
Proximal/Distal Modeling Framework

C. Bracis

February 13, 2018

1 Fitting model data and generating results

This package “Proximal/Distal Modeling Framework” (pdmod), provides meth-
ods to compute the model (Table 1) for different parameter values and fit param-
eters to experimental data. In this model, Pavlovian conditioning phenomena
(acquisition, extinction, spontaneous recovery and the partial reinforcement ex-
tinction effect) emerge from reward predictions of parallel neural circuits that
combine according to their time-varying uncertainties.

The package is designed for estimating model coefficients from Pavlovian
conditioning experiments consisting of trials in which a signal is paired with a
reward or non-reward and the response rate of the subject is recorded. Infor-
mation from experiments consists of the trial time, i.e. the time of the signal,
a Boolean indicator of whether a reward is paired with the signal and response
rate in each trial. Trials are grouped into sessions or blocks of trials, which
are typically separated by larger time intervals than the inter-trial time. An
experiment may consist of a single session or multiple sessions.

1.1 Defining trials

The first requirement is to define the experimental setup in terms of the trials
performed, meaning the time schedule of the trials, as well as the reward/non-
reward outcome of each trial. The class TimedVector is used to store this
information. For example, suppose the experiment consisted of an acquistion
session followed by 4 extinction sessions. The acquisition session was 20, each
a minute apart. The extinction sessions started the next day and consited of 5
trials per session with sessions every other day. In the code below, the trials are
specified in terms of elapsed minutes and TV_DAY is a constant allowing days to
easily be added.

> library(pdmod)

> rewards = c(rep(1, 20), rep(0, 10))

> schedule = c(1:10, (2*TV_DAY):(2*TV_DAY + 9), (4*TV_DAY):(4*TV_DAY + 1),

+ (6*TV_DAY):(6*TV_DAY + 1), (8*TV_DAY):(8*TV_DAY + 1),

+ (10*TV_DAY):(10*TV_DAY + 1), (12*TV_DAY):(12*TV_DAY + 1))

1

Table 1: Model equations. Distal (j = 1) and proximal (j = 2) estimators for
trial i, xi is reward/no-reward outcome ε(0, 1) and ∆ti is the time between trial
i and trial i− 1.

Eq. Description Equation Parameters

1 Reward prediction error j δj,i = xi − x̂j,i
2 Reward prediction j x̂j,i = mjyi−1δj,i−1 + x̂j,i−1 mj = learning rate

0 < m1 < m2 < 1

3 Uncertainty j unadjusted for ∆ti ûj,i = n(δ2
j,i−1 − ũj,i−1) + ũj,i−1 n = learning rate

0 < n < 1

4 Uncertainty j adjusted for ∆ti ũj,i = ûj,ih
∆ti
j hj = decay rate

0 < h1 < 1, h2 = 1

5 Weight of prediction j wj,i = (1/ũj,i) / (1/ũ1,i + ũ2,i)

6 Mean reward prediction x̄i = w1,ix̂1,i + w2,ix̂2,i

7 Response rate Ri = rmaxx̄i/ (x̄i + k(1− x̄i)) rmax = max. rate
k = shape coeff.

8 Mean prediction error δ̄i = xi − x̄i
9 Mean uncertainty ūi = n(δ̄2

i−1 − ūi−1) + ūi−1

10 Stimulus-reward association yi =

i−1∑
k=1

1/ūk

/(
g +

i−1∑
k=1

1/ūk

)
g = shape coeff.

> trials = TimedVector(rewards, schedule)

> trials

time value

[1,] 1 1

[2,] 2 1

[3,] 3 1

[4,] 4 1

[5,] 5 1

[6,] 6 1

[7,] 7 1

[8,] 8 1

[9,] 9 1

[10,] 10 1

[11,] 2880 1

[12,] 2881 1

[13,] 2882 1

[14,] 2883 1

[15,] 2884 1

[16,] 2885 1

[17,] 2886 1

[18,] 2887 1

2

[19,] 2888 1

[20,] 2889 1

[21,] 5760 0

[22,] 5761 0

[23,] 8640 0

[24,] 8641 0

[25,] 11520 0

[26,] 11521 0

[27,] 14400 0

[28,] 14401 0

[29,] 17280 0

[30,] 17281 0

1.2 Computing the model

Next we can compute the model for a given set of parameter values for the pre-
viously specified trials. Here the parameter values are loosely based on those
in Table ??. By specifying verbose = TRUE in the call to computeModel, addi-
tional information (weights, uncertainties) is returned as attributes in addition
to the mean reward prediction. This information can also be ploted.

> params = c(0.9, 0.01, 0.04, 0.4, 0.25, 4.5, 500)

> est = computeModel(trials, mFast=params[1], mSlow=params[2],

+ n=params[3], h=params[4], g=params[7],

+ verbose = TRUE)

> plot(est, actual = rep(NA, length(trials)))

1.3 Fitting the model

If data on the animal’s response rate during the trials is also available, the
model’s parameters can be estimated from that data.

> responses = c(0.001, 0.4, 1.4, 2.5, 3.6, 3.7, 3.6, 4.2, 4.6, 4.5,

+ 4.8, 5.0, 4.9, 4.8, 5.1, 4.9, 4.9, 5.0, 4.8, 4.9,

+ 3.7, 1.1, 2.1, 0.8, 1.0, 0.5, 0.5, 0.3, 0.2, 0.1)

> results = fitModel(dataX = list(trials), dataResponse = list(responses))

> fitParams = results$par[1,]

> fitEst = computeModel(trials, mFast=fitParams[1], mSlow=fitParams[2],

+ n=fitParams[3], h=fitParams[4], g=fitParams[7],

+ verbose = TRUE)

> plot(fitEst, actual = responses / max(responses))

In the above diagnostic plots, the response was simply divided by its max-
imum value in order to place it on the [0, 1] scale of the mean reward predic-
tion. However, since the response function can be non-linear (if k 6= 1), the
caluculateResponse function can be used to compare the predicted response
rate to the observed.

3

> fitResponses = calculateResponse(fitParams[5], fitParams[6], fitEst)

> plot(1:30, responses, type = "b", bty = "l",

+ xlab = "Trial", ylab = "Response rate")

> points(1:30, fitResponses, col = 4, pch = 19)

Response rates are frequenly reported for blocks of trials or sessions, and that
can be accomplished by specifying how to group trials with sessionBoundaries.

4

