Package 'phonR'

August 25, 2016
Type Package
Title Tools for Phoneticians and Phonologists
Version 1.0-7
Date 2016-08-22
Author Daniel R. McCloy
Maintainer Daniel R. McCloy drmccloy@uw.edu
Depends R (>=2.10)
Imports splancs, deldir, plotrix, stats, grDevices, graphics
Description Tools for phoneticians and phonologists, including functions for normalization and plotting of vowels.

License GPL-3
URL http://drammock.github.io/phonR/
BugReports https://github.com/drammock/phonR/issues
LazyLoad yes
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-08-25 22:37:29

R topics documented:

indoVowels . 2
Normalize vowel formant frequencies . 2
Plot vowel formant frequencies . 5
Repulsive force . 8
Vowel space area functions . 11
Index 13

Description

This data set gives F1 and F2 values for five vowels of Standard Indonesian, as spoken by eight speakers (4 male, 4 female), measured from wordlist recordings.

Usage

indo

Format

A data frame of 1725 rows, with columns subj, gender, vowel, f1, and f2.

Source

McCloy, D. R. 2014 "Phonetic effects of morphological structure in Indonesian vowel reduction". Proceedings of Meetings on Acoustics 12, 060009. http://dx.doi.org/10.1121/1.4870068

```
Normalize vowel formant frequencies
    Normalize formant frequency values using a variety of algorithms
```


Description

Functions for transforming vowel formant frequency data measured in Hertz, using one of several normalization schemes commonly used in phonetic and sociolinguistic research. normVowels is a convenience function wrapping to the individual norm[Method] functions.

Usage

normBark(f)
normErb(f)
normLog(f)
normMel(f)
normLobanov(f, group=NULL)
normLogmean(f, group=NULL, exp=FALSE, ...)
normNearey1 (f, group=NULL, exp=FALSE, ...)
normNearey2(f, group=NULL, exp=FALSE, ...)
normSharedLogmean(f, group=NULL, exp=FALSE, ...)
normWattFabricius(f, vowel, group=NULL)
normVowels(method, f0=NULL, f1=NULL, f2=NULL, f3=NULL,
vowel=NULL, group=NULL, ...)

Arguments

f
vow
vowel Vector or factor of vowel symbols, with length (vowel)==nrow(f). Used only in normVowels(method="wattfabricius", ...) or normWattFabricius(...).
group Vector or factor indicating rows of f that should be normalized together. This is useful for, e.g., calculating talker-intrinsic normalizations when group encodes talker identity.
$\exp \quad$ Logical; should the result of the logmeans calculation be passed through the exp function before being returned?
$f 0, f 1, f 2, f 3 \quad$ Separate vectors of formant or fundamental frequency values used in the convenience method plotVowels. f 1 and f 2 are required when method is "wattfabricius", "logmean", "shared", "nearey1", or "nearey2".
method Specification of the normalization method to use when calling the convenience method normVowels. Possible values are "bark", "erb", "lobanov", "log", "logmean", "mel", "shared", and "wattfabricius". "zscore" is an accepted synonym for "lobanov"; "nearey 1 " is an accepted synonym for "logmean"; "nearey 2 " is an accepted synonym for "shared"; and "scentroid", is an accepted synonym for "wattfabricius".

Additional arguments passed to colMeans by functions normLogmean and normSharedLogmean (useful for specifying the value of na.rm)

Details

normLogmean is a synonym for normNearey1, which is also sometimes confusingly called "single logmean". normSharedLogmean is a synonym for normNearey2. The argument exp=TRUE for these functions will yield values that are consistent with the norm. nearey implementation, which takes the result of Nearey's original formulae and uses it as the exponent of the base of the natural logarithm (presumably so that the function always yields positive values).

Note that normErb returns the "ERB-rate scale" value (i.e., the number of ERBs below the given frequency), not the ERB of the auditory filter centered at the given frequency.
The implementation of the Watt-Fabricius method varies slightly from the formula in Watt \& Fabricius (2002), since normWattFabricius simply calculates which vowel has the highest mean F1 value and designates it as the low corner of the triangle, rather than asking the user to expressly specify the "TRAP" or "START" vowel. Similarly, normWattFabricius simply calculates which vowel has the highest mean F2 value and uses that to calculate the upper left corner, rather than expressly looking for the mean of the "point-vowel" /i/. The upper right corner is, as in the original method, derived from the other two. If the vowels with the highest mean F1 and highest mean F2 are not the same pair of vowels for all members of group, normWattFabricius returns an error.

Value

Most of the functions return a vector or matrix of the same dimensions as were passed in. The exceptions are normVowels, which returns an n-by-m matrix of n data points by m formants with
formants in ascending order with fundamental frequency first (if present), and normWattFabricius (or normVowels with method=wattfabricius), which only and always returns F1 and F2, regardless of whether f0 and F3 were supplied.

Author(s)

McCloy, Daniel drmccloy@uw.edu

References

Glasberg, B. R., \& Moore, B. C. J. 1990 "Derivation of auditory filter shapes from notchednoise data." Hearing Research, 47(1-2), 103-138. http://dx.doi.org/10.1016/0378-5955(90) 90170-T

Lobanov, B. M. 1971 "Classification of Russian vowels spoken by different speakers." The Journal of the Acoustical Society of America, 49(2), 606-608. http://dx. doi . org/10.1121/1.1912396

McCloy, D. R. 2012 "Normalizing and plotting vowels with the phonR package." Technical Reports of the UW Linguistic Phonetics Laboratory. http://dan.mccloy.info/pubs/McCloy2012_ phonR.pdf

Nearey, T. M. 1978 "Phonetic feature systems for vowels" (Doctoral dissertation, University of Alberta). Reprinted by the Indiana University Linguistics Club. http: //www. ualberta.ca/~tnearey/ Nearey1978_compressed.pdf

Stevens, S. S., \& Volkmann, J. 1940 "The relation of pitch to frequency: A revised scale." The American Journal of Psychology, 53(3), pp. 329-353.

Traunmuller, H. 1990 "Analytical expressions for the tonotopic sensory scale." The Journal of the Acoustical Society of America, 88(1), 97-100. http://dx.doi.org/10.1121/1. 399849

Watt, D., \& Fabricius, A. H. 2002 "Evaluation of a technique for improving the mapping of multiple speakers' vowel spaces in the F1 ~ F2 plane." Leeds Working Papers in Linguistics and Phonetics, 9, 159-173.

Examples

```
    data(indoVowels)
    bark <- with(indo, normBark(cbind(f1, f2)))
    erbn <- with(indo, normErb(cbind(f1, f2)))
    mel <- with(indo, normMel(cbind(f1, f2)))
    lobanov <- with(indo, normLobanov(cbind(f1, f2), group=subj))
    lognormed <- with(indo, normLog(cbind(f1, f2)))
    # using the convenience wrapper:
    bark <- with(indo, normVowels('bark', f1=f1, f2=f2))
    wattfab <- with(indo, normVowels('wattfabricius', f1=f1, f2=f2,
        vowel=vowel, group=subj))
```

Plot vowel formant frequencies
Plot vowel formant data and a variety of derivative measures.

Description

Generates high-quality plots of provided formant values using either the default onscreen device (X11, Quartz, or Win32) or direct-to-file using built-in R file output methods (PDF, SVG, JPG, PNG, TIFF, or BMP).

Usage

```
plotVowels(f1, f2, vowel=NULL, group=NULL,
    plot.tokens=TRUE, pch.tokens=NULL,
    cex.tokens=NULL, alpha.tokens=NULL,
    plot.means=FALSE, pch.means=NULL,
    cex.means=NULL, alpha.means=NULL,
    hull.line=FALSE, hull.fill=FALSE,
    hull.args=NULL, poly.line=FALSE,
    poly.fill=FALSE, poly.args=NULL,
    poly.order=NA, ellipse.line=FALSE,
    ellipse.fill=FALSE, ellipse.conf=0.6827,
    ellipse.args=NULL, diph.arrows=FALSE,
    diph.args.tokens=NULL, diph.args.means=NULL,
    diph.label.first.only=TRUE,
    diph.mean.timept=1, diph.smooth=FALSE,
    heatmap=FALSE, heatmap.args=NULL,
    heatmap.legend=FALSE, heatmap.legend.args=NULL,
    var.col.by=NULL, var.sty.by=NULL,
    fill.opacity=0.3, label.las=NULL,
    legend.kwd=NULL, legend.args=NULL,
    pretty=FALSE, output='screen', ...)
```


Arguments

$\mathrm{f} 1, \mathrm{f} 2 \quad$ Vector or matrix of formant frequency values. To plot multiple timepoints for each vowel, f1 and f2 should be matrices with vowel tokens varying along the rows and timepoints varying across the columns.
vowel Vector of vowel symbols/labels.
group Vector or factor that determines the groups used in calculating vowel means, e.g., a factor indicating "gender", "speaker", "sociolinguistic register", etc.
plot.tokens Logical; should individual vowel tokens be plotted?
pch.tokens Vector of strings or integers; the symbol(s) to use when plotting vowel tokens. Integers are interpreted as standard R pch values (see points).
cex.tokens Numeric; size of individual vowel points relative to par("cex").

alpha.tokens	Numeric in range [0,1], indicating opacity of plotted vowel tokens.
plot.means	Logical; should individual vowel tokens be plotted?
pch.means	Vector of strings or integers; the symbol(s) to use when plotting vowel means. Integers are interpreted as standard R pch values (see points).
cex.means	Size of vowel means relative to par ("cex").
alpha.means	Numeric in range [0,1], indicating opacity of plotted vowel means.
hull.line	Logical; should a line be drawn tracing the convex hull encompassing all tokens (separately for each level of group)?
hull.fill	Logical; should the convex hull(s) have a color fill?
hull.args, poly.args, ellipse.args	
	Named list of arguments to be passed to polygon. Useful for controlling line width, etc. See "Details" for notes about color handling.
poly.line	Logical; should a line be drawn tracing the polygon connecting the mean values for each vowel (separately for each level of group)?
poly.fill	Logical; should the polygon(s) connecting mean values for each vowel have a color fill?
poly.order	Vector or factor indicating the order in which the polygon vertices should be connected. Should match the levels of factor (vowel). If there are values of vowel not included in poly. order, they will not be connected to the polygon line.
ellipse.line	Logical; should vowel density ellipses be drawn with an outer line?
ellipse.fill	Logical; should vowel density ellipses be filled?
ellipse.conf	Numeric in range (0,1$]$; the size of the ellipse expressed as a confidence level of the estimate of the true mean (i.e., 0.95 gives a 95% confidence ellipse). The default value (0.6827) corresponds to plus-or-minus one sample standard deviation along the major and minor axes of the bivariate normal density contour.
diph.args.tokens, diph.args.means	
	List of named arguments to be passed to points and/or arrows when plotting tokens or means (ignored if f 1 and f 2 are 1-dimensional). Default is to plot bare lines (type="l") when pch. tokens is NULL, to draw points and lines overplotted (type="o") when diph. arrows=FALSE, and to plot bare lines with the first timepoint of each diphthong plotted when diph. arrows=TRUE. When pretty=TRUE and diph. arrows=TRUE, additional default settings are length=0.1 and angle=20. For diph.args.means, lwd defaults to 2 * par("lwd") when pretty=TRUE. All of these defaults are overridden by values passed to diph.args.tokens or diph.args.means in the function call.
diph.label.first.only	
	Logical; if plotting diphthongs, should a symbol or label be drawn only at the first timepoint? Note that if plotting means, the label or symbol may not correspond to the first timepoint; it depends on the value of diph.mean. timept.
diph.mean.timept	
	A strictly positive integer indicating which timepoint of the diphthongs should be used to calculate means, ellipses, and polygons. For example, if the f1 and

f2 arguments are N -by- 5 matrices where the 3rd column of each represents the formant measurement at the vowel midpoint (with the other columns providing 2 onglide and 2 offglide measurements), you can plot the means, ellipses, and polygons based on the midpoint measures by specifying diph. mean. timept=3.
diph.smooth Logical; should a smoothing spline be drawn instead of segments connecting individual timepoints? This feature is under development, unstable, unsupported, and to the extent that it is implemented, it is only implemented for tokens, not means.
heatmap Logical; should a repulsive force heatmap be drawn?
heatmap.args Named list of additional arguments passed to repulsiveForceHeatmap. The arguments x, y, and type are passed automatically by plotVowels; heatmap.args is probably most useful for controlling resolution, colormap, and the xform function.
heatmap. legend Logical; should a legend be drawn showing the color scale used in the repulsive force heatmap?
heatmap.legend.args
Named list of additional arguments passed to repulsiveForceHeatmapLegend. Parameters likely to be user-specified here are x and y for specifying the endpoints of the colorbar, labels for label text at the two ends of the colorbar, and smoothness for the number of color steps to display (limited by the number of levels in the color scale used). See repulsiveForceHeatmapLegend for a more complete description of the available arguments.

var.col.by	Vector or factor indicating the dimension along which to vary color.
var.sty.by	Vector or factor indicating the dimension along which to vary linetype and plot- ting symbol.
fill.opacity	Number in the range [0, 1] indicating the opacity of color fills for ellipses, hulls, and polygons (if drawn). Does not affect force. heatmap colors, which are specified via force.colmap.
legend.kwd	Keyword indicating legend placement (see legend). If NULL (the default), no legend will be printed.
label.las	Controls the orientation of axis labels relative to the axis line (independently from the axis tick numbers). Possible values are integers 0-4 (see par), or NULL (to use the default value of par("las"), or a value passed to plotVowels as
legend.args	las if available). Named list of additional arguments to be passed to legend, for controlling things like inset, ncol, seg.len, etc.
pretty	Logical; a switch that sets various graphical parameters: mar, las, mgp, xpd, fg, and tcl, as well as arrow parameters like length and angle and plotVowels- specific parameters such as color. palette. It is permissible to set pretty=TRUE and also pass any of these parameters to plotVowels to override the pretty de- faults.
output	Graphical device to plot to. Supported values are "screen", "pdf", "svg", "jpg", "tif", "png", "bmp".
Other graphical parameters passed to methods; e.g., width, height, units, asp,	

Details

Notes on color handling. If no col or border arguments are passed to hull.args, poly.args, or ellipse.args, then color is handled as follows: if pretty=FALSE, colors default to the values in palette(), with opacity for fills set by fill.opacity. If pretty=TRUE, equally-spaced hues of HCL colors are used instead of palette(). If the values passed to var.col.by and vowel are identical, hull and polygon lines are drawn in black, and fills are drawn black with appropriate fill.opacity.

Author(s)

McCloy, Daniel drmccloy@uw.edu

See Also

normVowels

Examples

```
data(indoVowels)
with(indo, plotVowels(f1, f2, vowel, group=gender, plot.means=TRUE,
                    pch.means=vowel, ellipse.line=TRUE, poly.line=TRUE,
                    poly.order=c('i','e','a','o','u'), var.col.by=vowel,
                    var.sty.by=gender, pretty=TRUE, alpha.tokens=0.3,
                    cex.means=2))
# simulate some diphthongs
f1delta <- sample(c(-10:-5, 5:15), nrow(indo), replace=TRUE)
f2delta <- sample(c(-15:-10, 20:30), nrow(indo), replace=TRUE)
f1coefs <- matrix(sample(c(2:5), nrow(indo) * 2, replace=TRUE),
                nrow=nrow(indo))
f2coefs <- matrix(sample(c(3:6), nrow(indo) * 2, replace=TRUE),
                nrow=nrow(indo))
indo <- within(indo, {
    f1a <- f1 + f1delta * f1coefs[,1]
    f2a <- f2 + f2delta * f2coefs[,1]
    f1b <- f1a + f1delta * f1coefs[,2]
    f2b <- f2a + f2delta * f2coefs[,2]
    })
with(indo, plotVowels(cbind(f1, f1a, f1b), cbind(f2, f2a, f2b), vowel,
                    group=gender, plot.tokens=TRUE, pch.tokens=NA,
                    alpha.tokens=0.3, plot.means=TRUE, pch.means=vowel,
                    var.col.by=vowel, var.sty.by=gender, pretty=TRUE,
                    diph.arrows=TRUE, diph.args.tokens=list(lwd=0.8),
                    diph.args.means=list(lwd=2)))
```


Description

For each point, calculates the sum of inverse squared distances to all points that are not of the same type.

Usage

```
repulsiveForce(x, y, type, xform=log, exclude.inf=TRUE)
repulsiveForceHeatmap(x, y, type=NULL, xform=log,
    exclude.inf=TRUE, resolution=10,
    colormap=NULL, fast=FALSE, ...)
repulsiveForceHeatmapLegend(x, y, labels=c("low", "high"),
    pos=c(1, 3), colormap=NULL,
    smoothness=50, lend=2, lwd=12, ...)
```


Arguments

x, y	
type	Numeric vector of x and y values (e.g., F2 and F1 frequencies), or in the case of repulsiveForceHeatmapLegend, length-2 vectors specifying the endpoints of the legend colorbar.
Attribute of the (x, y) points used to interpolate values for intermediate points.	
In typical linguistic usage of this function, type would be the vowel identities	
of the F2 and F1 values passed to x and y (respectively).	
A function to apply to the calculated force values before applying the colormap.	
Default is to use the log function.	

fast	Logical; should an interpolation algorithm be used instead of the normal repul- sive force function when assigning force values to grid points? If FALSE, the function assigns each grid point a vowel identity based on its nearest neighbor and assigns a color value based on the repulsive force that would occur for a vowel at that location (if it had existed in the dataset). If TRUE, the function performs a Delaunay triangulation of the vowel space using the vowel points in the dataset, and then uses Juan Pineda's triangle filling algorithm to interpolate force values for grid points inside the triangles. This method is fast even at high resolutions, but may appear discontinuous at the edges of adjacent triangles. Vector of strings (length 2); the labels to write at each end of the force legend color bar. Ignored if heatmap. legend is FALSE.
labels	Vector of integers (length 2); position codes for the colorbar labels. See the pos argument of text for explanation.
pos	Number of color steps to use when drawing the legend colorbar. Limited by the number of colors specified in colormap; values larger than length (colormap)
smoothness	will be ignored and use length(colormap) instead.
End-cap style for the individual segments of the colorbar. See par.	

Details

Given endpoints x and y, forceHeatmapLegend draws a colorbar legend with smoothness number of steps using the provided colormap (or defaults to grayscale if colormap is NULL.

Value

repulsiveForce returns the sum of the repulsive forces calculated at each point (x, y).

Author(s)

McCloy, Daniel drmccloy@uw.edu

References

Liljencrants, J., \& Lindblom, B. 1972 "Numerical simulation of vowel quality systems: The role of perceptual contrast". Language, 48(4), 839-862. http: //www. jstor.org/stable/411991

McCloy, D. R., Wright, R. A., \& Souza, P. E. 2014 "Talker versus dialect effects on speech intelligibility: A symmetrical study". Language and Speech. http://dx.doi.org/10.1177/ 0023830914559234

Pineda, J. 1988 "A parallel algorithm for polygon rasterization". ACM SIGGRAPH Computer Graphics, 22(4), 17-20. http://dx.doi.org/10.1145/378456.378457

See Also

plotVowels

Examples

> require(plotrix)
data(indoVowels)
force <- with(indo[indo\$subj==indo\$subj[1],],
repulsiveForce(f2, f1, vowel))
colmap <- color.scale(x=0:100, cs1=c(0, 180), cs2=100,
cs3=c(25, 100), color.spec='hcl')
with(indo[indo\$subj==indo\$subj[1],], repulsiveForceHeatmap(f2, f1, type=vowel, resolution=10, colormap=colmap, add=FALSE))
$x l<-r e p(m a x(r a n g e(i n d o \$ f 2)), ~ 2)$
yl <- range(indo\$f1) + c(abs(diff(range(indo\$f1)) / 2), 0)
repulsiveForceHeatmapLegend(xl, yl, colormap=colmap, useRaster=TRUE)

Vowel space area functions
Calculate the area of a vowel space

Description

Calculate the area of an F2 x F1 vowel space, either as the area of a polygon connecting vowel formant means, or the area of a convex hull encompassing all tokens.

Usage

```
convexHullArea(f1, f2, group=NULL)
vowelMeansPolygonArea(f1, f2, vowel, poly.order, group=NULL)
```


Arguments

f1	Numeric vector of first formant frequencies.
f2	Numeric vector or second formant frequencies.
vowel	Vector or factor of vowel identifiers (typically a character vector, though numeric will work).
poly.order	Order in which the polygon vertices should be connected. Should contain each value in vowel once.
group	Vector or factor indicating groupings of points to fit separate convex hulls to. If NULL (the default), a single hull will be generated for all points.

Author(s)

McCloy, Daniel drmccloy@uw.edu

See Also

chull, areapl

Examples

data(indoVowels)
hull.area <- with(indo, convexHullArea(f1, f2, group=subj))
poly.area <- with(indo, vowelMeansPolygonArea(f1, f2, vowel, poly.order=c("i", "e", "a", "o", "u"), group=subj))

Index

```
*Topic datasets
    indoVowels, 2
*Topic device
    Plot vowel formant frequencies,5
*Topic hplot
    Plot vowel formant frequencies,5
*Topic methods
    Normalize vowel formant
    frequencies, 2
    Repulsive force,8
    Vowel space area functions,11
areapl, 11
arrows, }
chull, 11
colMeans, 3
color.scale, }
color.scale.lines, 9, 10
convexHullArea (Vowel space area
        functions),11
exp,3
image, 10
indo (indoVowels), 2
indoVowels, 2
legend, }
log, }
norm.nearey, 3
Normalize vowel formant frequencies,2
normBark (Normalize vowel formant
    frequencies), 2
normErb (Normalize vowel formant
    frequencies),}
normLobanov (Normalize vowel formant
    frequencies),2
normLog(Normalize vowel formant
    frequencies),2
```

normLogmean (Normalize vowel formant frequencies), 2
normMel (Normalize vowel formant frequencies), 2
normNearey1 (Normalize vowel formant frequencies), 2
normNearey2 (Normalize vowel formant frequencies), 2
normSharedLogmean (Normalize vowel formant frequencies), 2
normVowels, 8
normVowels (Normalize vowel formant frequencies), 2
normWattFabricius (Normalize vowel formant frequencies), 2
par, 7, 10
Plot vowel formant frequencies, 5
plotVowels, 10
plotVowels (Plot vowel formant frequencies), 5
points, 5, 6
polygon, 6
Repulsive force, 8
repulsiveForce (Repulsive force), 8
repulsiveForceHeatmap, 7
repulsiveForceHeatmap (Repulsive force), 8
repulsiveForceHeatmapLegend, 7
repulsiveForceHeatmapLegend (Repulsive force), 8
text, 10
Vowel space area functions, 11
vowelMeansPolygonArea (Vowel space area functions), 11

