
Package ‘paropt’
June 14, 2021

Type Package

Title Parameter Optimizing of ODE-Systems

Version 0.2.1

Date 2021-05-26

Author Krämer Konrad [aut, cre],
Krämer Johannes [aut],
Heyer Arnd [ths],
University of Stuttgart [uvp],
Institute of Biomaterials and Biomolecular Systems at the University of Stuttgart [his]
| file AUTHORS

Maintainer Krämer Konrad <Konrad_kraemer@yahoo.de>

Copyright file COPYRIGHTS

BugReports https://github.com/Konrad1991/paropt

Description Enable optimization of parameters of ordinary differential equations. Therefore, us-
ing 'SUNDIALS' to solve the ODE-System (see Hindmarsh, Alan C., Pe-
ter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shu-
maker, and Carol S. Woodward. (2005) <doi:10.1145/1089014.1089020>). Furthermore, for op-
timization the particle swarm algorithm is used (see: Akman, Devin, Olcay Ak-
man, and Elsa Schaefer. (2018) <doi:10.1155/2018/9160793> and Sengupta, Saptarshi, San-
chita Basak, and Richard Peters. (2018) <doi:10.3390/make1010010>). The ODE-
System has to be passed as 'Rcpp'-function. The information for the parameter bound-
aries and states are conveyed using data.frames.

License GPL-3 | file LICENSE

Imports Rcpp (>= 1.0.4)

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-06-14 07:20:03 UTC

1

https://github.com/Konrad1991/paropt
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1155/2018/9160793
https://doi.org/10.3390/make1010010

2 optimizer

R topics documented:
optimizer . 2
optimizer_pointer . 4
solve_ode_system . 6
solve_ode_system_pointer . 7

Index 10

optimizer Optimize parameters of ode-systems

Description

Optimize parameters used in an ode equation in order to match values defined in the state-data.frame

Usage

optimizer(
integration_times,
ode_system,
relative_tolerance,
absolute_tolerances,
lb,
ub,
states,
npop,
ngen,
error,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

ode_system the ode-system which will be integrated by the solver (see Details for more
Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.
absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

lb a data.frame containing the lower bounds for the parameters (see Details for
more Information).

optimizer 3

ub a data.frame containing the upper bounds for the parameters (see Details for
more Information).

states a data.frame containing the predetermined course of the states (see Details for
more Information).

npop a number defining the number of particles used by the Particle Swarm Optimizer.

ngen a number defining the number of generations the Particle Swarm Optimizer
(PSO) should run.

error a number defining a sufficient small error. When the PSO reach this value opti-
mization is stopped.

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be a Rcpp-function with a specific signature Rcpp::NumericVector ode(double
time, std::vector<double> parameter, Rcpp::NumericVector states). The first entry defines the time
point when the function is called. The second argument defines the parameter which should be
optimized. There exist two different types of parameters. Parameters can be either constant or
variabel. In order to calculate a variable parameter at a specific timepoint the Catmull-Rom-Spline
is used. This vector contains the already interpolated parameters at the specific time-point, in the
same order as defined in the data.frames containing the lower- and upper-boundaries. The last ar-
gument is a vector containing the states in the same order as defined in the data.frame containing
the state-information. Thus, it is obligatory that the state-derivates in the ode-system are in the
same order defined as in the data.frame. Furthermore, it is mandatory that the function return a
Rcpp::NumericVector with the same dimension as the input vector containing the states. The re-
sulting vector has to contain the right hand side of the ode-system.

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The two data.frames containg lower and upper-boundaries need the parameter in the same order.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =

4 optimizer_pointer

explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

optimizer_pointer Optimize parameters of ode-systems

Description

Optimize parameters used in an ode equation in order to match values defined in the state-data.frame

Usage

optimizer_pointer(
integration_times,
ode_sys,
relative_tolerance,
absolute_tolerances,
lower,
upper,
states,
npop,
ngen,
error,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

ode_sys the ode-system which will be integrated by the solver (see Details for more
Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.
absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

lower a data.frame containing the lower bounds for the parameters (see Details for
more Information).

upper a data.frame containing the upper bounds for the parameters (see Details for
more Information).

optimizer_pointer 5

states a data.frame containing the predetermined course of the states (see Details for
more Information).

npop a number defining the number of particles used by the Particle Swarm Optimizer.

ngen a number defining the number of generations the Particle Swarm Optimizer
(PSO) should run.

error a number defining a sufficient small error. When the PSO reach this value opti-
mization is stopped.

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be of type Rcpp::XPtr<OS>. The OS is predefined in the package. The
function should possess the following signature: int ode(double &time, std::vector<double> &pa-
rameter, std::vector<double> &states). The first entry defines the time point when the function is
called. The second argument defines the parameter which should be optimized. There exist two
different types of parameters. Parameters can be either constant or variabel. In order to calculate
a variable parameter at a specific timepoint the Catmull-Rom-Spline is used. This vector contains
the already interpolated parameters at the specific time-point, in the same order as defined in the
data.frames containing the lower- and upper-boundaries. The last argument is a vector containing
the states in the same order as defined in the data.frame containing the state-information. Thus,
it is obligatory that the state-derivates in the ode-system are in the same order defined as in the
data.frame. Within the function the new states have to be saved in the states-vector. Please be aware
that when using the approach with the Rcpp::XPtr the optimization is run in parallel. Thus, the
function has to be thread-safe (among other things don’t use any R Code)!

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The two data.frames containg lower and upper-boundaries need the parameter in the same order.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as

6 solve_ode_system

output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

solve_ode_system Solves ode-system and compare result to measured states

Description

Solves ode-system and compare result to measured states

Usage

solve_ode_system(
integration_times,
ode_system,
relative_tolerance,
absolute_tolerances,
start,
states,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

ode_system the ode-system which will be integrated by the solver (see Details for more
Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.

absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

start a data.frame containing a parameter-set (see Details for more Information).

states a data.frame containing the predetermined course of the states (see Details for
more Information).

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

solve_ode_system_pointer 7

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be a Rcpp-function with a specific signature Rcpp::NumericVector ode(double
time, std::vector<double> parameter, Rcpp::NumericVector states). The first entry defines the time
point when the function is called. The second argument defines the parameter which should be
optimized. There exist two different types of parameters. Parameters can be either constant or
variabel. In order to calculate a variable parameter at a specific timepoint the Catmull-Rom-Spline
is used. This vector contains the already interpolated parameters at the specific time-point, in the
same order as defined in the data.frames containing the lower- and upper-boundaries. The last ar-
gument is a vector containing the states in the same order as defined in the data.frame containing
the state-information. Thus, it is obligatory that the state-derivates in the ode-system are in the
same order defined as in the data.frame. Furthermore, it is mandatory that the function return a
Rcpp::NumericVector with the same dimension as the input vector containing the states. The re-
sulting vector has to contain the right hand side of the ode-system.

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

solve_ode_system_pointer

Solves ode-system and compare result to measured states

Description

Solves ode-system and compare result to measured states

8 solve_ode_system_pointer

Usage

solve_ode_system_pointer(
integration_times,
fctptr,
relative_tolerance,
absolute_tolerances,
start,
states,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

fctptr is a pointer to the ode-system which will be integrated by the solver (see Details
for more Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.
absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

start a data.frame containing a parameter-set (see Details for more Information).

states a data.frame containing the predetermined course of the states (see Details for
more Information).

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be of type Rcpp::XPtr<OS>. The OS is predefined in the package. The
function should possess the following signature: int ode(double &time, std::vector<double> &pa-
rameter, std::vector<double> &states). The first entry defines the time point when the function is
called. The second argument defines the parameter which should be optimized. There exist two
different types of parameters. Parameters can be either constant or variabel. In order to calculate
a variable parameter at a specific timepoint the Catmull-Rom-Spline is used. This vector contains
the already interpolated parameters at the specific time-point, in the same order as defined in the
data.frames containing the lower- and upper-boundaries. The last argument is a vector containing
the states in the same order as defined in the data.frame containing the state-information. Thus,
it is obligatory that the state-derivates in the ode-system are in the same order defined as in the
data.frame. Within the function the new states have to be saved in the states-vector.

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

solve_ode_system_pointer 9

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

Index

optimizer, 2
optimizer_pointer, 4

solve_ode_system, 6
solve_ode_system_pointer, 7

10

	optimizer
	optimizer_pointer
	solve_ode_system
	solve_ode_system_pointer
	Index

