject for extensive details and information
on setting other parameters and orientation (see below).

parameters From the mapproj package. Optional numeric vector of parameters for use with
the projection argument. This argument is optional only in the sense that certain
projections do not require additional parameters. If a projection does require
additional parameters, these must be given in the parameters argument.

orientation From the mapproj package. An optional vector c(latitude,longitude,rotation)
which describes where the "North Pole" should be when computing the projec-
tion. Normally this is c(90,0), which is appropriate for cylindrical and conic
projections. For a planar projection, you should set it to the desired point of
tangency. The third value is a clockwise rotation (in degrees), which defaults to
the midrange of the longitude coordinates in the map.

by.type The percentage of the total number of trajectories is given for all data by default.
Setting by.type = TRUE will make each panel add up to 100.

origin If TRUE a filled circle dot is shown to mark the receptor point.

trajCluster 147

... Other graphical parameters passed onto lattice:levelplot and cutData. Sim-
ilarly, common axis and title labelling options (such as xlab, ylab, main) are
passed to levelplot via quickText to handle routine formatting.

Details

Two main methods are available to cluster the back trajectories using two different calculations
of the distance matrix. The default is to use the standard Euclidian distance between each pair
of trajectories. Also available is an angle-based distance matrix based on Sirois and Bottenheim
(1995). The latter method is useful when the interest is the direction of the trajectories in clustering.

The distance matrix calculations are made in C++ for speed. For data sets of up to 1 year both
methods should be relatively fast, although the method = "Angle" does tend to take much longer to
calculate. Further details of these methods are given in the openair manual.

Value

Returns a list with two data components. The first (data) contains the orginal data with the cluster
identified. The second (results) contains the data used to plot the clustered trajectories.

Author(s)

David Carslaw

References

Sirois, A. and Bottenheim, J.W., 1995. Use of backward trajectories to interpret the 5-year record
of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. Journal of
Geophysical Research, 100: 2867-2881.

See Also

importTraj, trajPlot, trajLevel

Examples

Not run:
import trajectories
traj <- importTraj(site = "london", year = 2009)
calculate clusters
clust <- trajCluster(traj, n.cluster = 5)
head(clust$data) ## note new variable 'cluster'
use different distance matrix calculation, and calculate by season
traj <- trajCluster(traj, method = "Angle", type = "season", n.cluster = 4)

End(Not run)

148 trajLevel

trajLevel Trajectory level plots with conditioning

Description

This function plots gridded back trajectories. This function requires that data are imported using
the importTraj function.

Usage

trajLevel(
mydata,
lon = "lon",
lat = "lat",
pollutant = "height",
type = "default",
smooth = FALSE,
statistic = "frequency",
percentile = 90,
map = TRUE,
lon.inc = 1,
lat.inc = 1,
min.bin = 1,
.combine = NA,
map.fill = TRUE,
map.res = "default",
map.cols = "grey40",
map.alpha = 0.3,
projection = "lambert",
parameters = c(51, 51),
orientation = c(90, 0, 0),
grid.col = "deepskyblue",
origin = TRUE,
...

)

Arguments

mydata Data frame, the result of importing a trajectory file using importTraj

lon Column containing the longitude, as a decimal.

lat Column containing the latitude, as a decimal.

pollutant Pollutant to be plotted. By default the trajectory height is used.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. "season", "year", "weekday" and

trajLevel 149

so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

smooth Should the trajectory surface be smoothed?

statistic For trajLevel. By default the function will plot the trajectory frequencies.
For trajLevel, the argument method = "hexbin" can be used. In this case
hexagonal binning of the trajectory points (i.e. a point every three hours along
each back trajectory). The plot then shows the trajectory frequencies uses hexag-
onal binning. This is an alternative way of viewing trajectory frequencies com-
pared with statistic = "frequency".
There are also various ways of plotting concentrations.
It is also possible to set statistic = "difference". In this case trajectories
where the associated concentration is greater than percentile are compared
with the the full set of trajectories to understand the differences in freqeuncies of
the origin of air masses. The comparsion is made by comparing the percentage
change in gridded frequencies. For example, such a plot could show that the top
10% of concentrations of PM10 tend to orginate from air-mass origins to the
east.
If statistic = "pscf" then a Potential Source Contribution Function map is
produced. If statistic = "cwt" then concentration weighted trajectories are
plotted.
If statistic = "cwt" then the Concentration Weighted Trajectory approach is
used. See details.

percentile For trajLevel. The percentile concentration of pollutant against which the
all trajectories are compared.

map Should a base map be drawn? If TRUE the world base map from the maps package
is used.

lon.inc The longitude-interval to be used for binning data for trajLevel.

lat.inc The latitude-interval to be used for binning data when trajLevel.

min.bin For trajLevel the minimum number of unique points in a grid cell. Counts
below min.bin are set as missing. For trajLevel gridded outputs.

.combine When statistic is "SQTBA" it is possible to combine lots of receptor locations to
derive a single map. .combine identifies the column that differentiates different
sites (commonly a column named site). Note that indivisual site maps are
normalised first by dividing by their mean value.

map.fill Should the base map be a filled polygon? Default is to fill countries.

150 trajLevel

map.res The resolution of the base map. By default the function uses the ‘world’ map
from the maps package. If map.res = "hires" then the (much) more detailed
base map ‘worldHires’ from the mapdata package is used. Use library(mapdata).
Also available is a map showing the US states. In this case map.res = "state"
should be used.

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples include map.fill
= "grey40" and map.fill = openColours("default", 10). The latter colours
the countries and can help differentiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full trans-
parency) to 1 (full opacity). Setting it below 1 can help view trajectories, trajec-
tory surfaces etc. and a filled base map.

projection The map projection to be used. Different map projections are possible through
the mapproj package. See ?mapproject for extensive details and information
on setting other parameters and orientation (see below).

parameters From the mapproj package. Optional numeric vector of parameters for use with
the projection argument. This argument is optional only in the sense that certain
projections do not require additional parameters. If a projection does not require
additional parameters then set to null i.e. parameters = NULL.

orientation From the mapproj package. An optional vector c(latitude, longitude, rotation)
which describes where the "North Pole" should be when computing the projec-
tion. Normally this is c(90, 0), which is appropriate for cylindrical and conic
projections. For a planar projection, you should set it to the desired point of
tangency. The third value is a clockwise rotation (in degrees), which defaults to
the midrange of the longitude coordinates in the map.

grid.col The colour of the map grid to be used. To remove the grid set grid.col =
"transparent".

origin should the receptor origin be shown by a black dot?

... other arguments are passed to cutData and scatterPlot. This provides ac-
cess to arguments used in both these functions and functions that they in turn
pass arguments on to. For example, plotTraj passes the argument cex on to
scatterPlot which in turn passes it on to the lattice function xyplot where
it is applied to set the plot symbol size.

Details

An alternative way of showing the trajectories compared with plotting trajectory lines is to bin the
points into latitude/longitude intervals. For these purposes trajLevel should be used. There are
several trajectory statistics that can be plotted as gridded surfaces. First, statistic can be set
to “frequency” to show the number of back trajectory points in a grid square. Grid squares are
by default at 1 degree intervals, controlled by lat.inc and lon.inc. Such plots are useful for
showing the frequency of air mass locations. Note that it is also possible to set method = "hexbin"
for plotting frequencies (not concentrations), which will produce a plot by hexagonal binning.

If statistic = "difference" the trajectories associated with a concentration greater than percentile
are compared with the the full set of trajectories to understand the differences in freqeuncies of the
origin of air masses of the highest concentration trajectories compared with the trajectories on av-
erage. The comparsion is made by comparing the percentage change in gridded frequencies. For

trajLevel 151

example, such a plot could show that the top 10% of concentrations of PM10 tend to orginate from
air-mass origins to the east.

If statistic = "pscf" then the Potential Source Contribution Function is plotted. The PSCF cal-
culates the probability that a source is located at latitude i and longitude j (Pekney et al., 2006).The
basis of PSCF is that if a source is located at (i,j), an air parcel back trajectory passing through that
location indicates that material from the source can be collected and transported along the trajectory
to the receptor site. PSCF solves

PSCF = mij/nij

where nij is the number of times that the trajectories passed through the cell (i,j) and mij is the
number of times that a source concentration was high when the trajectories passed through the cell
(i,j). The criterion for de-termining mij is controlled by percentile, which by default is 90. Note
also that cells with few data have a weighting factor applied to reduce their effect.

A limitation of the PSCF method is that grid cells can have the same PSCF value when sample
concentrations are either only slightly higher or much higher than the criterion. As a result, it
can be difficult to distinguish moderate sources from strong ones. Seibert et al. (1994) computed
concentration fields to identify source areas of pollutants. The Concentration Weighted Trajectory
(CWT) approach considers the concentration of a species together with its residence time in a grid
cell. The CWT approach has been shown to yield similar results to the PSCF approach. The openair
manual has more details and examples of these approaches.

A further useful refinement is to smooth the resulting surface, which is possible by setting smooth
= TRUE.

Note

This function is under active development and is likely to change

Author(s)

David Carslaw

References

Pekney, N. J., Davidson, C. I., Zhou, L., & Hopke, P. K. (2006). Application of PSCF and CPF to
PMF-Modeled Sources of PM 2.5 in Pittsburgh. Aerosol Science and Technology, 40(10), 952-961.

Seibert, P., Kromp-Kolb, H., Baltensperger, U., Jost, D., 1994. Trajectory analysis of high-alpine
air pollution data. NATO Challenges of Modern Society 18, 595-595.

Xie, Y., & Berkowitz, C. M. (2007). The use of conditional probability functions and potential
source contribution functions to identify source regions and advection pathways of hydrocarbon
emissions in Houston, Texas. Atmospheric Environment, 41(28), 5831-5847.

See Also

importTraj to import trajectory data from the King’s College server and trajPlot for plotting
back trajectory lines.

152 trajPlot

Examples

show a simple case with no pollutant i.e. just the trajectories
let's check to see where the trajectories were coming from when
Heathrow Airport was closed due to the Icelandic volcanic eruption
15--21 April 2010.
import trajectories for London and plot
Not run:
lond <- importTraj("london", 2010)

End(Not run)
more examples to follow linking with concentration measurements...

import some measurements from KC1 - London
Not run:
kc1 <- importAURN("kc1", year = 2010)
now merge with trajectory data by 'date'
lond <- merge(lond, kc1, by = "date")

trajectory plot, no smoothing - and limit lat/lon area of interest
use PSCF
trajLevel(subset(lond, lat > 40 & lat < 70 & lon >-20 & lon <20),
pollutant = "pm10", statistic = "pscf")

can smooth surface, suing CWT approach:
trajLevel(subset(lond, lat > 40 & lat < 70 & lon >-20 & lon <20),
pollutant = "pm2.5", statistic = "cwt", smooth = TRUE)

plot by season:
trajLevel(subset(lond, lat > 40 & lat < 70 & lon >-20 & lon <20), pollutant = "pm2.5",
statistic = "pscf", type = "season")

End(Not run)

trajPlot Trajectory line plots with conditioning

Description

This function plots back trajectories. This function requires that data are imported using the importTraj
function.

Usage

trajPlot(
mydata,
lon = "lon",
lat = "lat",
pollutant = "height",

trajPlot 153

type = "default",
map = TRUE,
group = NA,
map.fill = TRUE,
map.res = "default",
map.cols = "grey40",
map.alpha = 0.4,
projection = "lambert",
parameters = c(51, 51),
orientation = c(90, 0, 0),
grid.col = "deepskyblue",
npoints = 12,
origin = TRUE,
...

)

Arguments

mydata Data frame, the result of importing a trajectory file using importTraj.

lon Column containing the longitude, as a decimal.

lat Column containing the latitude, as a decimal.

pollutant Pollutant to be plotted. By default the trajectory height is used.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. "season", "year", "weekday" and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

map Should a base map be drawn? If TRUE the world base map from the maps package
is used.

group It is sometimes useful to group and colour trajectories according to a grouping
variable. See example below.

map.fill Should the base map be a filled polygon? Default is to fill countries.

map.res The resolution of the base map. By default the function uses the ‘world’ map
from the maps package. If map.res = "hires" then the (much) more detailed
base map ‘worldHires’ from the mapdata package is used. Use library(mapdata).
Also available is a map showing the US states. In this case map.res = "state"
should be used.

154 trajPlot

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples include map.fill
= "grey40" and map.fill = openColours("default", 10). The latter colours
the countries and can help differentiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full trans-
parency) to 1 (full opacity). Setting it below 1 can help view trajectories, trajec-
tory surfaces etc. and a filled base map.

projection The map projection to be used. Different map projections are possible through
the mapproj package. See ?mapproject for extensive details and information
on setting other parameters and orientation (see below).

parameters From the mapproj package. Optional numeric vector of parameters for use with
the projection argument. This argument is optional only in the sense that certain
projections do not require additional parameters. If a projection does not require
additional parameters then set to null i.e. parameters = NULL.

orientation From the mapproj package. An optional vector c(latitude, longitude, rotation)
which describes where the "North Pole" should be when computing the projec-
tion. Normally this is c(90, 0), which is appropriate for cylindrical and conic
projections. For a planar projection, you should set it to the desired point of
tangency. The third value is a clockwise rotation (in degrees), which defaults to
the midrange of the longitude coordinates in the map.

grid.col The colour of the map grid to be used. To remove the grid set grid.col =
"transparent".

npoints A dot is placed every npoints along each full trajectory. For hourly back trajec-
tories points are plotted every npoint hours. This helps to understand where the
air masses were at particular times and get a feel for the speed of the air (points
closer togther correspond to slower moving air masses). If npoints = NA then
no points are added.

origin If true a filled circle dot is shown to mark the receptor point.

... other arguments are passed to cutData and scatterPlot. This provides ac-
cess to arguments used in both these functions and functions that they in turn
pass arguments on to. For example, plotTraj passes the argument cex on to
scatterPlot which in turn passes it on to the lattice function xyplot where
it is applied to set the plot symbol size.

Details

Several types of trajectory plot are available. trajPlot by default will plot each lat/lon location
showing the origin of each trajectory, if no pollutant is supplied.

If a pollutant is given, by merging the trajectory data with concentration data (see example below),
the trajectories are colour-coded by the concentration of pollutant. With a long time series there
can be lots of overplotting making it difficult to gauge the overall concentration pattern. In these
cases setting alpha to a low value e.g. 0.1 can help.

The user can aslo show points instead of lines by plot.type = "p".

Note that trajPlot will plot only the full length trajectories. This should be remembered when
selecting only part of a year to plot.

trendLevel 155

Author(s)

David Carslaw

See Also

importTraj to import trajectory data from the King’s College server and trajLevel for trajectory
binning functions.

Examples

show a simple case with no pollutant i.e. just the trajectories
let's check to see where the trajectories were coming from when
Heathrow Airport was closed due to the Icelandic volcanic eruption
15--21 April 2010.
import trajectories for London and plot
Not run:
lond <- importTraj("london", 2010)
well, HYSPLIT seems to think there certainly were conditions where trajectories
orginated from Iceland...
trajPlot(selectByDate(lond, start = "15/4/2010", end = "21/4/2010"))
End(Not run)

plot by day, need a column that makes a date
Not run:
lond$day <- as.Date(lond$date)
trajPlot(selectByDate(lond, start = "15/4/2010", end = "21/4/2010"),
type = "day")

End(Not run)

or show each day grouped by colour, with some other options set
Not run:
trajPlot(selectByDate(lond, start = "15/4/2010", end = "21/4/2010"),

group = "day", col = "jet", lwd = 2, key.pos = "right", key.col = 1)

End(Not run)
more examples to follow linking with concentration measurements...

trendLevel trendLevel

Description

The trendLevel function provides a way of rapidly showing a large amount of data in a condensed
form. In one plot, the variation in the concentration of one pollutant can to shown as a function of
three other categorical properties. The default version of the plot uses y = hour of day, x = month
of year and type = year to provide information on trends, seasonal effects and diurnal variations.

156 trendLevel

However, x, y and type and summarising statistics can all be modified to provide a range of other
similar plots.

Usage

trendLevel(
mydata,
pollutant = "nox",
x = "month",
y = "hour",
type = "year",
rotate.axis = c(90, 0),
n.levels = c(10, 10, 4),
limits = c(0, 100),
cols = "default",
auto.text = TRUE,
key.header = "use.stat.name",
key.footer = pollutant,
key.position = "right",
key = TRUE,
labels = NA,
breaks = NA,
statistic = c("mean", "max", "frequency"),
stat.args = NULL,
stat.safe.mode = TRUE,
drop.unused.types = TRUE,
col.na = "white",
...

)

Arguments

mydata The openair data frame to use to generate the trendLevel plot.

pollutant The name of the data series in mydata to sample to produce the trendLevel
plot.

x The name of the data series to use as the trendLevel x-axis. This is used with
the y and type options to bin the data before applying statistic (see below).
Other data series in mydata can also be used. (Note: trendLevel does not allow
duplication in x, y and type options within a call.)

y The names of the data series to use as the trendLevel y-axis and for additional
conditioning, respectively. As x above.

type See y.

rotate.axis The rotation to be applied to trendLevel x and y axes. The default, c(90, 0),
rotates the x axis by 90 degrees but does not rotate the y axis. (Note: If only
one value is supplied, this is applied to both axes; if more than two values are
supplied, only the first two are used.)

trendLevel 157

n.levels The number of levels to split x, y and type data into if numeric. The default,
c(10, 10,4), cuts numeric x and y data into ten levels and numeric type data
into four levels. (Notes: This option is ignored for date conditioning and factors.
If less than three values are supplied, three values are determined by recursion;
if more than three values are supplied, only the first three are used.)

limits The colour scale range to use when generating the trendLevel plot.

cols The colour set to use to colour the trendLevel surface. cols is passed to
openColours for evaluation. See ?openColours for more details.

auto.text Automatic routine text formatting. auto.text = TRUE passes common lattice
labelling terms (e.g. xlab for the x-axis, ylab for the y-axis and main for the
title) to the plot via quickText to provide common text formatting. The alter-
native auto.text = FALSE turns this option off and passes any supplied labels
to the plot without modification.

key.header, key.footer

Adds additional text labels above and/or below the scale key, respectively. For
example, passing the options key.header = "", key.footer = c("mean","nox")
adds the addition text as a scale footer. If enabled (auto.text = TRUE), these ar-
guments are passed to the scale key (drawOpenKey) via quickText to handle
formatting. The term "get.stat.name", used as the default key.header set-
ting, is reserved and automatically adds statistic function names or defaults to
"level" when unnamed functions are requested via statistic.

key.position Location where the scale key should be plotted. Allowed arguments currently
include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See ?drawOpenKey for further
details.

labels If a categorical colour scale is required then these labels will be used. Note there
is one less label than break. For example, labels = c("good", "bad", "very
bad"). breaks must also be supplied if labels are given.

breaks If a categorical colour scale is required then these breaks will be used. For
example, breaks = c(0, 50, 100,1000). In this case “good” corresponds to
values berween 0 and 50 and so on. Users should set the maximum value of
breaks to exceed the maximum data value to ensure it is within the maximum
final range e.g. 100–1000 in this case. labels must also be supplied.

statistic The statistic method to be use to summarise locally binned pollutant measure-
ments with. Three options are currently encoded: “mean” (default), “max” and
“frequency”. (Note: Functions can also be sent directly via statistic. How-
ever, this option is still in development and should be used with caution. See
Details below.)

stat.args Additional options to be used with statistic if this is a function. The extra
options should be supplied as a list of named parameters. (see Details below.)

stat.safe.mode An addition protection applied when using functions direclty with statistic
that most users can ignore. This option returns NA instead of running statistic
on binned subsamples that are empty. Many common functions terminate with
an error message when applied to an empty dataset. So, this option provides a
mechanism to work with such functions. For a very few cases, e.g. for a function
that counted missing entries, it might need to be set to FALSE (see Details below.)

158 trendLevel

drop.unused.types

Hide unused/empty type conditioning cases. Some conditioning options may
generate empty cases for some data sets, e.g. a hour of the day when no mea-
surements were taken. Empty x and y cases generate ’holes’ in individual plots.
However, empty type cases would produce blank panels if plotted. Therefore,
the default, TRUE, excludes these empty panels from the plot. The alternative
FALSE plots all type panels.

col.na Colour to be used to show missing data.

... Addition options are passed on to cutData for type handling and levelplot in
lattice for finer control of the plot itself.

Details

trendLevel allows the use of third party summarising functions via the statistic option. Any
additional function arguments not included within a function called using statistic should be
supplied as a list of named parameters and sent using stat.args. For example, the encoded option
statistic = "mean" is equivalent to statistic = mean,stat.args = list(na.rm = TRUE) or the
R command mean(x,na.rm= TRUE). Many R functions and user’s own code could be applied in a
similar fashion, subject to the following restrictions: the first argument sent to the function must
be the data series to be analysed; the name ‘x’ cannot be used for any of the extra options supplied
in stat.args; and the function should return the required answer as a numeric or NA. Note: If the
supplied function returns more than one answer, currently only the first of these is retained and used
by trendLevel. All other returned information will be ignored without warning. If the function
terminates with an error when it is sent an empty data series, the option stat.safe.mode should
not be set to FALSE or trendLevel may fail. Note: The stat.safe.mode = TRUE option returns an
NA without warning for empty data series.

Value

As well as generating the plot itself, trendLevel also returns an object of class “openair”. The
object includes three main components: call, the command used to generate the plot; data, the
data frame of summarised information used to make the plot; and plot, the plot itself. If retained,
e.g. using output <- trendLevel(mydata), this output can be used to recover the data, reproduce
or rework the original plot or undertake further analysis.

An openair output can be manipulated using a number of generic operations, including print, plot
and summary.

Summary statistics can also be extracted directly using results, e.g. results(object) for output
<- trendLevel(mydata).

Author(s)

Karl Ropkins and David Carslaw

See Also

openColours and drawOpenKey for more detailed plot control.

windRose 159

Examples

#basic use
#default statistic = "mean"
trendLevel(mydata, pollutant = "nox")

#applying same as 'own' statistic
my.mean <- function(x) mean(x, na.rm = TRUE)
trendLevel(mydata, pollutant = "nox", statistic = my.mean)

#alternative for 'third party' statistic
#trendLevel(mydata, pollutant = "nox", statistic = mean,
stat.args = list(na.rm = TRUE))

Not run:
example with categorical scale
trendLevel(mydata, pollutant = "no2",
border = "white", statistic = "max",
breaks = c(0, 50, 100, 500),
labels = c("low", "medium", "high"),
cols = c("forestgreen", "yellow", "red"))

End(Not run)

windRose Traditional wind rose plot and pollution rose variation

Description

The traditional wind rose plot that plots wind speed and wind direction by different intervals. The
pollution rose applies the same plot structure but substitutes other measurements, most commonly
a pollutant time series, for wind speed.

Usage

windRose(mydata, ws = "ws", wd = "wd", ws2 = NA, wd2 = NA,
ws.int = 2, angle = 30, type = "default", bias.corr = TRUE, cols
= "default", grid.line = NULL, width = 1, seg = NULL, auto.text
= TRUE, breaks = 4, offset = 10, normalise = FALSE, max.freq =
NULL, paddle = TRUE, key.header = NULL, key.footer = "(m/s)",
key.position = "bottom", key = TRUE, dig.lab = 5, statistic =
"prop.count", pollutant = NULL, annotate = TRUE, angle.scale =
315, border = NA, ...)

160 windRose

pollutionRose(mydata, pollutant = "nox", key.footer = pollutant,
key.position = "right", key = TRUE, breaks = 6, paddle = FALSE,
seg = 0.9, normalise = FALSE, ...)

Arguments

mydata A data frame containing fields ws and wd

ws Name of the column representing wind speed.

wd Name of the column representing wind direction.

ws2 The user can supply a second set of wind speed and wind direction values with
which the first can be compared. See details below for full explanation.

wd2 see ws2.

ws.int The Wind speed interval. Default is 2 m/s but for low met masts with low mean
wind speeds a value of 1 or 0.5 m/s may be better. Note, this argument is super-
seded in pollutionRose. See breaks below.

angle Default angle of “spokes” is 30. Other potentially useful angles are 45 and 10.
Note that the width of the wind speed interval may need adjusting using width.

type type determines how the data are split i.e. conditioned, and then plotted. The
default is will produce a single plot using the entire data. Type can be one of
the built-in types as detailed in cutData e.g. “season”, “year”, “weekday” and
so on. For example, type = "season" will produce four plots — one for each
season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable, then
those categories/levels will be used directly. This offers great flexibility for un-
derstanding the variation of different variables and how they depend on one
another.
Type can be up length two e.g. type = c("season", "weekday") will produce a
2x2 plot split by season and day of the week. Note, when two types are provided
the first forms the columns and the second the rows.

bias.corr When angle does not divide exactly into 360 a bias is introduced in the fre-
quencies when the wind direction is already supplied rounded to the nearest 10
degrees, as is often the case. For example, if angle = 22.5, N, E, S, W will
include 3 wind sectors and all other angles will be two. A bias correction can
made to correct for this problem. A simple method according to Applequist
(2012) is used to adjust the frequencies.

cols Colours to be used for plotting. Options include “default”, “increment”, “heat”,
“jet”, “hue” and user defined. For user defined the user can supply a list of
colour names recognised by R (type colours() to see the full list). An example
would be cols = c("yellow", "green", "blue", "black").

grid.line Grid line interval to use. If NULL, as in default, this is assigned by windRose
based on the available data range. However, it can also be forced to a specific
value, e.g. grid.line = 10. grid.line can also be a list to control the inter-
val, line type and colour. For example grid.line = list(value = 10, lty =
5, col = "purple").

windRose 161

width For paddle = TRUE, the adjustment factor for width of wind speed intervals. For
example, width = 1.5 will make the paddle width 1.5 times wider.

seg For pollutionRose seg determines with width of the segments. For example,
seg = 0.5 will produce segments 0.5 * angle.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’ in
NO2.

breaks Most commonly, the number of break points for wind speed in windRose or
pollutant in pollutionRose. For windRose and the ws.int default of 2 m/s,
the default, 4, generates the break points 2, 4, 6, 8 m/s. For pollutionRose, the
default, 6, attempts to breaks the supplied data at approximately 6 sensible break
points. However, breaks can also be used to set specific break points. For ex-
ample, the argument breaks = c(0, 1, 10, 100) breaks the data into segments
<1, 1-10, 10-100, >100.

offset The size of the ’hole’ in the middle of the plot, expressed as a percentage of the
polar axis scale, default 10.

normalise If TRUE each wind direction segment of a pollution rose is normalised to equal
one. This is useful for showing how the concentrations (or other parameters)
contribute to each wind sector when the proprtion of time the wind is from that
direction is low. A line showing the probability that the wind directions is from
a particular wind sector is also shown.

max.freq Controls the scaling used by setting the maximum value for the radial limits.
This is useful to ensure several plots use the same radial limits.

paddle Either TRUE (default) or FALSE. If TRUE plots rose using ‘paddle’ style spokes. If
FALSE plots rose using ‘wedge’ style spokes.

key.header Adds additional text/labels above and/or below the scale key, respectively. For
example, passing windRose(mydata, key.header = "ws") adds the addition
text as a scale header. Note: This argument is passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.footer.

key.position Location where the scale key is to plotted. Allowed arguments currently include
“top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See drawOpenKey for further
details.

dig.lab The number of signficant figures at which scientific number formatting is used
in break point and key labelling. Default 5.

statistic The statistic to be applied to each data bin in the plot. Options currently
include “prop.count”, “prop.mean” and “abs.count”. The default “prop.count”
sizes bins according to the proportion of the frequency of measurements. Simi-
larly, “prop.mean” sizes bins according to their relative contribution to the mean.
“abs.count” provides the absolute count of measurements in each bin.

pollutant Alternative data series to be sampled instead of wind speed. The windRose
default NULL is equivalent to pollutant = "ws".

162 windRose

annotate If TRUE then the percentage calm and mean values are printed in each panel
together with a description of the statistic below the plot. If " " then only the
stastic is below the plot. Custom annotations may be added by setting value to
c("annotation 1", "annotation 2").

angle.scale The wind speed scale is by default shown at a 315 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The user
can therefore set angle.scale to another value (between 0 and 360 degrees)
to mitigate such problems. For example angle.scale = 45 will draw the scale
heading in a NE direction.

border Border colour for shaded areas. Default is no border.

... For pollutionRose other parameters that are passed on to windRose. For
windRose other parameters that are passed on to drawOpenKey, lattice:xyplot
and cutData. Axis and title labelling options (xlab, ylab, main) are passed to
xyplot via quickText to handle routine formatting.

Details

For windRose data are summarised by direction, typically by 45 or 30 (or 10) degrees and by dif-
ferent wind speed categories. Typically, wind speeds are represented by different width "paddles".
The plots show the proportion (here represented as a percentage) of time that the wind is from a
certain angle and wind speed range.

By default windRose will plot a windRose in using "paddle" style segments and placing the scale
key below the plot.

The argument pollutant uses the same plotting structure but substitutes another data series, de-
fined by pollutant, for wind speed.

The option statistic = "prop.mean" provides a measure of the relative contribution of each bin
to the panel mean, and is intended for use with pollutionRose.

pollutionRose is a windRose wrapper which brings pollutant forward in the argument list, and
attempts to sensibly rescale break points based on the pollutant data range by by-passing ws.int.

By default, pollutionRose will plot a pollution rose of nox using "wedge" style segments and
placing the scale key to the right of the plot.

It is possible to compare two wind speed-direction data sets using pollutionRose. There are many
reasons for doing so e.g. to see how one site compares with another or for meteorological model
evaluation. In this case, ws and wd are considered to the the reference data sets with which a second
set of wind speed and wind directions are to be compared (ws2 and wd2). The first set of values is
subtracted from the second and the differences compared. If for example, wd2 was biased positive
compared with wd then pollutionRose will show the bias in polar coordinates. In its default use,
wind direction bias is colour-coded to show negative bias in one colour and positive bias in another.

Value

As well as generating the plot itself, windRose and pollutionRose also return an object of class
“openair”. The object includes three main components: call, the command used to generate the
plot; data, the data frame of summarised information used to make the plot; and plot, the plot
itself. If retained, e.g. using output <- windRose(mydata), this output can be used to recover the
data, reproduce or rework the original plot or undertake further analysis.

windRose 163

An openair output can be manipulated using a number of generic operations, including print, plot
and summarise.

Summarised proportions can also be extracted directly using the $data operator, e.g. object$data
for output <- windRose(mydata). This returns a data frame with three set columns: cond, con-
ditioning based on type; wd, the wind direction; and calm, the statistic for the proportion of
data unattributed to any specific wind direction because it was collected under calm conditions; and
then several (one for each range binned for the plot) columns giving proportions of measurements
associated with each ws or pollutant range plotted as a discrete panel.

Note

windRose and pollutionRose both use drawOpenKey to produce scale keys.

Author(s)

David Carslaw (with some additional contributions by Karl Ropkins)

References

Applequist, S, 2012: Wind Rose Bias Correction. J. Appl. Meteor. Climatol., 51, 1305-1309.

This paper seems to be the original?

Droppo, J.G. and B.A. Napier (2008) Wind Direction Bias in Generating Wind Roses and Conduct-
ing Sector-Based Air Dispersion Modeling, Journal of the Air & Waste Management Association,
58:7, 913-918.

See Also

See drawOpenKey for fine control of the scale key.

See polarFreq for a more flexible version that considers other statistics and pollutant concentra-
tions.

Examples

load example data from package data(mydata)

basic plot
windRose(mydata)

one windRose for each year
windRose(mydata,type = "year")

windRose in 10 degree intervals with gridlines and width adjusted
Not run:
windRose(mydata, angle = 10, width = 0.2, grid.line = 1)

End(Not run)

pollutionRose of nox
pollutionRose(mydata, pollutant = "nox")

164 windRose

source apportionment plot - contribution to mean
Not run:
pollutionRose(mydata, pollutant = "pm10", type = "year", statistic = "prop.mean")

End(Not run)

example of comparing 2 met sites
first we will make some new ws/wd data with a postive bias
mydata$ws2 = mydata$ws + 2 * rnorm(nrow(mydata)) + 1
mydata$wd2 = mydata$wd + 30 * rnorm(nrow(mydata)) + 30

need to correct negative wd
id <- which(mydata$wd2 < 0)
mydata$wd2[id] <- mydata$wd2[id] + 360

results show postive bias in wd and ws
pollutionRose(mydata, ws = "ws", wd = "wd", ws2 = "ws2", wd2 = "wd2")

Index

∗ datasets
mydata, 69

∗ methods
aqStats, 3
calcFno2, 6
calcPercentile, 8
calendarPlot, 10
conditionalEval, 14
conditionalQuantile, 17
corPlot, 20
cutData, 23
drawOpenKey, 25
import, 28
importADMS, 31
importAQE, 34
importAURNCsv, 38
importKCL, 42
importMeta, 57
importTraj, 58
kernelExceed, 61
linearRelation, 64
modStats, 66
openair, 70
openColours, 71
percentileRose, 73
polarAnnulus, 77
polarFreq, 86
polarPlot, 90
quickText, 98
rollingMean, 99
scatterPlot, 100
selectByDate, 107
selectRunning, 108
smoothTrend, 110
splitByDate, 114
summaryPlot, 115
TaylorDiagram, 118
TheilSen, 123
timeAverage, 128

timePlot, 131
timeProp, 137
timeVariation, 139
trajCluster, 145
trendLevel, 155
windRose, 159

aqStats, 3
as.POSIXct, 39

binData, 5
bootMeanDF, 6

calcFno2, 6, 66
calcPercentile, 8
calendarPlot, 10
conditionalEval, 14
conditionalQuantile, 14, 17, 17
corPlot, 20
cutData, 16, 23

draw.colorkey, 27, 28
drawOpenKey, 25, 158, 163

gam, 112

import, 28, 33, 40
importADMS, 30, 31, 37, 40, 56, 61
importADMSBgd (importADMS), 31
importADMSMet (importADMS), 31
importADMSMop (importADMS), 31
importADMSPst (importADMS), 31
importAQE, 34
importAURN, 30, 33, 40, 56, 58, 61
importAURN (importAQE), 34
importAURNCsv, 30, 38
importEurope, 41
importKCL, 30, 33, 37, 40, 42, 58, 61
importMeta, 36, 57
importNI (importAQE), 34
importSAQN, 56, 58, 61

165

166 INDEX

importSAQN (importAQE), 34
importTraj, 16, 58, 147, 151, 155
importWAQN (importAQE), 34

kernelExceed, 61

linearRelation, 7, 8, 64, 105, 136, 143

modStats, 16, 17, 19, 66
mydata, 69

openair, 70
openColours, 71, 158

percentileRose, 73, 81
polarAnnulus, 63, 77
polarCluster, 81, 137, 139
polarDiff, 82, 83, 84
polarFreq, 63, 75, 76, 81, 86, 163
polarPlot, 63, 75, 76, 81, 84, 85, 88, 89, 90,

143
pollutionRose, 28, 75, 76, 81
pollutionRose (windRose), 159

quickText, 98

rollingMean, 12, 99

scatterPlot, 100
selectByDate, 107, 135, 136
selectRunning, 108
smoothTrend, 110, 126, 127, 136
splitByDate, 114
strptime, 30
summaryPlot, 115

TaylorDiagram, 118
TheilSen, 112, 113, 123, 136
timeAverage, 9, 12, 105, 128, 136
timePlot, 9, 13, 105, 130, 131, 139
timeProp, 137
timeVariation, 13, 139
trajCluster, 16, 137, 139, 145
trajLevel, 147, 148, 155
trajPlot, 61, 147, 151, 152
trendLevel, 155

windRose, 28, 75, 76, 88, 89, 159

	aqStats
	binData
	bootMeanDF
	calcFno2
	calcPercentile
	calendarPlot
	conditionalEval
	conditionalQuantile
	corPlot
	cutData
	drawOpenKey
	import
	importADMS
	importAQE
	importAURNCsv
	importEurope
	importKCL
	importMeta
	importTraj
	kernelExceed
	linearRelation
	modStats
	mydata
	openair
	openColours
	percentileRose
	polarAnnulus
	polarCluster
	polarDiff
	polarFreq
	polarPlot
	quickText
	rollingMean
	scatterPlot
	selectByDate
	selectRunning
	smoothTrend
	splitByDate
	summaryPlot
	TaylorDiagram
	TheilSen
	timeAverage
	timePlot
	timeProp
	timeVariation
	trajCluster
	trajLevel
	trajPlot
	trendLevel
	windRose
	Index

