
Package ‘penppml’
January 3, 2022

Title Penalized Poisson Pseudo Maximum Likelihood Regression

Version 0.1.1

Description A set of tools that enables efficient estimation of penalized
Poisson Pseudo Maximum Likelihood regressions, using lasso or ridge penalties, for models
that feature one or more sets of high-dimensional fixed effects. The methodology is based on
Breinlich, Corradi, Rocha, Ruta, Santos Silva, and Zylkin (2021) <http:
//hdl.handle.net/10986/35451>
and takes advantage of the method of alternating projections of Gaure (2013)
<doi:10.1016/j.csda.2013.03.024> for dealing with HDFE, as well as
the coordinate descent algorithm of Friedman, Hastie and Tibshirani (2010)
<doi:10.18637/jss.v033.i01> for fitting lasso regressions. The package is also able to carry out
cross-validation and to implement the plugin lasso of Belloni, Cher-
nozhukov, Hansen and Kozbur (2016)
<doi:10.1080/07350015.2015.1102733>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

LazyDataCompression gzip

RoxygenNote 7.1.1

LinkingTo Rcpp, RcppEigen

Imports Rcpp, glmnet, fixest, collapse, rlang, magrittr

Depends R (>= 2.10)

URL https://github.com/tomzylkin/penppml

BugReports https://github.com/tomzylkin/penppml/issues

Suggests testthat (>= 3.0.0), MASS, knitr, rmarkdown, directlabels,
ggplot2, reshape2

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

1

http://hdl.handle.net/10986/35451
http://hdl.handle.net/10986/35451
https://doi.org/10.1016/j.csda.2013.03.024
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/07350015.2015.1102733
https://github.com/tomzylkin/penppml
https://github.com/tomzylkin/penppml/issues

2 R topics documented:

Author Diego Ferreras Garrucho [aut],
Tom Zylkin [aut],
Nicolas Apfel [cre]

Maintainer Nicolas Apfel <nicolas.apfel@gmail.com>

Repository CRAN

Date/Publication 2022-01-03 10:50:02 UTC

R topics documented:

AtA . 3
cluster_matrix . 3
collinearity_check . 4
compute_fes . 4
countries . 5
eigenMatMult . 6
fastolsCpp . 6
fastridge . 7
fastridgeCpp . 7
faststddev . 8
fastwmean . 8
genfes . 9
genmodel . 9
hdfeppml . 10
hdfeppml_int . 12
iceberg . 14
manyouter . 16
mlfitppml . 16
mlfitppml_int . 19
penhdfeppml . 22
penhdfeppml_cluster . 24
penhdfeppml_cluster_int . 26
penhdfeppml_int . 29
plugin_lasso_int . 31
select_fes . 32
standardize_wt . 33
trade . 33
xeex . 35
xvalidate . 35

Index 38

AtA 3

AtA Computing A’A

Description

Computes A’A using C++.

Usage

AtA(A)

Arguments

A A matrix.

cluster_matrix Cluster-robust Standard Error Estimation

Description

cluster_matrix is a helper for computation of cluster-robust standard errors.

Usage

cluster_matrix(e, cluster, x)

Arguments

e Vector of residuals.

cluster Vector of clusters.

x Regressor matrix.

Value

Gives the XeeX matrix.

4 compute_fes

collinearity_check Checking for Perfect Multicollinearity

Description

collinearity_check checks for perfect multicollinearity in a model with high-dimensional fixed
effects. It calls lfe::demeanlist in order to partial out the fixed effects, and then uses stats::lm.wfit
to discard linearly dependent variables.

Usage

collinearity_check(y, x, fes, hdfetol)

Arguments

y Dependent variable (a numeric vector).

x Regressor matrix.

fes List of fixed effects.

hdfetol Tolerance for the centering, passed on to lfe::demeanlist.

Value

A numeric vector containing the variables that pass the collinearity check.

compute_fes Fixed Effects Computation

Description

This function is a helper for xvalidate that computes FEs using PPML First Order Conditions
(FOCs).

Usage

compute_fes(
y,
fes,
x,
b,
insample_obs = rep(1, n),
onlymus = FALSE,
tol = 1e-08,
verbose = FALSE

)

countries 5

Arguments

y Dependent variable (a vector).

fes List of fixed effects.

x Regressor matrix.

b A vector of coefficient estimates.

insample_obs Vector of observations used to estimate the b coefficients..

onlymus Logical. If TRUE, returns only the conditional means.

tol A tolerance parameter.

verbose Logical. If TRUE, prints messages to the console while evaluating.

Value

If onlymus = TRUE, the vector of conditional means. Otherwise, a list with two elements:

• mu: conditional means.

• fe_values: fixed effects.

countries Country ISO Codes

Description

An auxiliary data set with basic geographic information about country ISO 3166 codes included in
the trade data set.

Usage

countries

Format

A data frame with 249 rows and 4 variables.

• iso: Country ISO 3166 code.

• name: Country name.

• region: Continent.

• subregion: sub-continental region.

Source

The source of the data set is Luke Duncalfe’s ISO-3166-Countries-with-Regional-Codes repos-
itory on GitHub (https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes#
readme).

https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes#readme
https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes#readme

6 fastolsCpp

eigenMatMult Faster Matrix Multiplication

Description

Faster matrix multiplication using C++.

Usage

eigenMatMult(A, B)

eigenMapMatMult(A, B)

Arguments

A, B Matrices.

fastolsCpp Faster Least Squares Estimation

Description

Finds Least Squares solutions using C++.

Usage

fastolsCpp(X, y)

Arguments

X Regressor matrix.

y Dependent variable (a vector).

Value

The vector of parameter (beta) estimates.

fastridge 7

fastridge Finding Ridge Regression Solutions

Description

A wrapper around fastridgeCpp, for faster computation of the analytical solution for ridge regres-
sion.

Usage

fastridge(x, y, weights = rep(1/n, n), lambda, standardize = TRUE)

Arguments

x Regressor matrix.

y Dependent variable (a numeric vector).

weights Vector of weights.

lambda Penalty parameter.

standardize Logical. If TRUE, x is standardized using the weights.

Value

A vector of coefficient (beta) estimates.

fastridgeCpp Faster Ridge Regression

Description

Finds Ridge solutions using C++.

Usage

fastridgeCpp(X, y, lambda)

Arguments

X Regressor matrix.

y Dependent variable (a vector).

lambda Penalty parameter (a number).

Value

The vector of parameter (beta) estimates.

8 fastwmean

faststddev Faster Standard Deviation

Description

Computes standard deviation using C++.

Usage

faststddev(X, w)

Arguments

X Regressor matrix.

w Weights.

Value

Vector of standard deviations of the parameter estimates.

fastwmean Faster Weighted Mean

Description

Computes weighted mean using C++.

Usage

fastwmean(X, w)

Arguments

X Regressor matrix.

w Weights.

Value

Weighted mean.

genfes 9

genfes Generating a List of Fixed Effects

Description

genfes generates a list of fixed effects by creating interactions of paired factors.

Usage

genfes(data, inter)

Arguments

data A data frame including the factors.

inter A list: each element includes the variables to be interacted (both names and
column

Value

A list containing the desired interactions of vars, with the same length as inter.

genmodel Generating Model Structure

Description

genmodel transforms a data frame into the needed components for our main functions (a y vector,
a x matrix and a fes list).

Usage

genmodel(
data,
dep = 1,
indep = NULL,
fixed = NULL,
cluster = NULL,
selectobs = NULL

)

10 hdfeppml

Arguments

data A data frame containing all relevant variables.

dep A string with the name of the independent variable or a column number.

indep A vector with the names or column numbers of the regressors. If left unspecified,
all remaining variables (excluding fixed effects) are included in the regressor
matrix.

fixed A vector with the names or column numbers of factor variables identifying the
fixed effects, or a list with the desired interactions between variables in data.

cluster Optional. A string with the name of the clustering variable or a column num-
ber. It’s also possible to input a vector with several variables, in which case the
interaction of all of them is taken as the clustering variable.

selectobs Optional. A vector indicating which observations to use.

Value

A list with four elements:

• y: y vector.

• x: x matrix.

• fes: list of fixed effects.

• cluster: cluster vector.

hdfeppml PPML Estimation with HDFE

Description

hdfeppml fits an (unpenalized) Poisson Pseudo Maximum Likelihood (PPML) model with high-
dimensional fixed effects (HDFE).

Usage

hdfeppml(
data,
dep = 1,
indep = NULL,
fixed = NULL,
cluster = NULL,
selectobs = NULL,
...

)

hdfeppml 11

Arguments

data A data frame containing all relevant variables.

dep A string with the name of the independent variable or a column number.

indep A vector with the names or column numbers of the regressors. If left unspecified,
all remaining variables (excluding fixed effects) are included in the regressor
matrix.

fixed A vector with the names or column numbers of factor variables identifying the
fixed effects, or a list with the desired interactions between variables in data.

cluster Optional. A string with the name of the clustering variable or a column num-
ber. It’s also possible to input a vector with several variables, in which case the
interaction of all of them is taken as the clustering variable.

selectobs Optional. A vector indicating which observations to use (either a logical vector
or a numeric vector with row numbers, as usual when subsetting in R).

... Further options. For a full list, see hdfeppml_int.

Details

This function is a thin wrapper around hdfeppml_int, providing a more convenient interface for data
frames. Whereas the internal function requires some preliminary handling of data sets (y must be a
vector, x must be a matrix and fixed effects fes must be provided in a list), the wrapper takes a full
data frame in the data argument, and users can simply specify which variables correspond to y, x
and the fixed effects, using either variable names or column numbers.

More formally, hdfeppml_int performs iteratively re-weighted least squares (IRLS) on a trans-
formed model, as described in Correia, Guimarães and Zylkin (2020) and similar to the ppmlhdfe
package in Stata. In each iteration, the function calculates the transformed dependent variable, par-
tials out the fixed effects (calling collapse:fhdwithin) and then solves a weighted least squares
problem (using fast C++ implementation).

Value

A list with the following elements:

• coefficients: a 1 x ncol(x) matrix with coefficient (beta) estimates.

• residuals: a 1 x length(y) matrix with the residuals of the model.

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance:

• bic: Bayesian Information Criterion.

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

• se: standard errors of the coefficients.

12 hdfeppml_int

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
test <- hdfeppml(data = trade[, -(5:6)],

dep = "export",
fixed = list(c("exp", "time"),

c("imp", "time"),
c("exp", "imp")),

selectobs = (trade$imp %in% americas) & (trade$exp %in% americas))

hdfeppml_int PPML Estimation with HDFE

Description

hdfeppml_int is the internal algorithm called by hdfeppml to fit an (unpenalized) Poisson Pseudo
Maximum Likelihood (PPML) regression with high-dimensional fixed effects (HDFE). It takes a
vector with the dependent variable, a regressor matrix and a set of fixed effects (in list form: each
element in the list should be a separate HDFE).

Usage

hdfeppml_int(
y,
x,
fes,
tol = 1e-08,
hdfetol = 1e-04,
colcheck = TRUE,
mu = NULL,

hdfeppml_int 13

saveX = TRUE,
init_z = NULL,
verbose = FALSE,
maxiter = 1000,
cluster = NULL,
vcv = TRUE

)

Arguments

y Dependent variable (a vector)

x Regressor matrix.

fes List of fixed effects.

tol Tolerance parameter for convergence of the IRLS algorithm.

hdfetol Tolerance parameter for the within-transformation step, passed on to collapse::fhdwithin.

colcheck Logical. If TRUE, checks for perfect multicollinearity in x.

mu Optional: initial values of the conditional mean µ, to be used as weights in the
first iteration of the algorithm.

saveX Logical. If TRUE, it returns the values of x and z after partialling out the fixed
effects.

init_z Optional: initial values of the transformed dependent variable, to be used in the
first iteration of the algorithm.

verbose Logical. If TRUE, it prints information to the screen while evaluating.

maxiter Maximum number of iterations (a number).

cluster Optional: a vector classifying observations into clusters (to use when calculating
SEs).

vcv Logical. If TRUE (the default), it returns standard errors.

Details

More formally, hdfeppml_int performs iteratively re-weighted least squares (IRLS) on a trans-
formed model, as described in Correia, Guimarães and Zylkin (2020) and similar to the ppmlhdfe
package in Stata. In each iteration, the function calculates the transformed dependent variable,
partials out the fixed effects (calling collapse::fhdwithin, which uses the algorithm in Gaure
(2013)) and then solves a weighted least squares problem (using fast C++ implementation).

Value

A list with the following elements:

• coefficients: a 1 x ncol(x) matrix with coefficient (beta) estimates.

• residuals: a 1 x length(y) matrix with the residuals of the model.

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance:

• bic: Bayesian Information Criterion.

14 iceberg

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

• se: standard errors of the coefficients.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
trade <- trade[(trade$imp %in% americas) & (trade$exp %in% americas),]
Now generate the needed x, y and fes objects:
y <- trade$export
x <- data.matrix(trade[, -1:-6])
fes <- list(exp_time = interaction(trade$exp, trade$time),

imp_time = interaction(trade$imp, trade$time),
pair = interaction(trade$exp, trade$imp))

Finally, the call to hdfeppml_int:
reg <- hdfeppml_int(y = y, x = x, fes = fes)

iceberg Iceberg Lasso Implementation (in development)

Description

A function performs standard plugin lasso PPML estimation (without fixed effects) for several de-
pendent variables in a single step. This is still IN DEVELOPMENT: at the current stage, only
coefficient estimates are are provided and there is no support for clustered errors.

Usage

iceberg(data, dep, indep = NULL, selectobs = NULL, ...)

iceberg 15

Arguments

data A data frame containing all relevant variables.

dep A string with the names of the independent variables or their column numbers.

indep A vector with the names or column numbers of the regressors. If left unspecified,
all remaining variables (excluding fixed effects) are included in the regressor
matrix.

selectobs Optional. A vector indicating which observations to use (either a logical vector
or a numeric vector with row numbers, as usual when subsetting in R).

... Further arguments, including:

• tol: Tolerance parameter for convergence of the IRLS algorithm.
• glmnettol: Tolerance parameter to be passed on to glmnet::glmnet.
• penweights: Optional: a vector of coefficient-specific penalties to use in

plugin lasso.
• colcheck: Logical. If TRUE, checks for perfect multicollinearity in x.
• K: Maximum number of iterations.
• verbose: Logical. If TRUE, prints information to the screen while evaluat-

ing.
• lambda: Penalty parameter (a number).
• phipost: Logical. If TRUE, it carries out a post-lasso estimation with just

the selected variables and reports the coefficients from this regression.

Details

This functions enables users to implement the "iceberg" step in the two-step procedure described
in Breinlich, Corradi, Rocha, Ruta, Santos Silva and Zylkin (2020). To do this after using the
plugin method in mlfitppml, just select all the variables with non-zero coefficients in dep and the
remaining regressors in indep. The function will then perform separate lasso estimation on each of
the selected dependent variables and report the coefficients.

Value

A matrix with coefficient estimates for all dependent variables.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

16 mlfitppml

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

iceberg_results <- iceberg(data = trade[, -(1:6)],
dep = c("ad_prov_14", "cp_prov_23", "tbt_prov_07",

"tbt_prov_33", "tf_prov_41", "tf_prov_45"),
selectobs = (trade$time == "2016"))

manyouter Many Outer Products

Description

Compute a large number of outer products (useful for clustered SEs) using C++.

Usage

manyouter(A, B, c)

Arguments

A, B Numeric vectors.

c Integer.

mlfitppml General Penalized PPML Estimation

Description

mlfitppml is a general-purpose wrapper function for penalized PPML estimation. This is a flexible
tool that allows users to select:

• Penalty type: either lasso or ridge.

• Penalty parameter: users can provide a single global value for lambda (a single regression
is estimated), a vector of lambda values (the function estimates the regression using each of
them, sequentially) or even coefficient-specific penalty weights.

• Method: plugin lasso estimates can be obtained directly from this function too.

• Cross-validation: if this option is enabled, the function uses IDs provided by the user to per-
form k-fold cross-validation and reports the resulting RMSE for all lambda values.

mlfitppml 17

Usage

mlfitppml(
data,
dep = 1,
indep = NULL,
fixed = NULL,
cluster = NULL,
selectobs = NULL,
...

)

Arguments

data A data frame containing all relevant variables.

dep A string with the name of the independent variable or a column number.

indep A vector with the names or column numbers of the regressors. If left unspecified,
all remaining variables (excluding fixed effects) are included in the regressor
matrix.

fixed A vector with the names or column numbers of factor variables identifying the
fixed effects, or a list with the desired interactions between variables in data.

cluster Optional. A string with the name of the clustering variable or a column num-
ber. It’s also possible to input a vector with several variables, in which case the
interaction of all of them is taken as the clustering variable.

selectobs Optional. A vector indicating which observations to use (either a logical vector
or a numeric vector with row numbers, as usual when subsetting in R).

... Further arguments, including:

• penalty: A string indicating the penalty type. Currently supported: "lasso"
and "ridge".

• method: The user can set this equal to "plugin" to perform the plugin algo-
rithm with coefficient-specific penalty weights (see details). Otherwise, a
single global penalty is used.

• post: Logical. If TRUE, estimates a post-penalty regression with the se-
lected variables.

• xval: Logical. If TRUE, cross-validation is performed using the IDs pro-
vided in the IDs argument as folds. Note that, by default, observations are
assigned individual IDs, which makes the cross-validation algorithm very
time-consuming.

For a full list of options, see mlfitppml_int.

Details

This function is a thin wrapper around mlfitppml_int, providing a more convenient interface for
data frames. Whereas the internal function requires some preliminary handling of data sets (y must
be a vector, x must be a matrix and fes must be provided in a list), the wrapper takes a full data
frame in the data argument, and users can simply specify which variables correspond to y, x and
the fixed effects, using either variable names or column numbers.

18 mlfitppml

For technical details on the algorithms used, see hdfeppml (post-lasso regression), penhdfeppml
(standard penalized regression), penhdfeppml_cluster (plugin lasso), and xvalidate (cross-validation).

Value

A list with the following elements:

• beta: if post = FALSE, a length(lambdas) x ncol(x) matrix with coefficient (beta) esti-
mates from the penalized regressions. If post = TRUE, this is the matrix of coefficients from
the post-penalty regressions.

• beta_pre: if post = TRUE, a length(lambdas) x ncol(x) matrix with coefficient (beta) es-
timates from the penalized regressions.

• bic: Bayesian Information Criterion.

• lambdas: vector of penalty parameters.

• ses: standard errors of the coefficients of the post-penalty regression. Note that these are only
provided when post = TRUE.

• rmse: if xval = TRUE, a matrix with the root mean squared error (RMSE - column 2) for each
value of lambda (column 1), obtained by cross-validation.

• phi: coefficient-specific penalty weights (only if method == "plugin").

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
Now we can use our main functions on the reduced trade data set:
test <- mlfitppml(data = trade[, -(5:6)],

dep = "export",
fixed = list(c("exp", "time"),

c("imp", "time"),
c("exp", "imp")),

selectobs = (trade$imp %in% americas) & (trade$exp %in% americas),
lambdas = c(0.01, 0.001),

mlfitppml_int 19

tol = 1e-6, hdfetol = 1e-2)

mlfitppml_int General Penalized PPML Estimation

Description

mlfitppml_int is the internal wrapper called by mlfitppml for penalized PPML estimation. This
in turn calls penhdfeppml_int, penhdfeppml_cluster_int and hdfeppml_int as needed. It takes
a vector with the dependent variable, a regressor matrix and a set of fixed effects (in list form: each
element in the list should be a separate HDFE). This is a flexible tool that allows users to select:

• Penalty type: either lasso or ridge.

• Penalty parameter: users can provide a single global value for lambda (a single regression
is estimated), a vector of lambda values (the function estimates the regression using each of
them, sequentially) or even coefficient-specific penalty weights.

• Method: plugin lasso estimates can be obtained directly from this function too.

• Cross-validation: if this option is enabled, the function uses IDs provided by the user to per-
form k-fold cross-validation and reports the resulting RMSE for all lambda values.

Usage

mlfitppml_int(
y,
x,
fes,
lambdas,
penalty = "lasso",
tol = 1e-08,
hdfetol = 1e-04,
colcheck = TRUE,
post = TRUE,
cluster = NULL,
method = "bic",
IDs = 1:n,
verbose = FALSE,
xval = FALSE,
standardize = TRUE,
vcv = TRUE,
penweights = NULL,
K = 15

)

20 mlfitppml_int

Arguments

y Dependent variable (a vector)

x Regressor matrix.

fes List of fixed effects.

lambdas Vector of penalty parameters.

penalty A string indicating the penalty type. Currently supported: "lasso" and "ridge".

tol Tolerance parameter for convergence of the IRLS algorithm.

hdfetol Tolerance parameter for the within-transformation step, passed on to collapse::fhdwithin.

colcheck Logical. If TRUE, checks for perfect multicollinearity in x.

post Logical. If TRUE, estimates a post-penalty regression with the selected variables.

cluster Optional: a vector classifying observations into clusters (to use when calculating
SEs).

method The user can set this equal to "plugin" to perform the plugin algorithm with
coefficient-specific penalty weights (see details). Otherwise, a single global
penalty is used.

IDs A vector of fold IDs for k-fold cross validation. If left unspecified, each obser-
vation is assigned to a different fold (warning: this is likely to be very resource-
intensive).

verbose Logical. If TRUE, it prints information to the screen while evaluating.

xval Logical. If TRUE, it carries out cross-validation.

standardize Logical. If TRUE, x variables are standardized before estimation.

vcv Logical. If TRUE (the default), the post-estimation model includes standard er-
rors.

penweights Optional: a vector of coefficient-specific penalties to use in plugin lasso when
method == "plugin".

K Maximum number of iterations for the plugin algorithm to converge.

Details

For technical details on the algorithms used, see hdfeppml_int (post-lasso regression), penhd-
feppml_int (standard penalized regression), penhdfeppml_cluster_int (plugin lasso), and xvalidate
(cross-validation).

Value

A list with the following elements:

• beta: if post = FALSE, a length(lambdas) x ncol(x) matrix with coefficient (beta) esti-
mates from the penalized regressions. If post = TRUE, this is the matrix of coefficients from
the post-penalty regressions.

• beta_pre: if post = TRUE, a length(lambdas) x ncol(x) matrix with coefficient (beta) es-
timates from the penalized regressions.

• bic: Bayesian Information Criterion.

mlfitppml_int 21

• lambdas: vector of penalty parameters.

• ses: standard errors of the coefficients of the post-penalty regression. Note that these are only
provided when post = TRUE.

• rmse: if xval = TRUE, a matrix with the root mean squared error (RMSE - column 2) for each
value of lambda (column 1), obtained by cross-validation.

• phi: coefficient-specific penalty weights (only if method == "plugin").

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

First, we need to transform the data (this is what mlfitppml handles internally). Start by
filtering the data set to keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
trade <- trade[(trade$imp %in% americas) & (trade$exp %in% americas),]
Now generate the needed x, y and fes objects:
y <- trade$export
x <- data.matrix(trade[, -1:-6])
fes <- list(exp_time = interaction(trade$exp, trade$time),

imp_time = interaction(trade$imp, trade$time),
pair = interaction(trade$exp, trade$imp))

Finally, we try mlfitppml_int with a lasso penalty (the default) and two lambda values:
reg <- mlfitppml_int(y = y, x = x, fes = fes, lambdas = c(0.1, 0.01))

We can also try plugin lasso:
reg <- mlfitppml_int(y = y, x = x, fes = fes, cluster = fes$pair, method = "plugin")

For an example with cross-validation, please see the vignette.

22 penhdfeppml

penhdfeppml One-Shot Penalized PPML Estimation with HDFE

Description

penhdfeppml fits a penalized PPML regression for a given type of penalty and a given value of the
penalty parameter. The penalty can be either lasso or ridge, and the plugin method can be enabled
via the method argument.

Usage

penhdfeppml(
data,
dep = 1,
indep = NULL,
fixed = NULL,
cluster = NULL,
selectobs = NULL,
...

)

Arguments

data A data frame containing all relevant variables.

dep A string with the name of the independent variable or a column number.

indep A vector with the names or column numbers of the regressors. If left unspecified,
all remaining variables (excluding fixed effects) are included in the regressor
matrix.

fixed A vector with the names or column numbers of factor variables identifying the
fixed effects, or a list with the desired interactions between variables in data.

cluster Optional. A string with the name of the clustering variable or a column num-
ber. It’s also possible to input a vector with several variables, in which case the
interaction of all of them is taken as the clustering variable.

selectobs Optional. A vector indicating which observations to use (either a logical vector
or a numeric vector with row numbers, as usual when subsetting in R).

... Further options, including:

• penalty: A string indicating the penalty type. Currently supported: "lasso"
and "ridge".

• method: The user can set this equal to "plugin" to perform the plugin algo-
rithm with coefficient-specific penalty weights (see details). Otherwise, a
single global penalty is used.

For a full list of options, see penhdfeppml_int.

penhdfeppml 23

Details

This function is a thin wrapper around penhdfeppml_int, providing a more convenient interface for
data frames. Whereas the internal function requires some preliminary handling of data sets (y must
be a vector, x must be a matrix and fes must be provided in a list), the wrapper takes a full data
frame in the data argument, and users can simply specify which variables correspond to y, x and
the fixed effects, using either variable names or column numbers.

More formally, penhdfeppml_int performs iteratively re-weighted least squares (IRLS) on a trans-
formed model, as described in Breinlich, Corradi, Rocha, Ruta, Santos Silva and Zylkin (2021). In
each iteration, the function calculates the transformed dependent variable, partials out the fixed ef-
fects (calling lfe::fhdwithin) and then and then calls glmnet::glmnet if the selected penalty is
lasso (the default). If the user has selected ridge, the analytical solution is instead computed directly
using fast C++ implementation.

For information on how the plugin lasso method works, see penhdfeppml_cluster.

Value

If method == "lasso" (the default), an object of class elnet with the elements described in glmnet,
as well as:

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance.

• bic: Bayesian Information Criterion.

• phi: coefficient-specific penalty weights (only if method == "plugin".

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

If method == "ridge", a list with the following elements:

• beta: a 1 x ncol(x) matrix with coefficient (beta) estimates.

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance.

• bic: Bayesian Information Criterion.

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

24 penhdfeppml_cluster

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
test <- penhdfeppml(data = trade[, -(5:6)],

dep = "export",
fixed = list(c("exp", "time"),

c("imp", "time"),
c("exp", "imp")),

lambda = 0.05,
selectobs = (trade$imp %in% americas) & (trade$exp %in% americas))

penhdfeppml_cluster Plugin Lasso Estimation

Description

Performs plugin lasso - PPML estimation with HDFE. This is an internal function, called by
mlfitppml and penhdfeppml when users select the method = "plugin" option, but it’s made avail-
able as a stand-alone option for advanced users who may prefer to avoid some overhead imposed
by the wrappers.

Usage

penhdfeppml_cluster(
data,
dep = 1,
indep = NULL,
fixed = NULL,
cluster = NULL,
selectobs = NULL,
...

)

Arguments

data A data frame containing all relevant variables.

dep A string with the name of the independent variable or a column number.

indep A vector with the names or column numbers of the regressors. If left unspecified,
all remaining variables (excluding fixed effects) are included in the regressor
matrix.

penhdfeppml_cluster 25

fixed A vector with the names or column numbers of factor variables identifying the
fixed effects, or a list with the desired interactions between variables in data.

cluster A string with the name of the clustering variable or a column number. It’s also
possible to input a vector with several variables, in which case the interaction of
all of them is taken as the clustering variable. Note that this is NOT OPTIONAL
in this case: our plugin algorithm requires clusters to be specified.

selectobs Optional. A vector indicating which observations to use (either a logical vector
or a numeric vector with row numbers, as usual when subsetting in R).

... Further options. For a full list of options, see penhdfeppml_cluster_int.

Details

This function is a thin wrapper around penppml_cluster_int, providing a more convenient inter-
face for data frames. Whereas the internal function requires some preliminary handling of data sets
(y must be a vector, x must be a matrix and fes must be provided in a list), the wrapper takes a full
data frame in the data argument, and users can simply specify which variables correspond to y, x
and the fixed effects, using either variable names or column numbers.

The plugin method uses coefficient-specific penalty weights that account for heteroskedasticity.
The penalty parameters are calculated automatically by the function using statistical theory - for a
brief discussion of this, see Breinlich, Corradi, Rocha, Ruta, Santos Silva and Zylkin (2021), and
for a more in-depth analysis, check Belloni, Chernozhukov, Hansen, and Kozbur (2016), which
introduced the specific implementation used in this package. Heuristically, the penalty parameters
are set at a level high enough so that the absolute value of the score for each regressor must be
statistically large relative to its standard error in order for the regressors to be selected.

Value

An object of class elnet with the elements described in glmnet, as well as the following:

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance.

• bic: Bayesian Information Criterion.

• phi: coefficient-specific penalty weights.

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

26 penhdfeppml_cluster_int

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
test <- penhdfeppml_cluster(data = trade[, -(5:6)],

dep = "export",
fixed = list(c("exp", "time"),

c("imp", "time"),
c("exp", "imp")),

cluster = c("exp", "imp"),
selectobs = (trade$imp %in% americas) & (trade$exp %in% americas),

tol = 1e-5, hdfetol = 1e-1)

penhdfeppml_cluster_int

Plugin Lasso Estimation

Description

Performs plugin lasso - PPML estimation with HDFE. This is an internal function, called by
mlfitppml_int and penhdfeppml_int when users select the method = "plugin" option, but it’s
made available as a stand-alone option for advanced users who may prefer to avoid some overhead
imposed by the wrappers.

Usage

penhdfeppml_cluster_int(
y,
x,
fes,
cluster,
tol = 1e-08,
hdfetol = 1e-04,
glmnettol = 1e-12,
penalty = "lasso",
penweights = NULL,
saveX = TRUE,
mu = NULL,
colcheck = TRUE,
K = 15,
init_z = NULL,

penhdfeppml_cluster_int 27

post = FALSE,
verbose = FALSE,
lambda = NULL

)

Arguments

y Dependent variable (a vector)

x Regressor matrix.

fes List of fixed effects.

cluster Optional: a vector classifying observations into clusters (to use when calculating
SEs).

tol Tolerance parameter for convergence of the IRLS algorithm.

hdfetol Tolerance parameter for the within-transformation step, passed on to collapse::fhdwithin.

glmnettol Tolerance parameter to be passed on to glmnet::glmnet.

penalty Only "lasso" is supported at the present stage.

penweights Optional: a vector of coefficient-specific penalties to use in plugin lasso when
method == "plugin".

saveX Logical. If TRUE, it returns the values of x and z after partialling out the fixed
effects.

mu Optional: initial values of the conditional mean µ, to be used as weights in the
first iteration of the algorithm.

colcheck Logical. If TRUE, checks for perfect multicollinearity in x.

K Maximum number of iterations.

init_z Optional: initial values of the transformed dependent variable, to be used in the
first iteration of the algorithm.

post Logical. If TRUE, estimates a post-penalty regression with the selected variables.

verbose Logical. If TRUE, it prints information to the screen while evaluating.

lambda Penalty parameter (a number).

Details

The plugin method uses coefficient-specific penalty weights that account for heteroskedasticity.
The penalty parameters are calculated automatically by the function using statistical theory - for a
brief discussion of this, see Breinlich, Corradi, Rocha, Ruta, Santos Silva and Zylkin (2021), and
for a more in-depth analysis, check Belloni, Chernozhukov, Hansen, and Kozbur (2016), which
introduced the specific implementation used in this package. Heuristically, the penalty parameters
are set at a level high enough so that the absolute value of the score for each regressor must be
statistically large relative to its standard error in order for the regressors to be selected.

28 penhdfeppml_cluster_int

Value

An object of class elnet with the elements described in glmnet, as well as the following:

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance.

• bic: Bayesian Information Criterion.

• phi: coefficient-specific penalty weights.

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
trade <- trade[(trade$imp %in% americas) & (trade$exp %in% americas),]
Now generate the needed x, y and fes objects:
y <- trade$export
x <- data.matrix(trade[, -1:-6])
fes <- list(exp_time = interaction(trade$exp, trade$time),

imp_time = interaction(trade$imp, trade$time),
pair = interaction(trade$exp, trade$imp))

Finally, we try penhdfeppml_cluster_int:
reg <- penhdfeppml_cluster_int(y = y, x = x, fes = fes, cluster = fes$pair)

penhdfeppml_int 29

penhdfeppml_int One-Shot Penalized PPML Estimation with HDFE

Description

penhdfeppml_int is the internal algorithm called by penhdfeppml to fit a penalized PPML regres-
sion for a given type of penalty and a given value of the penalty parameter. It takes a vector with
the dependent variable, a regressor matrix and a set of fixed effects (in list form: each element in
the list should be a separate HDFE). The penalty can be either lasso or ridge, and the plugin method
can be enabled via the method argument.

Usage

penhdfeppml_int(
y,
x,
fes,
lambda,
tol = 1e-08,
hdfetol = 1e-04,
glmnettol = 1e-12,
penalty = "lasso",
penweights = NULL,
saveX = TRUE,
mu = NULL,
colcheck = TRUE,
init_z = NULL,
post = FALSE,
verbose = FALSE,
standardize = TRUE,
method = "placeholder",
cluster = NULL,
debug = FALSE

)

Arguments

y Dependent variable (a vector)

x Regressor matrix.

fes List of fixed effects.

lambda Penalty parameter (a number).

tol Tolerance parameter for convergence of the IRLS algorithm.

hdfetol Tolerance parameter for the within-transformation step, passed on to collapse::fhdwithin.

glmnettol Tolerance parameter to be passed on to glmnet::glmnet.

penalty A string indicating the penalty type. Currently supported: "lasso" and "ridge".

30 penhdfeppml_int

penweights Optional: a vector of coefficient-specific penalties to use in plugin lasso when
method == "plugin".

saveX Logical. If TRUE, it returns the values of x and z after partialling out the fixed
effects.

mu Optional: initial values of the conditional mean µ, to be used as weights in the
first iteration of the algorithm.

colcheck Logical. If TRUE, checks for perfect multicollinearity in x.

init_z Optional: initial values of the transformed dependent variable, to be used in the
first iteration of the algorithm.

post Logical. If TRUE, estimates a post-penalty regression with the selected variables.

verbose Logical. If TRUE, it prints information to the screen while evaluating.

standardize Logical. If TRUE, x variables are standardized before estimation.

method The user can set this equal to "plugin" to perform the plugin algorithm with
coefficient-specific penalty weights (see details). Otherwise, a single global
penalty is used.

cluster Optional: a vector classifying observations into clusters (to use when calculating
SEs).

debug Logical. If TRUE, this helps with debugging penalty weights by printing output
of the first iteration to the console and stopping the estimation algorithm.

Details

More formally, penhdfeppml_int performs iteratively re-weighted least squares (IRLS) on a trans-
formed model, as described in Breinlich, Corradi, Rocha, Ruta, Santos Silva and Zylkin (2020).
In each iteration, the function calculates the transformed dependent variable, partials out the fixed
effects (calling collapse::fhdwithin) and then and then calls glmnet::glmnet if the selected
penalty is lasso (the default). If the user selects ridge, the analytical solution is instead computed
directly using fast C++ implementation.

For information on the plugin lasso method, see penhdfeppml_cluster_int.

Value

If method == "lasso" (the default), an object of class elnet with the elements described in glmnet,
as well as:

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance.

• bic: Bayesian Information Criterion.

• phi: coefficient-specific penalty weights (only if method == "plugin".

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

If method == "ridge", a list with the following elements:

• beta: a 1 x ncol(x) matrix with coefficient (beta) estimates.

plugin_lasso_int 31

• mu: a 1 x length(y) matrix with the final values of the conditional mean µ.

• deviance.

• bic: Bayesian Information Criterion.

• x_resid: matrix of demeaned regressors.

• z_resid: vector of demeaned (transformed) dependent variable.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

To reduce run time, we keep only countries in the Americas:
americas <- countries$iso[countries$region == "Americas"]
trade <- trade[(trade$imp %in% americas) & (trade$exp %in% americas),]
Now generate the needed x, y and fes objects:
y <- trade$export
x <- data.matrix(trade[, -1:-6])
fes <- list(exp_time = interaction(trade$exp, trade$time),

imp_time = interaction(trade$imp, trade$time),
pair = interaction(trade$exp, trade$imp))

Finally, we try penhdfeppml_int with a lasso penalty (the default):
reg <- penhdfeppml_int(y = y, x = x, fes = fes, lambda = 0.1)

We can also try ridge:
reg <- penhdfeppml_int(y = y, x = x, fes = fes, lambda = 0.1, penalty = "ridge")

plugin_lasso_int Iceberg Lasso Implementation (in development)

Description

This is the internal function upon which the ìceberg wrapper is built. It performs standard plugin
lasso PPML estimation without fixed effects, relying on glmnet::glmnet. As the other internals in
the package, it needs a y vector and an x matrix.

32 select_fes

Usage

plugin_lasso_int(
y,
x,
tol = 1e-08,
glmnettol = 1e-12,
penweights = NULL,
colcheck = FALSE,
K = 50,
verbose = FALSE,
lambda = NULL,
phipost = FALSE

)

Arguments

y Dependent variable (a vector).

x Regressor matrix.

tol Tolerance parameter for convergence of the IRLS algorithm.

glmnettol Tolerance parameter to be passed on to glmnet::glmnet.

penweights Optional: a vector of coefficient-specific penalties to use in plugin lasso.

colcheck Logical. If TRUE, checks for perfect multicollinearity in x.

K Maximum number of iterations.

verbose Logical. If TRUE, prints information to the screen while evaluating.

lambda Penalty parameter (a number).

phipost Logical. If TRUE, it carries out a post-lasso estimation with just the selected
variables and reports the coefficients from this regression.

Value

A list with 14 elements, including beta, which is the only one we use in the wrapper. For a full list,
see glmnet.

select_fes Filtering fixed effect lists

Description

A helper function for xvalidate that filters a list of fixed effects and returns the modified list. Used
to split the fixed effects for cross-validation.

Usage

select_fes(fe_list, select_obs, list = TRUE)

standardize_wt 33

Arguments

fe_list A list of fixed effects.

select_obs A vector of selected observations / rows.

list Logical. If TRUE, it returns a list. Otherwise, a data frame.

Value

A modified list of fixed effects.

standardize_wt Weighted Standardization

Description

Performs weighted standardization of x variables. Used in fastridge.

Usage

standardize_wt(x, weights = rep(1/n, n), intercept = TRUE, return.sd = FALSE)

Arguments

x Regressor matrix.

weights Weights.

intercept Logical. If TRUE, adds an intercept.

return.sd Logical. If TRUE, it returns standard errors for the means.

Value

If return.sd == FALSE, it gives the matrix of standardized regressors. If return.sd == TRUE, then
it returns the vector of standard errors of the means of the variables.

trade International trade agreements data set

Description

A panel data set containing bilateral trade flows between 210 exporters and 262 importers between
1964 and 2016. The data set also contains information about trade agreements in force between
country pairs, as well as 16 dummies for specific provisions in those agreements (a small selection
from a broader data set).

Usage

trade

34 trade

Format

A data frame with 194,092 rows and 22 variables:

exp Exporter country (ISO 3166 code)

imp Importer country (ISO 3166 code).

time Year.

export Merchandise trade exports in USD.

id Agreement ID code.

agreement Agreement name.

ad_prov_14 Anti-dumping actions allowed and with specific provisions for material injury.

cp_prov_23 Does the agreement contain provisions that promote transparency?

tbt_prov_07 Technical Regulations - Is the use of international standards promoted?

tbt_prov_33 Does the agreement go beyond the TBT (Technical Barriers to Trade) Agreement?

tf_prov_41 Harmonization and common legal framework

tf_prov_45 Issuance of proof of origin

ser_prov_47 Does the agreement contain a standstill provision?

inv_prov_22 Does the agreement grant Fair and Equitable Treatment (FET)?

et_prov_38 Prohibits export-related performance requirements, subject to exemptions.

ipr_prov_44 Stipulates that GIs can be registered and protected through a TM system

env_prov_18 Does the agreement require states to control ozone-depleting substances?

ipr_prov_15 Incorporates/reaffirms all multilateral agreements to which both parties are a party
(general obligation)

moc_prov_21 Does the transfer provision explicitly exclude “good faith and non-discriminatory
application of its laws” related to bankruptcy, insolvency or creditor rights protection?

ste_prov_30 Does the agreement regulate subsidization to state enterprises?

lm_prov_10 Does the agreement include reference to internationally recognized labor standards?

cp_prov_26 Does the agreement regulate consumer protection?

Source

Data on international trade flows was obtained from Comtrade. Provision data comes from: Mattoo,
A., N. Rocha, M. Ruta (2020). Handbook of deep trade agreements. Washington, DC: World Bank.

xeex 35

xeex XeeX Matrix Computation

Description

Given matrix ee’ and matrix X, compute X(k)’ee’X(k) for each regressor X.

Usage

xeex(X, e, S)

Arguments

X Regressor matrix.

e Residuals.

S Cluster sizes.

Value

The matrix product X(k)’ee’X(k).

xvalidate Implementing Cross Validation

Description

This is the internal function called by mlfitppml_int to perform cross-validation, if the option is
enabled. It is available also on a stand-alone basis in case it is needed, but generally users will be
better served by using the wrapper mlfitppml.

Usage

xvalidate(
y,
x,
fes,
IDs,
testID = NULL,
tol = 1e-08,
hdfetol = 1e-04,
colcheck = TRUE,
init_mu = NULL,
init_x = NULL,
init_z = NULL,
verbose = FALSE,

36 xvalidate

cluster = NULL,
penalty = "lasso",
method = "placeholder",
standardize = TRUE,
penweights = rep(1, ncol(x_reg)),
lambda = 0

)

Arguments

y Dependent variable (a vector)
x Regressor matrix.
fes List of fixed effects.
IDs A vector of fold IDs for k-fold cross validation. If left unspecified, each obser-

vation is assigned to a different fold (warning: this is likely to be very resource-
intensive).

testID Optional. A number indicating which ID to hold out during cross-validation.
If left unspecified, the function cycles through all IDs and reports the average
RMSE.

tol Tolerance parameter for convergence of the IRLS algorithm.
hdfetol Tolerance parameter for the within-transformation step, passed on to collapse::fhdwithin.
colcheck Logical. If TRUE, checks for perfect multicollinearity in x.
init_mu Optional: initial values of the conditional mean µ, to be used as weights in the

first iteration of the algorithm.
init_x Optional: initial values of the independent variables.
init_z Optional: initial values of the transformed dependent variable, to be used in the

first iteration of the algorithm.
verbose Logical. If TRUE, it prints information to the screen while evaluating.
cluster Optional: a vector classifying observations into clusters (to use when calculating

SEs).
penalty A string indicating the penalty type. Currently supported: "lasso" and "ridge".
method The user can set this equal to "plugin" to perform the plugin algorithm with

coefficient-specific penalty weights (see details). Otherwise, a single global
penalty is used.

standardize Logical. If TRUE, x variables are standardized before estimation.
penweights Optional: a vector of coefficient-specific penalties to use in plugin lasso when

method == "plugin".
lambda Penalty parameter, to be passed on to penhdfeppml_int or penhdfeppml_cluster_int.

Details

xvalidate carries out cross-validation with the user-provided IDs by holding out each one of them,
sequentially, as in the k-fold procedure (unless testID is specified, in which case it just uses this ID
for validation). After filtering out the holdout sample, the function simply calls penhdfeppml_int
and penhdfeppml_cluster_int to estimate the coefficients, it predicts the conditional means for the
held-out observations and finally it calculates the root mean squared error (RMSE).

xvalidate 37

Value

A list with two elements:

• rmse: root mean squared error (RMSE).

• mu: conditional means.

References

Breinlich, H., Corradi, V., Rocha, N., Ruta, M., Santos Silva, J.M.C. and T. Zylkin (2021). "Ma-
chine Learning in International Trade Research: Evaluating the Impact of Trade Agreements", Pol-
icy Research Working Paper; No. 9629. World Bank, Washington, DC.

Correia, S., P. Guimaraes and T. Zylkin (2020). "Fast Poisson estimation with high dimensional
fixed effects", STATA Journal, 20, 90-115.

Gaure, S (2013). "OLS with multiple high dimensional category variables", Computational Statis-
tics & Data Analysis, 66, 8-18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). "Regularization paths for generalized linear
models via coordinate descent", Journal of Statistical Software, 33, 1-22.

Belloni, A., V. Chernozhukov, C. Hansen and D. Kozbur (2016). "Inference in high dimensional
panel models with an application to gun control", Journal of Business & Economic Statistics, 34,
590-605.

Examples

First, we need to transform the data. Start by filtering the data set to keep only countries in
the Americas:
americas <- countries$iso[countries$region == "Americas"]
trade <- trade[(trade$imp %in% americas) & (trade$exp %in% americas),]
Now generate the needed x, y and fes objects:
y <- trade$export
x <- data.matrix(trade[, -1:-6])
fes <- list(exp_time = interaction(trade$exp, trade$time),

imp_time = interaction(trade$imp, trade$time),
pair = interaction(trade$exp, trade$imp))

We also need to create the IDs. We split the data set by agreement, not observation:
id <- unique(trade[, 5])
nfolds <- 10
unique_ids <- data.frame(id = id, fold = sample(1:nfolds, size = length(id), replace = TRUE))
cross_ids <- merge(trade[, 5, drop = FALSE], unique_ids, by = "id", all.x = TRUE)
Finally, we try xvalidate with a lasso penalty (the default) and two lambda values:
reg <- xvalidate(y = y, x = x, fes = fes, lambda = 0.001,

IDs = cross_ids$fold, verbose = TRUE)

Index

∗ datasets
countries, 5
trade, 33

AtA, 3

cluster_matrix, 3
collinearity_check, 4
compute_fes, 4
countries, 5

eigenMapMatMult (eigenMatMult), 6
eigenMatMult, 6

fastolsCpp, 6
fastridge, 7
fastridgeCpp, 7
faststddev, 8
fastwmean, 8

genfes, 9
genmodel, 9
glmnet, 23, 25, 28, 30, 32

hdfeppml, 10, 18
hdfeppml_int, 11, 12, 20

iceberg, 14

manyouter, 16
mlfitppml, 16
mlfitppml_int, 17, 19

penhdfeppml, 18, 22
penhdfeppml_cluster, 18, 23, 24
penhdfeppml_cluster_int, 20, 25, 26, 30,

36
penhdfeppml_int, 20, 22, 23, 29, 36
plugin_lasso_int, 31

select_fes, 32

standardize_wt, 33

trade, 33

xeex, 35
xvalidate, 18, 20, 35

38

	AtA
	cluster_matrix
	collinearity_check
	compute_fes
	countries
	eigenMatMult
	fastolsCpp
	fastridge
	fastridgeCpp
	faststddev
	fastwmean
	genfes
	genmodel
	hdfeppml
	hdfeppml_int
	iceberg
	manyouter
	mlfitppml
	mlfitppml_int
	penhdfeppml
	penhdfeppml_cluster
	penhdfeppml_cluster_int
	penhdfeppml_int
	plugin_lasso_int
	select_fes
	standardize_wt
	trade
	xeex
	xvalidate
	Index

