Describe and understand your model’s parameters!
parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection), or tools for data reduction like functions to perform cluster, factor or principal component analysis.
Another important goal of the parameters package is to facilitate and streamline the process of reporting results of statistical models, which includes the easy and intuitive calculation of standardized estimates or robust standard errors and p-values. parameters therefor offers a simple and unified syntax to process a large variety of (model) objects from many different packages.
Run the following to install the stable release of parameters from CRAN:
install.packages("parameters")
Or this one to install the latest development version from R-universe…
install.packages("parameters", repos = "https://easystats.r-universe.dev")
…or from GitHub:
install.packages("remotes")
::install_github("easystats/parameters") remotes
Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:
In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.
The model_parameters()
function (that can be accessed via the parameters()
shortcut) allows you to extract the parameters and their characteristics
from various models in a consistent way. It can be considered as a
lightweight alternative to broom::tidy()
,
with some notable differences:
standardize_names()
).<- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)
model
# regular model parameters
model_parameters(model)
#> Parameter | Coefficient | SE | 95% CI | t(143) | p
#> -------------------------------------------------------------------------------------------
#> (Intercept) | 2.89 | 0.36 | [ 2.18, 3.60] | 8.01 | < .001
#> Petal Length | 0.26 | 0.25 | [-0.22, 0.75] | 1.07 | 0.287
#> Species [versicolor] | -1.66 | 0.53 | [-2.71, -0.62] | -3.14 | 0.002
#> Species [virginica] | -1.92 | 0.59 | [-3.08, -0.76] | -3.28 | 0.001
#> Petal Width | 0.62 | 0.14 | [ 0.34, 0.89] | 4.41 | < .001
#> Petal Length * Species [versicolor] | -0.09 | 0.26 | [-0.61, 0.42] | -0.36 | 0.721
#> Petal Length * Species [virginica] | -0.13 | 0.26 | [-0.64, 0.38] | -0.50 | 0.618
# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter | Coefficient | SE | 95% CI | t(143) | p
#> -------------------------------------------------------------------------------------------
#> (Intercept) | 3.59 | 1.30 | [ 1.01, 6.17] | 2.75 | 0.007
#> Petal Length | 1.07 | 1.00 | [-0.91, 3.04] | 1.07 | 0.287
#> Species [versicolor] | -4.62 | 1.31 | [-7.21, -2.03] | -3.53 | < .001
#> Species [virginica] | -5.51 | 1.38 | [-8.23, -2.79] | -4.00 | < .001
#> Petal Width | 1.08 | 0.24 | [ 0.59, 1.56] | 4.41 | < .001
#> Petal Length * Species [versicolor] | -0.38 | 1.06 | [-2.48, 1.72] | -0.36 | 0.721
#> Petal Length * Species [virginica] | -0.52 | 1.04 | [-2.58, 1.54] | -0.50 | 0.618
library(lme4)
<- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)
model
# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model, effects = "all")
#> # Fixed Effects
#>
#> Parameter | Coefficient | SE | 95% CI | t(146) | p
#> ------------------------------------------------------------------
#> (Intercept) | 2.00 | 0.56 | [0.89, 3.11] | 3.56 | < .001
#> Petal Length | 0.28 | 0.06 | [0.16, 0.40] | 4.75 | < .001
#>
#> # Random Effects
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------------
#> SD (Intercept: Species) | 0.89 | 0.46 | [0.33, 2.43]
#> SD (Residual) | 0.32 | 0.02 | [0.28, 0.35]
# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, ci_method = "kenward")
#> # Fixed Effects
#>
#> Parameter | Coefficient | SE | 95% CI | t | df | p
#> -------------------------------------------------------------------------
#> (Intercept) | 2.00 | 0.57 | [0.07, 3.93] | 3.53 | 2.67 | 0.046
#> Petal Length | 0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001
#>
#> # Random Effects
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------------
#> SD (Intercept: Species) | 0.89 | 0.46 | [0.33, 2.43]
#> SD (Residual) | 0.32 | 0.02 | [0.28, 0.35]
Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).
library(psych)
<- psych::fa(attitude, nfactors = 3)
model model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#>
#> Variable | MR1 | MR2 | MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating | 0.90 | -0.07 | -0.05 | 1.02 | 0.23
#> complaints | 0.97 | -0.06 | 0.04 | 1.01 | 0.10
#> privileges | 0.44 | 0.25 | -0.05 | 1.64 | 0.65
#> learning | 0.47 | 0.54 | -0.28 | 2.51 | 0.24
#> raises | 0.55 | 0.43 | 0.25 | 2.35 | 0.23
#> critical | 0.16 | 0.17 | 0.48 | 1.46 | 0.67
#> advance | -0.11 | 0.91 | 0.07 | 1.04 | 0.22
#>
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).
select_parameters()
can help you quickly select and retain the most relevant predictors
using methods tailored for the model type.
lm(disp ~ ., data = mtcars) |>
select_parameters() |>
model_parameters()
#> Parameter | Coefficient | SE | 95% CI | t(26) | p
#> -----------------------------------------------------------------------
#> (Intercept) | 141.70 | 125.67 | [-116.62, 400.02] | 1.13 | 0.270
#> cyl | 13.14 | 7.90 | [ -3.10, 29.38] | 1.66 | 0.108
#> hp | 0.63 | 0.20 | [ 0.22, 1.03] | 3.18 | 0.004
#> wt | 80.45 | 12.22 | [ 55.33, 105.57] | 6.58 | < .001
#> qsec | -14.68 | 6.14 | [ -27.31, -2.05] | -2.39 | 0.024
#> carb | -28.75 | 5.60 | [ -40.28, -17.23] | -5.13 | < .001
In order to cite this package, please use the following command:
citation("parameters")
'parameters' in publications use:
To cite package
-Shachar M, Patil I, Makowski D (2020). "Extracting, Computing and
Lüdecke D, Ben Exploring the Parameters of Statistical Models using R." _Journal of Open Source
*5*(53), 2445. doi:10.21105/joss.02445
Software_, <https://doi.org/10.21105/joss.02445>.
for LaTeX users is
A BibTeX entry
@Article{,
= {Extracting, Computing and Exploring the Parameters of Statistical Models using {R}.},
title = {5},
volume = {10.21105/joss.02445},
doi = {53},
number = {Journal of Open Source Software},
journal = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Dominique Makowski},
author = {2020},
year = {2445},
pages }
Please note that the parameters project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.