Package ‘optimr’
December 17, 2019

Version 2019-12.16

Date 2019-12-16

Title A Replacement and Extension of the 'optim' Function
Author John C Nash [aut, cre],

Ravi Varadhan [aut],
Gabor Grothendieck [ctb]

Maintainer John C Nash <nashjc@uottawa.ca>

Description Provides a test of replacement and extension of the optim()

function to unify and streamline optimization capabilities in R

for smooth, possibly box constrained functions of several or

many parameters. This version has a reduced set of methods and is
intended to be on CRAN.

License GPL-2
LazyLoad Yes

Imports optextras, numDeriv, setRNG, Rvmmin, Rcgmin

NeedsCompilation no

Suggests knitr, rmarkdown
VignetteBuilder knitr

Repository CRAN

Date/Publication 2019-12-17 17:30:07 UTC

R topics documented:

Index

coef.opm . . . L. 2
ctrldefault 3
hjn . .o 3
multistart e e 7
103 0) 10 10
optchk L 14
OPLINI o v o ot e e e e e 16
POLYOPt . o . e e 21

24

2 coef.opm

coef.opm Summarize opm object

Description

Summarize an "opm” object.

Usage

S3 method for class 'opm'
coef(object, ...)

S3 replacement method for class 'opm'
coef(x) <- value

Arguments
object Object returned by opm.
Further arguments to be passed to the function. Currently not used.
X An opm object.
value Set parameters equal to this value.
Value

coef.opm returns the best parameters found by each method that returned such parameters. The
returned coefficients are in the form of a matrix with the rows named by the relevant methods and
the columns named according to parameter names provided by the user in the vector of starting
values, or else by "p1", "p2", ..., if names are not provided.

Examples

ans <- opm(fn = function(x) sum(x*x), par = 1:2, method="ALL", control=list(trace=1))
coef(ans)

Not run:

proj <- function(x) x/sum(x)

f <- function(x) -prod(proj(x))

ans <- opm(1:2, f)

ans

coef(ans) <- apply(coef(ans), 1, proj)
ans

End(Not run)

ctrldefault

ctrldefault

set control defaults

Description

Set control defaults.

Usage
ctrldefault(npar)
Arguments
npar Number of parameters to optimize.
Value

ctrldefault returns the default control settings for optimization tools.

hjn

Compact R Implementation of Hooke and Jeeves Pattern Search Opti-
mization

Description

The purpose of hjn is to minimize an unconstrained or bounds (box) and mask constrained function
of several parameters by a Hooke and Jeeves pattern search. This code is entirely in R to allow
users to explore and understand the method. It also allows bounds (or box) constraints and masks
(equality constraints) to be imposed on parameters.

Usage
hjn(par, fn, lower=-Inf, upper=Inf, bdmsk=NULL, control = list(trace=0), ...)
Arguments
par A numeric vector of starting estimates.
fn A function that returns the value of the objective at the supplied set of parameters
par using auxiliary data in The first argument of fn must be par.
lower A vector of lower bounds on the parameters.
upper A vector of upper bounds on the parameters.
bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained,
and O for any parameter that is fixed or MASKED for the duration of the opti-
mization.
control An optional list of control settings.

Further arguments to be passed to fn.

Details

Functions fn must return a numeric value.

The control argument is a list.

maxfeval A limit on the number of function evaluations used in the search.
trace Set O (default) for no output, >0 for trace output (larger values imply more output).

eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for hjn
for details of application.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

tol Tolerance used in testing the size of the pattern search step.

Value

A list with components:

par The best set of parameters found.
value The value of the objective at the best set of parameters found.
counts A two-element integer vector giving the number of calls to ’fn’ and ’gr’ respec-

tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ’fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ’0’ indicates successful convergence. ’1’ indicates that the
function evaluation count *maxfeval’ was reached.
message A character string giving any additional information returned by the optimizer,
or 'NULL".
References

Nash JC (1979). Compact Numerical Methods for Computers: Linear Algebra and Function Min-
imisation. Adam Hilger, Bristol. Second Edition, 1990, Bristol: Institute of Physics Publications.

See Also

optim

Examples

R HHHHHEEHE
Rosenbrock Banana function
fr <- function(x) {
x1 <- x[1]
x2 <- x[2]
100 x (x2 - x1 * x1)*2 + (1 - x1)*2
3

ansrosenbrock® <- hjn(fn=fr, par=c(1,2), control=list(maxfeval=2000, trace=0))
print(ansrosenbrock®) # use print to allow copy to separate file that

can be called using source()

HHHHHHHEHEE

hjn

Simple bounds and masks test
bt.f<-function(x){
sum(x*x)

}

n<-10

xx<-rep(@,n)

lower<-rep(@,n)

upper<-lower # to get arrays set

bdmsk<-rep(1,n)

bdmsk[(trunc(n/2)+1)]<-0

for (i in 1:n) {
lower[i]<-1.0x(i-1)*(n-1)/n
upper[il<-1.0*ix(n+1)/n

3

xx<-0.5%(lower+upper)

ansbt<-hjn(xx, bt.f, lower, upper, bdmsk, control=list(trace=1, maxfeval=2000))

print(ansbt)

HHHHHHHEHEEEH
genrose. f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)1%2 - x[2:n])*2 + (x[2:n] - 1)*2)
return(fval)

}

xx<-rep(pi,10)

lower<-NULL

upper<-NULL

bdmsk<-NULL

genrosea<-hjn(xx,genrose.f, control=1list(maxfeval=2000), gs=10)
print(genrosea)

cat("timings B vs U\n")

lo<-rep(-100,10)

up<-rep(100,10)

bdmsk<-rep(1,10)

tb<-system. time(ab<-hjn(xx,genrose.f, lower=lo, upper=up,
bdmsk=bdmsk, control=1list(trace=0, maxfeval=2000)))[1]

tu<-system.time(au<-hjn(xx,genrose.f, control=list(maxfeval=2000, trace=0)))[1]

cat("times U=",tu,” B=",tb,"\n")

cat("solution hjnu\n")

print(au)

cat("solution hjnb\n")

print(ab)

cat("diff fu-fb=",au$value-ab$value,"\n")

cat("max abs parameter diff = ", max(abs(au$par-ab$par)),”\n")

maxfn<-function(x) {
n<-length(x)

hjn

ss<-seq(1,n)
f<-10-(crossprod(x-ss))*2
f<-as.numeric(f)
return(f)

3

negmaxfn<-function(x) {
f<-(-1)*maxfn(x)
return(f)

3

cat("test that maximize=TRUE works correctly\n")
160706 -- not set up to maximize yet, except through optimr perhaps

#n<-6

#xx<-rep(1,n)

#ansmax<-hjn(xx,maxfn, control=1list(maximize=TRUE,trace=1, maxfeval=2000))
#print(ansmax)

#cat("using the negmax function should give same parameters\n”)
#ansnegmax<-hjn(xx,negmaxfn, control=list(trace=1))
#print(ansnegmax)

HHHEHHHAEA A From Rvmmin, Rd

cat("test bounds and masks\n")

nn<-4

startx<-rep(pi,nn)

lo<-rep(2,nn)

up<-rep(10@,nn)

grbds1<-hjn(startx,genrose.f, lower=lo,upper=up, control=list(maxfeval=2000, trace=0))
print(grbds1)

cat("test lower bound only\n")

nn<-4

startx<-rep(pi,nn)

lo<-rep(2,nn)
grbds2<-hjn(startx,genrose.f, lower=1lo)
print(grbds2)

cat("test lower bound single value only\n")
nn<-4

startx<-rep(pi,nn)

lo<-2

up<-rep(1@,nn)
grbds3<-hjn(startx,genrose.f, lower=lo)
print(grbds3)

cat("test upper bound only\n")
nn<-4

startx<-rep(pi,nn)
lo<-rep(2,nn)

up<-rep(10,nn)

multistart

grbds4<-hjn(startx,genrose.f, upper=up, control=list(maxfeval=2000))
print(grbds4)

cat("test upper bound single value only\n")

nn<-4

startx<-rep(pi,nn)

grbds5<-hjn(startx,genrose.f, upper=10, control=list(maxfeval=2000))
print(grbds5)

cat("test masks only\n")

nn<-6

bd<-c(1,1,0,0,1,1)

startx<-rep(pi,nn)

grbds6<-hjn(startx,genrose.f, bdmsk=bd, control=list(maxfeval=2000))
print(grbds6)

cat("test upper bound on first two elements only\n")

nn<-4

startx<-rep(pi,nn)

upper<-c(10,8, Inf, Inf)

grbds7<-hjn(startx,genrose.f, upper=upper, control=list(maxfeval=2000))
print(grbds7)

cat("test lower bound on first two elements only\n")

nn<-4

startx<-rep(@,nn)

lower<-c(@, -0.1 , -Inf, -Inf)

grbds8a<-hjn(startx,genrose.f, lower=lower, control=list(maxfeval=2000))
print(grbds8a)

cat("test n=1 problem using simple squares of parameter\n”)

sgtst<-function(xx) {
res<-sum((xx-2)*(xx-2))

}

#iHHHAEH# One dimension test

nn<-1

startx<-rep(@,nn)
onepar<-hjn(startx,sqtst,control=list(trace=1))
print(onepar)

multistart General-purpose optimization - multiple starts

Description

multistart

Multiple initial parameter wrapper function that calls other R tools for optimization, including the
existing optimr() function.

Usage

multistart(parmat, fn, gr=NULL, lower=-Inf, upper=Inf,

Arguments

parmat

fn

gr

lower, upper

method

hessian

control

Details

method=NULL, hessian=FALSE,
control=1list(),

.2

a matrix of which each row is a set of initial values for the parameters for which
optimal values are to be found. Names on the elements of this vector are pre-
served and used in the results data frame.

A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

A function to return (as a vector) the gradient for those methods that can use this
information.

If *gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

Bounds on the variables for methods such as "L-BFGS-B"” that can handle box
(or bounds) constraints.

A list of the methods to be used. Note that this is an important change from
optim() that allows just one method to be specified. See ‘Details’. The default
of NULL causes an appropriate set of methods to be supplied depending on the
presence or absence of bounds on the parameters. The default unconstrained
set is Rvmminu, Rcgminu, Ibfgsb3, newuoa and nmkb. The default bounds
constrained set is Rvmminb, Rcgminb, Ibfgsb3, bobyqa and nmkb.

A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

A list of control parameters. See ‘Details’.

For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Note that arguments after . . . must be matched exactly.

See optimr() for other details.

multistart 9

Value

An array with one row per set of starting parameters. Each row contains:

par The best set of parameters found.
value The value of ‘fn’ corresponding to ‘par’.
counts A two-element integer vector giving the number of calls to ‘fn” and ‘gr’ respec-

tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ‘fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ‘0’ indicates successful completion
message A character string giving any additional information returned by the optimizer,
or ‘NULL".
hessian Always NULL for this routine.
Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Examples
fnR <- function (x, g£s=100.0)
{
n <- length(x)
x1 <= x[2:n]
x2 <= x[1:(n - 1)]
sum(gs * (x1 - x272)*2 + (1 - x2)*2)
3
grR <- function (x, gs=100.0)
{
n <- length(x)
g <- rep(NA, n)
gl1] <- 2 x (x[1] - 1) + 4%xgs * x[1] * (x[1]1*2 - x[2])
if (n>2){
ii <= 2:(n - 1)
glii] <- 2 * (x[ii] - 1) + 4 x gs * x[ii] » (x[ii]*2 - x[ii +
11) + 2 * gs x (x[ii] - x[ii - 1]*2)
}
gln] <- 2 x gs * (x[n] - x[n - 1]*2)
g
}

pm <- rbind(rep(1,4), rep(pi, 4), rep(-2,4), rep(0,4), rep(20,4))
pm <- as.matrix(pm)

cat("multistart matrix:\n")

print(pm)

ans <- multistart(pm, fnR, grR, method="Rvmmin”, control=list(trace=0))
ans

10

opm

opm

General-purpose optimization

Description

General-purpose optimization wrapper function that calls other R tools for optimization, including
the existing optim() function. Also tries to unify the calling sequence to allow a number of tools to
use the same front-end.

Note that optim() itself allows Nelder—-Mead, quasi-Newton and conjugate-gradient algorithms as
well as box-constrained optimization via L-BFGS-B. Because SANN does not return a meaningful
convergence code (conv), opm() does not call the SANN method, but it can be invoked in optimr().

There is a pseudo-method "ALL" that runs all methods but SANN. Note that this is upper-case.

Usage

opm(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf,

Arguments

par

fn

gr

hess
lower, upper

method

hessian

method=c("Nelder-Mead”, "BFGS"), hessian=FALSE,
control=1list(),
L)

a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

A function to return (as a vector) the gradient for those methods that can use this
information.

If "gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

A function to return (as a symmetric matrix) the Hessian of the objective func-
tion for those methods that can use this information.

Bounds on the variables for methods such as "L-BFGS-B” that can handle box
(or bounds) constraints.

A vector of the methods to be used, each as a character string. Note that this is
an important change from optim() that allows just one method to be specified.
See ‘Details’. If method has just one element, "ALL" (capitalized), all available
and appropriate methods will be tried.

A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

opm 11

control A list of control parameters. See ‘Details’.

For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Details

This routine is essentially the same as that in package optimrx which is NOT in CRAN. This
version permits the selection of fewer optimizers in the method argument. This reduced selection is
intended to avoid failures if dependencies are not available. The available methods are listed in the
variable allmeth in the file ctrldefault.R.

Note that arguments after . . . must be matched exactly.

See the manual for function optimr().

Value
If there are npar parameters, then the result is a dataframe having one row for each method for
which results are reported, using the method as the row name, with columns
par_1,..,par_npar,value,fevals,gevals,niter,convcode,kkt1,kkt2,xtimes

where

par_1 ..

par_npar The best set of parameters found.

value The value of fn corresponding to par.

fevals The number of calls to fn.

gevals The number of calls to gr. This excludes those calls needed to compute the Hessian, if
requested, and any calls to fn to compute a finite-difference approximation to the gradient.

niter For those methods where it is reported, the number of “iterations”. See the documentation or
code for particular methods for the meaning of such counts.

convcode An integer code. @ indicates successful convergence. Various methods may or may not
return sufficient information to allow all the codes to be specified. An incomplete list of codes
includes
1 indicates that the iteration limit maxit had been reached.

20 indicates that the initial set of parameters is inadmissible, that is, that the function cannot
be computed or returns an infinite, NULL, or NA value.

21 indicates that an intermediate set of parameters is inadmissible.
10 indicates degeneracy of the Nelder—-Mead simplex.

51 indicates a warning from the "L-BFGS-B" method; see component message for further
details.

52 indicates an error from the "L-BFGS-B"” method; see component message for further de-
tails.

kktl A logical value returned TRUE if the solution reported has a “small” gradient.

kkt2 A logical value returned TRUE if the solution reported appears to have a positive-definite
Hessian.

xtimes The reported execution time of the calculations for the particular method.

12 opm

The attribute "details" to the returned answer object contains information, if computed, on the gradi-
ent (ngatend) and Hessian matrix (nhatend) at the supposed optimum, along with the eigenvalues
of the Hessian (hev), as well as the message, if any, returned by the computation for each method,
which is included for each row of the details. If the returned object from optimx() is ans, this is
accessed via the construct attr(ans, "details")

This object is a matrix based on a list so that if ans is the output of optimx then attr(ans, "de-
tails")[1,] gives the first row and attr(ans,"details")["Nelder-Mead",] gives the Nelder-Mead row.
There is one row for each method that has been successful or that has been forcibly saved by
save.failures=TRUE.

There are also attributes

maximize to indicate we have been maximizing the objective

npar to provide the number of parameters, thereby facilitating easy extraction of the parameters
from the results data frame

follow.on to indicate that the results have been computed sequentially, using the order provided by
the user, with the best parameters from one method used to start the next. There is an example
(ans9) in the script ox.R in the demo directory of the package.

Note

Most methods in optimx will work with one-dimensional pars, but such use is NOT recommended.
Use optimize or other one-dimensional methods instead.

There are a series of demos available. Once the package is loaded (via require(optimx) or
library(optimx), you may see available demos via

demo(package="optimx")

The demo "brown_test” may be run with the command demo(brown_test, package="optimx")

The package source contains several functions that are not exported in the NAMESPACE. These
are

optimx.setup() which establishes the controls for a given run;

optimx.check() which performs bounds and gradient checks on the supplied parameters and
functions;

optimx.run() which actually performs the optimization and post-solution computations;

scalechk() which actually carries out a check on the relative scaling of the input parameters.

Knowledgeable users may take advantage of these functions if they are carrying out production
calculations where the setup and checks could be run once.

Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

opm 13

References

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.]statsoft.org/v43/i09/.

Nash JC (2014). On Best Practice Optimization Methods in R., Journal of Statistical Software,
60(2), 1-14., URL http://www.jstatsoft.org/v60/i02/.

See Also

nlm, nIminb, Rcgmin, Rvmmin, optimize for one-dimensional minimization; constrOptim for lin-
early constrained optimization.

Examples

require(graphics)
cat(”"Note possible demo(ox) for extended examples\n")

Show multiple outputs of optimx using all.methods
genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)J*2 - x[2:n])*2 + (x[2:n] - 1)*2)
return(fval)

}

genrose.g <- function(x, gs=NULL){
vectorized gradient for genrose.f
Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(@, n))
tn <- 2:n
tnl <- tn - 1
z1 <= x[tn] - x[tn1]*2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs x z1 - z2)
gg[tn1] <- ggltn1] - 4 * gs * x[tn1] * z1
return(gg)
3

genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(@, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
22<-1.0-x[1i]
hh[i,il<-hh[i,1]+2.0%(gs+1.0)

14

optchk
hh[i-1,i-1]<-hh[i-1,i-1]-4.0%gs*z1-4.0xgs*x[i-11%(-2.0%x[i-1]1)
hh[i,i-1]<-hh[i,i-1]-4.0xgsxx[i-1]
hh[i-1,i]<-hh[i-1,1i]-4.0xgs*x[i-1]
3
return(hh)
3

startx<-4xseq(1:10)/3.

ans8<-opm(startx, fn=genrose.f,gr=genrose.g, hess=genrose.h,
control=list(all.methods=TRUE, save.failures=TRUE, trace=1), gs=10)

ans8

ans8[, "gevals"]

ans8["spg"”, 1]

summary(ans8, par.select = 1:3)

summary(ans8, order = value)[1,] # show best value

head(summary(ans8, order = value)) # best few

head(summary(ans8, order = "value")) # best few -- alternative syntax

order by value. Within those values the same to 3 decimals order by fevals.
summary(ans8, order = list(round(value, 3), fevals), par.select = FALSE)
summary(ans8, order = "list(round(value, 3), fevals)", par.select = FALSE)

summary(ans8, order = rownames, par.select = FALSE) # order by method name
summary(ans8, order = "rownames"”, par.select = FALSE) # same

summary(ans8, order = NULL, par.select = FALSE) # use input order
summary(ans8, par.select = FALSE) # same

optchk General-purpose optimization

Description

A wrapper function that attempts to check the objective function, and optionally the gradient and
hessian functions, supplied by the user for optimization. It also tries to check the scale of the
parameters and bounds to see if they are reasonable.

Usage
optchk(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf,
control=list(), ...)
Arguments
par a vector of initial values for the parameters for which optimal values are to be

found. Names on the elements of this vector are preserved and used in the results
data frame.

optchk 15

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return (as a vector) the gradient for those methods that can use this
information.

hess A function to return (as a symmetric matrix) the Hessian of the objective func-

tion for those methods that can use this information.

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

control A list of control parameters. See ‘Details’.

For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Details

Note that arguments after . .. must be matched exactly.

While it can be envisaged that a user would have an analytic hessian but not an analytic gradient,
we do NOT permit the user to test the hessian in this situation.

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over. (We have not verified this as at 2009-07-29.)

Value

A list of the following items:

grOK TRUE if the analytic gradient and a numerical approximation via numDeriv agree within
the control$grtesttol as per the R code in function grchk. NULL if no analytic gradient
function is provided.

hessOK TRUE if the analytic hessian and a numerical approximation via numDeriv: : jacobian
agree within the control$hesstesttol as per the R code in function hesschk. NULL if no
analytic hessian or no analytic gradient is provided. Note that since an analytic gradient must
be available for this test, we use the Jacobian of the gradient to compute the Hessian to avoid
one level of differencing, though the hesschk function can work without the gradient.

scalebad TRUE if the larger of the scaleratios exceeds control$scaletol

scaleratios A vector of the parameter and bounds scale ratios. See the function code of scalechk
for the computation of these values.

References

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.jstatsoft.org/v43/i09/.

Nash JC (2014). On Best Practice Optimization Methods in R., Journal of Statistical Software,
60(2), 1-14., URL http://www.jstatsoft.org/v60/i02/.

16 optimr

Examples

fr <- function(x) { ## Rosenbrock Banana function

x1 <= x[1]
x2 <- x[2]
100 x (x2 - x1 * x1)*2 + (1 - x1)*2
3
grr <- function(x) { ## Gradient of 'fr'
x1 <= x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 % (1 - x1),
200 * (x2 - x1 * x1))
3

myctrl<- ctrldefault(2)

myctrl$trace <- 3

mychk <- optchk(par=c(-1.2,1), fr, grr, lower=rep(-10,2), upper=rep(10,2), control=myctrl)
cat("result of optchk\n")

print(mychk)

optimr General-purpose optimization

Description

General-purpose optimization wrapper function that calls other R tools for optimization, including
the existing optim() function. optim also tries to unify the calling sequence to allow a number
of tools to use the same front-end. Note that optim() itself allows Nelder—-Mead, quasi-Newton
and conjugate-gradient algorithms as well as box-constrained optimization via L-BFGS-B. Because
SANN does not return a meaningful convergence code (conv), optimz::optim() does not call the
SANN method.

Usage

optimr(par, fn, gr=NULL, lower=-Inf, upper=Inf,
method=NULL, hessian=FALSE,
control=1list(),

>
Arguments
par a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.
fn A function to be minimized (or maximized), with first argument the vector of

parameters over which minimization is to take place. It should return a scalar
result.

optimr 17

gr A function to return (as a vector) the gradient for those methods that can use this
information.

If "gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

lower, upper Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

method A list of the methods to be used. Note that this is an important change from
optim() that allows just one method to be specified. See ‘Details’. The default
of NULL causes an appropriate set of methods to be supplied depending on the
presence or absence of bounds on the parameters. The default unconstrained
set is Rvmminu, Regminu, Ibfgsb3, newuoa and nmkb. The default bounds
constrained set is Rvimminb, Rcgminb, Ibfgsb3, bobyqa and nmkb.

hessian A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

control A list of control parameters. See ‘Details’.

For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

Details

Note that arguments after . . . must be matched exactly.

This routine is essentially the same as that in package optimrx which is NOT in CRAN. This
version permits the selection of fewer optimizers in the method argument. This reduced selection is
intended to avoid failures if dependencies are not available. The available methods are listed in the
variable allmeth in the file ctrldefault.R.

By default this function performs minimization, but it will maximize if control$maximize is
TRUE. The original optim() function allows control$fnscale to be set negative to accomplish
this. DO NOT use both methods.

Possible method codes are *Nelder-Mead’, ’BFGS’, ’CG’, ’L-BFGS-B’, nlm’, *nlminb’, ’Rcgmin’,
’Rvmmin’ and "hjn’. These are in base R or in CRAN repositories or part of this package.

The default methods for unconstrained problems (no lower or upper specified) are an implemen-
tation of the Nelder and Mead (1965) and a Variable Metric method based on the ideas of Fletcher
(1970) as modified by him in conversation with Nash (1979). Nelder-Mead uses only function val-
ues and is robust but relatively slow. It will work reasonably well for non-differentiable functions.
The Variable Metric method, "BFGS" updates an approximation to the inverse Hessian using the
BFGS update formulas, along with an acceptable point line search strategy. This method appears to
work best with analytic gradients. ("Rvmmmin"” provides a box-constrained version of this algorithm.

If no method is given, and there are bounds constraints provided, the method is set to "L-BFGS-B".

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964) (but
with the option of Polak—Ribiere or Beale—Sorenson updates). The particular implementation is
now dated, and improved yet simpler codes have been implemented. Furthermore, "Rcgmin” allows

18

optimr

box constraints as well as fixed (masked) parameters. Conjugate gradient methods will generally
be more fragile than the BEFGS method, but as they do not store a matrix they may be successful in
optimization problems with a large number of parameters.

Method "L-BFGS-B" is that of Byrd et. al. (1995) which allows box constraints, that is each variable
can be given a lower and/or upper bound. The initial value must satisfy the constraints. This
uses a limited-memory modification of the BFGS quasi-Newton method. If non-trivial bounds are
supplied, this method is selected by the original optim() function, with a warning. Unfortunately,
the authors of the original Fortran version of this method released a correction for bugs in 2011, but
these have not been incorporated into the distributed R codes, which are a C translation of a version
that appears to be from the mid-1990s. Conversations with Jorge Nocedal suggest that the bug
should NOT affect L-BFGS-B. However, CRAN does have a direct translation of the 2001 Fortran
in package 1bfgsb3.

Nocedal and Wright (1999) is a comprehensive reference for such methods.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value, but
the initial value must have a computable finite value of fn. However, some methods, of which
"L-BFGS-B" is known to be a case, require that the values returned should always be finite.

While optim can be used recursively, and for a single parameter as well as many, this may not be
true for optimr. optim also accepts a zero-length par, and just evaluates the function with that
argument, but such an input is not recommended.

Method "nlm” is from the package of the same name that implements ideas of Dennis and Schnabel
(1983) and Schnabel et al. (1985). See nlm() for more details.

Method "nlminb” is the package of the same name that uses the minimization tools of the PORT
library. The PORT documentation is at <URL: http://netlib.bell-labs.com/cm/cs/cstr/153.pdf>. See
nlminb() for details. (Though there is very little information about the methods.)

Method "Rcgmin” is from the package of that name. It implements a conjugate gradient algorithm
with the Dai and Yuan update (2001) and also allows bounds constraints on the parameters. (Rcgmin
also allows mask constraints — fixing individual parameters — but there is as yet no interface from
"optimr".)

Method "Rvmmin” is from the package of that name. It implements the same variable metric method
as the base optim() function with method "BFGS" but allows bounds constraints on the parameters.
(Rvmmin also allows mask constraints — fixing individual parameters — but there is as yet no inter-
face from "optimr”.)

Method "hjn" is a conservative implementation of a Hooke and Jeeves (1961)

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization
is produced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. trace = 0 gives no output (To understand exactly what these do
see the source code: higher levels give more detail.)

follow.on = TRUE or FALSE. If TRUE, and there are multiple methods, then the last set of
parameters from one method is used as the starting set for the next.

save.failures =TRUE if we wish to keep "answers" from runs where the method does not return
convcode==0. FALSE otherwise (default).

optimr 19

maximize = TRUE if we want to maximize rather than minimize a function. (Default FALSE).
Methods nlm, nlminb, ucminf cannot maximize a function, so the user must explicitly min-
imize and carry out the adjustment externally. However, there is a check to avoid usage of
these codes when maximize is TRUE. See fnscale below for the method used in optim that
we deprecate.

all.methods = TRUE if we want to use all available (and suitable) methods.

kkt =FALSE if we do NOT want to test the Kuhn, Karush, Tucker optimality conditions. The
default is TRUE. However, because the Hessian computation may be very slow, we set kkt
to be FALSE if there are more than than 50 parameters when the gradient function gr is not
provided, and more than 500 parameters when such a function is specified. We return logical
values KKT1 and KKT2 TRUE if first and second order conditions are satisfied approximately.
Note, however, that the tests are sensitive to scaling, and users may need to perform additional
verification. If kkt is FALSE but hessian is TRUE, then KKT1 is generated, but KKT2 is not.

all.methods = TRUE if we want to use all available (and suitable) methods.

kkttol = value to use to check for small gradient and negative Hessian eigenvalues. Default =
.Machine$double.eps”(1/3)

kkt2tol = Tolerance for eigenvalue ratio in KKT test of positive definite Hessian. Default same as
for kkttol

starttests = TRUE if we want to run tests of the function and parameters: feasibility relative
to bounds, analytic vs numerical gradient, scaling tests, before we try optimization methods.
Default is TRUE.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.
badval =The value to set for the function value when try(fn()) fails. Default is (0.5)* Machine$double.xmax

usenumDeriv = TRUE if the numDeriv function grad() is to be used to compute gradients when
the argument gr is NULL or not supplied.

The following control elements apply only to some of the methods. The list may be incomplete.
See individual packages for details.

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If negative,
turns the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.
For methods from the set in optim(). Note potential conflicts with the control maximize.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale
and these should be comparable in the sense that a unit change in any element produces about
a unit change in the scaled value.For optim.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on par/parscale
scale. Defaults to 1e-3. For optim.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based methods, and
500 for "Nelder-Mead".

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a tolerance
for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a
factor of reltol x (abs(val) + reltol) atastep. Defaults to sqrt(.Machine$double.eps),
typically about 1e-8. For optim.

20 optimr

alpha, beta, gamma Scaling parameters for the "Nelder-Mead” method. alpha is the reflection
factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion factor (2.0).

REPORT The frequency of reports for the "BFGS"” and "L-BFGS-B" methods if control$trace is
positive. Defaults to every 10 iterations for "BFGS" and "L-BFGS-B".

type for the conjugate-gradients method. Takes value 1 for the Fletcher—Reeves update, 2 for
Polak—Ribiere and 3 for Beale—Sorenson.

Imm is an integer giving the number of BFGS updates retained in the "L-BFGS-B"” method, It de-
faults to 5.

factr controls the convergence of the "L-BFGS-B"” method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. Default is 1e7, that is a
tolerance of about Te-8.

pgtol helps control the convergence of the "L-BFGS-B” method. It is a tolerance on the projected
gradient in the current search direction. This defaults to zero, when the check is suppressed.

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over. (We have not verified this as at 2009-07-29.)

Value

For ‘optim’, a list with components:

par The best set of parameters found.
value The value of ‘fn’ corresponding to ‘par’.
counts A two-element integer vector giving the number of calls to ‘fn” and ‘gr’ respec-

tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ‘fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ‘0’ indicates successful completion
message A character string giving any additional information returned by the optimizer,
or ‘NULL".
hessian Always NULL for this routine.
Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

References

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Dai YH, and Yuan Y (2001). An efficient hybrid conjugate gradient method for unconstrained
optimization. Annals of Operations Research 103 (1-4), 33-47.

Hooke R. and Jeeves, TA (1961). Direct search solution of numerical and statistical problems.
Journal of the Association for Computing Machinery (ACM). 8 (2): 212-229.

Nash JC, and Varadhan R (2011). Unifying Optimization Algorithms to Aid Software System
Users: optimx for R., Journal of Statistical Software, 43(9), 1-14., URL http://www.jstatsoft.org/v43/i09/.

Nocedal J, and Wright SJ (1999). Numerical optimization. New York: Springer. 2nd Edition 2006.

polyopt

21

polyopt

General-purpose optimization - multiple starts

Description

Multiple initial parameter wrapper function that calls other R tools for optimization, including the
existing optimr() function.

Usage

polyopt(par, fn, gr=NULL, lower=-Inf, upper=Inf,

Arguments

par

fn

gr

lower, upper

methcontrol

hessian

control

methcontrol=NULL, hessian=FALSE,
control=list(),
D)

a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

A function to return (as a vector) the gradient for those methods that can use this
information.

If "gr’ is NULL, a finite-difference approximation will be used. An open ques-
tion concerns whether the SAME approximation code used for all methods, or
whether there are differences that could/should be examined?

Bounds on the variables for methods such as "L-BFGS-B" that can handle box
(or bounds) constraints.

An data frame of which each row gives an optimization method, a maximum
number of iterations and a maximum number of function evaluations allowed
for that method. Each method will be executed in turn until either the maximum
iterations or function evaluations are completed, whichever is first. The next
method is then executed starting with the best parameters found so far, else the
function exits.

A logical control that if TRUE forces the computation of an approximation to
the Hessian at the final set of parameters. If FALSE (default), the hessian is
calculated if needed to provide the KKT optimality tests (see kkt in ‘Details’
for the control list). This setting is provided primarily for compatibility with
optim().

A list of control parameters. See ‘Details’.

For optimx further arguments to be passed to fn and gr; otherwise, further
arguments are not used.

22 polyopt

Details

Note that arguments after . . . must be matched exactly.

See optimr() for other details.

Value

An array with one row per method. Each row contains:

par The best set of parameters found for the method in question.
value The value of ‘fn’ corresponding to ‘par’.
counts A two-element integer vector giving the number of calls to ‘fn” and ‘gr’ respec-

tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to ‘fn’ to compute a finite-difference approximation to the gradient.

convergence An integer code. ‘0’ indicates successful completion
message A character string giving any additional information returned by the optimizer,
or ‘NULL".
hessian Always NULL for this routine.
Source

See the manual pages for optim() and the packages the DESCRIPTION suggests.

Examples

fnR <- function (x, g£s=100.0)

{
n <- length(x)
x1 <= x[2:n]
x2 <= x[1:(n - 1)]
sum(gs * (x1 - x2%2)"2 + (1 - x2)*2)
3
grR <- function (x, gs=100.0)
{
n <- length(x)
g <- rep(NA, n)
gl1] <= 2 % (x[1] - 1) + 4%gs x x[1] » (x[1]*2 - x[2])
if (n>2){
ii <= 2:(n - 1)
glii]l <- 2 * (x[ii] - 1) + 4 x gs x x[ii] » (x[ii]*2 - x[ii +
11) + 2 x gs x (x[ii] - x[ii - 11*2)
3
gln] <- 2 x gs *x (x[n] - x[n - 1]172)
g
3

X0 <- rep(pi, 4)
mc <- data.frame(method=c("Nelder-Mead”,”"Rvmmin"), maxit=c(1000, 100), maxfeval= c(1000, 1000))

ans <- polyopt(x@, fnR, grR, methcontrol=mc, control=list(trace=0))

polyopt 23

ans
mc <- data.frame(method=c("Nelder-Mead"”,"Rvmmin"), maxit=c(100, 100), maxfeval= c(100, 1000))

ans <- polyopt(x@, fnR, grR, methcontrol=mc, control=list(trace=0))
ans

mc <- data.frame(method=c("Nelder-Mead”,"Rvmmin"), maxit=c(10, 100), maxfeval= c(10, 1000))

ans <- polyopt(x@, fnR, grR, methcontrol=mc, control=list(trace=0))
ans

Index

xTopic nonlinear
coef.opm, 2
ctrldefault, 3
hjn, 3
multistart, 7
opm, 10
optchk, 14
optimr, 16
polyopt, 21

*Topic optimize
coef.opm, 2
ctrldefault, 3
hjn, 3
multistart, 7
opm, 10
optchk, 14
optimr, 16
polyopt, 21

coef.opm, 2

coef<- (coef.opm), 2
constrOptim, /3
ctrldefault, 3

hjn, 3
multistart, 7

nlm, /3
nlminb, /3

opm, 10
optchk, 14
optim, 4
optimize, 12, 13
optimr, 16

polyopt, 21

Rcgmin, 13
Rvmmin, 13

24

	coef.opm
	ctrldefault
	hjn
	multistart
	opm
	optchk
	optimr
	polyopt
	Index

