
Package ‘panelaggregation’
January 7, 2017

Title Aggregate Longitudinal Survey Data

Description Aggregate Business Tendency Survey Data (and other qualitative
surveys) to time series at various aggregation levels. Run aggregation of
survey data in a speedy, re-traceable and a easily deployable way.
Aggregation is substantially accelerated by use of data.table.
This package intends to provide an interface that is less general and ab-
stract than data.table but rather geared towards
survey researchers.

Version 0.1.1

Maintainer Matthias Bannert <bannert@kof.ethz.ch>

Depends R (>= 3.0.0), data.table (>= 1.9.4)

License GPL-2

LazyData true

RoxygenNote 5.0.1

NeedsCompilation no

Author Matthias Bannert [aut, cre],
Gabriel Bucur [aut]

Repository CRAN

Date/Publication 2017-01-07 02:40:46

R topics documented:
btsdemo . 2
computeBalance . 3
computeShares . 3
computeWeightedMeans . 5
doUniqueCJ . 7
extractTimeSeries . 8
joinDataTables . 8

Index 10

1

2 btsdemo

btsdemo Randomly Generated Panel Dataset

Description

This data was created by simulation to mimmick a firm level dataset stemming from business ten-
dency surveys. The data was simulated because of privacy concerns with micro level firm data. For
convenience the dataset contains two different date notations. Also 5 qualitative 3-item questions
are included. Business tendency survey data is often weighted with company size represented by
the number of employees. Thus the weight column is quantitative and its distribution is somewhat
(!) reasonable with respect to the distribution of employees in a typical firm sample.

Format

A data frame with 27000 rows and 13 variables

Details

• uid unique company identifier

• year numeric year column

• weight quantitative weight

• question_1

• question_2

• question_3

• question_4

• question_5

• group group to mimmick different sectors / branches of trade

• altGroup another alternative grouping columns

• sClass a column denoting discrete size classes small (S), medium (M) and large (L)

• date_qtrly quarterly dates stored in a single column.

Author(s)

Matthias Bannert

Source

Randomly generated in R using the sample generator from https://github.com/mbannert/gateveys/blob/master/R/gateveys.R

computeBalance 3

computeBalance Compute Balances from a Item Shares

Description

This function computes balances (i.e. positive - negative items), from item shares stored in a wide
format data.table.

Usage

computeBalance(data_table, multipliers = list(item_pos = 1, item_eq = 0,
item_neg = -1))

Arguments

data_table a data.table in wide format containing item

multipliers list containing multipliers of items, assigned by item and column names

Author(s)

Matthias Bannert, Gabriel Bucu

computeShares Compute Weighted Shares By Group

Description

This function computes weighted shares from a data.table. computeShares is performance opti-
mized and designed to work well in bulk operations. The function returns a data.table.

Usage

computeShares(data_table, variable, weight, by, wide = T)

Arguments

data_table a data.table

variable character name of the variable to focus on. The variable must be in the data.table

weight character name of the data.table column that contains a weight.

by character vector of the columns to group by

wide logical if true the result is returned in wide format dcast.

Author(s)

Matthias Bannert, Gabriel Bucur, Oliver Mueller

4 computeShares

Examples

TODO: add new weight columns to BTS demo
load library and dataset
library(panelaggregation)
data(btsdemo)
head(btsdemo)
adapt the levels to positive, equal and negative
in order to suit the naming defaults. other levels work too,
but you'd need to specify multipliers in computeBalance then
levels(btsdemo$question_1) <- c("pos","eq","neg")

compute the weighted shares and display store in wide format
to get a basis for further steps
level1 <- computeShares(btsdemo,"question_1","weight",

by = c("date_qtrly","group", "altGroup", "sClass"))

compute balance, don't have to do much here, because
(pos, eq, neg) is the default for the possible answers
level1_wbalance <- computeBalance(level1)

Select a particular grouping combination and a timeseries that
should be extracted from the level 1 aggregation.
ts1 <- extractTimeSeries(level1_wbalance,

"date_qtrly",
list(group = "C", altGroup = "a", sClass = "S"),
freq = 4,
item = "balance",
variable = "question_1")

ts1
Plot a standard R ts using the plot method for ts
plot(ts1, main = attributes(ts1)$ts_key)

Add weight column to the aggregated results
In order to join the tables, we need to know what weight to assign to each row.
This is done by having via a common key, for example c('group', 'altGroup').
In this example we would assign a different weight for each
c('group', 'altGroup') combination (e.g. c('A', 'a')).
btsweight1 <- btsdemo[, list(weight = sum(weight)), by = 'group']
btsagg1 <- joinDataTables(level1_wbalance, btsweight1, 'group')

Compute second level aggregation, this time on fewer columns and using a different set of weights.
level2_balance <- computeWeightedMeans(btsagg1, c('item_pos', 'item_eq', 'item_neg', 'balance'),

'weight', c("date_qtrly","group", "sClass"))

Select a particular grouping combination and a timeseries that
should be extracted from the level 2 aggregation.
ts2 <- extractTimeSeries(level2_balance,

"date_qtrly",
list(group = "C", sClass = "S"),
freq = 4,
item = "balance",
variable = "question_1")

computeWeightedMeans 5

ts2
Plot a standard R ts using the plot method for ts
plot(ts2, main = attributes(ts2)$ts_key)

Add weight column to the aggregated results
In order to join the tables, we need to know what weight to assign to each row.
This is done by having via a common key, for example c('group', 'altGroup').
In this example we would assign a different weight for each
c('group', 'altGroup') combination (e.g. c('A', 'a')).
btsweight2 <- btsdemo[, list(weight = sum(weight)), by = 'sClass']
btsagg2 <- joinDataTables(level2_balance, btsweight2, 'sClass')

Compute third level of aggregation, on the whole sector, using yet another set of weights.
level3_balance <- computeWeightedMeans(btsagg2, 'balance', 'weight', c("date_qtrly", "sClass"))

Select a particular grouping combination and a timeseries that
should be extracted from the level 2 aggregation.
ts3 <- extractTimeSeries(level3_balance,

"date_qtrly",
list(sClass = "S"),
freq = 4,
item = "balance",
variable = "question_1")

ts3
Plot a standard R ts using the plot method for ts
plot(ts3, main = attributes(ts3)$ts_key)

computeWeightedMeans Compute Weighted Mean by Group

Description

This function computes the weighted mean of variable groups from a data.table. computeWeighted-
Mean is performance optimized and designed to work well in bulk operations. The function returns
a data.table.

Usage

computeWeightedMeans(data_table, variables, weight, by)

Arguments

data_table a data.table

variables character name of the variable(s) to focus on. The variables must be in the
data.table

weight character name of the data.table column that contains a weight.

by character vector of the columns to group by

6 computeWeightedMeans

Author(s)

Matthias Bannert, Gabriel Bucur

Examples

TODO: add new weight columns to BTS demo
load library and dataset
library(panelaggregation)
data(btsdemo)
head(btsdemo)
adapt the levels to positive, equal and negative
in order to suit the naming defaults. other levels work too,
but you'd need to specify multipliers in computeBalance then
levels(btsdemo$question_1) <- c("pos","eq","neg")

compute the weighted shares and display store in wide format
to get a basis for further steps
level1 <- computeShares(btsdemo,"question_1","weight",

by = c("date_qtrly","group", "altGroup", "sClass"))

compute balance, don't have to do much here, because
(pos, eq, neg) is the default for the possible answers
level1_wbalance <- computeBalance(level1)

Select a particular grouping combination and a timeseries that
should be extracted from the level 1 aggregation.
ts1 <- extractTimeSeries(level1_wbalance,

"date_qtrly",
list(group = "C", altGroup = "a", sClass = "S"),
freq = 4,
item = "balance",
variable = "question_1")

ts1
Plot a standard R ts using the plot method for ts
plot(ts1, main = attributes(ts1)$ts_key)

Add weight column to the aggregated results
In order to join the tables, we need to know what weight to assign to each row.
This is done by having via a common key, for example c('group', 'altGroup').
In this example we would assign a different weight for each
c('group', 'altGroup') combination (e.g. c('A', 'a')).
btsweight1 <- btsdemo[, list(weight = sum(weight)), by = 'group']
btsagg1 <- joinDataTables(level1_wbalance, btsweight1, 'group')

Compute second level aggregation, this time on fewer columns and using a different set of weights.
level2_balance <- computeWeightedMeans(btsagg1, c('item_pos', 'item_eq', 'item_neg', 'balance'),

'weight', c("date_qtrly","group", "sClass"))

Select a particular grouping combination and a timeseries that
should be extracted from the level 2 aggregation.
ts2 <- extractTimeSeries(level2_balance,

"date_qtrly",

doUniqueCJ 7

list(group = "C", sClass = "S"),
freq = 4,
item = "balance",
variable = "question_1")

ts2
Plot a standard R ts using the plot method for ts
plot(ts2, main = attributes(ts2)$ts_key)

Add weight column to the aggregated results
In order to join the tables, we need to know what weight to assign to each row.
This is done by having via a common key, for example c('group', 'altGroup').
In this example we would assign a different weight for each
c('group', 'altGroup') combination (e.g. c('A', 'a')).
btsweight2 <- btsdemo[, list(weight = sum(weight)), by = 'sClass']
btsagg2 <- joinDataTables(level2_balance, btsweight2, 'sClass')

Compute third level of aggregation, on the whole sector, using yet another set of weights.
level3_balance <- computeWeightedMeans(btsagg2, 'balance', 'weight', c("date_qtrly", "sClass"))

Select a particular grouping combination and a timeseries that
should be extracted from the level 2 aggregation.
ts3 <- extractTimeSeries(level3_balance,

"date_qtrly",
list(sClass = "S"),
freq = 4,
item = "balance",
variable = "question_1")

ts3
Plot a standard R ts using the plot method for ts
plot(ts3, main = attributes(ts3)$ts_key)

doUniqueCJ Performs a Cross Join of Unique combinations

Description

This function makes use of CJ function of the data.table package to perform a cross join. The
function makes sure that the combinations are unique and removes NAs before joining. doUniqueCJ
is rather not used as a standalone function but inside computeShares.

Usage

doUniqueCJ(dt, cols)

Arguments

dt data.table

cols character vector that denotes names of relevant columns

8 joinDataTables

Author(s)

Matthias Bannert, Gabriel Bucur

extractTimeSeries Extract a Time Series from a Data.table

Description

This function extracts time series from data.table columns and returns object of class ts.

Usage

extractTimeSeries(data_table, time_column, group_list, freq, item, variable,
prefix = "CH.KOF.IND")

Arguments

data_table a data.table

time_column character name of the column which contains the time index

group_list list or NULL

freq integer value either 4 denoting quarterly frequency or 12 denoting quarterly fre-
quency

item character name of the column which contains the item that is extracted from the
data.table

variable character name of the variable selected

prefix character prefix attached to the dynamically generated key string to identify the
time series. Recommend key format: ISOcountry.provider.source.aggregationLevel.selectedGroup.variable.item

Author(s)

Matthias Bannert, Gabriel Bucur

joinDataTables Joins two data.tables based on keys

Description

This function joins two data.table objects, given a common key, which can have different names
in the two tables. In the latter case, the sequence of the names is crucial. Make sure that the key
columns match exactly.

Usage

joinDataTables(dt_1, dt_2, key_1, key_2 = key_1)

joinDataTables 9

Arguments

dt_1 first data.table

dt_2 second data.table

key_1 character vector of key columns for first data.table

key_2 character vector of key columns for second data.table

Value

joined data.table

Author(s)

Matthias Bannert, Gabriel Bucur

Index

btsdemo, 2

CJ, 7
computeBalance, 3
computeShares, 3, 7
computeWeightedMeans, 5

doUniqueCJ, 7

extractTimeSeries, 8

joinDataTables, 8

10

	btsdemo
	computeBalance
	computeShares
	computeWeightedMeans
	doUniqueCJ
	extractTimeSeries
	joinDataTables
	Index

