
Package ‘potools’
July 12, 2021

Type Package

Title Tools for Internationalization and Portability in R Packages

Version 0.2.2

Author Michael Chirico

Depends R (>= 4.0.0)

Imports data.table

Suggests crayon, knitr, rmarkdown, testthat

SystemRequirements gettext

Maintainer Michael Chirico <MichaelChirico4@gmail.com>

Description Translating messages in R packages is managed using the po top-level direc-
tory and the 'gettext' program. This package provides some helper functions for building this sup-
port in R packages, e.g. common validation & I/O tasks.

License GPL-3

URL https://github.com/MichaelChirico/potools

BugReports https://github.com/MichaelChirico/potools/issues

Encoding UTF-8

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-12 07:00:02 UTC

R topics documented:
check_cracked_messages . 2
check_potools_sys_reqs . 3
check_untranslated_cat . 4
check_untranslated_src . 5
get_message_data . 6
translate_package . 8
write_po_file . 12

1

https://github.com/MichaelChirico/potools
https://github.com/MichaelChirico/potools/issues

2 check_cracked_messages

Index 16

check_cracked_messages

Check for cracked messages more suitable for templating

Description

Diagnose the R messages in a package to discover the presence of "cracked" messages better served
for translation by templating. See Details.

Usage

check_cracked_messages(message_data)

Arguments

message_data A data.table, or object convertible to one.

Details

Error messages built like stop("You gave ",n," arguments,but ",m," are needed.") are in gen-
eral hard for translators – the correct translation may be in a totally different order (e.g., this is often
the case for Japanese). It is preferable instead to use gettextf to build a templated message like
stop(gettextf("You gave %d arguments but %d are needed.",n,m)). Translators are then free
to rearrange the template to put the numeric pattern where it fits most naturally in the target lan-
guage.

Value

A data.table with columns call, file, line_number, and replacement summarizing the results.

Author(s)

Michael Chirico

See Also

translate_package, update_pkg_po

Examples

pkg <- file.path(system.file(package = 'potools'), 'pkg')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

first, extract message data
message_data = get_message_data(tmp_pkg)

check_potools_sys_reqs 3

now, diagnose the messages for any "cracked" ones
check_cracked_messages(message_data)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg, message_data)

check_potools_sys_reqs

Check if the proper system utilities for running package translation are
installed

Description

potools uses the same gettext command line tools that R itself does to run translation. These are
required for translation to work properly; this function is mainly for testing use & checks whether
the current environment is equipped for translation.

Usage

check_potools_sys_reqs()

Details

Specifically, potools relies on these command-line utilities

1. msgmerge

2. msgfmt

3. msginit

4. msgconv

Value

TRUE if the system is ready for translation, otherwise a message suggesting how to proceed.

Author(s)

Michael Chirico

See Also

update_pkg_po

4 check_untranslated_cat

check_untranslated_cat

Check for untranslated messages emitted by cat

Description

Diagnose the R messages in a package to discover the presence of messages emitted by cat which
haven’t been translated (i.e., passed through gettext, gettextf, or ngettext).

Usage

check_untranslated_cat(message_data)

Arguments

message_data A data.table, or object convertible to one.

Details

The function cat is commonly used to emit messages to users (e.g., for a verbose mode), but it
is not equipped for translation. Instead, messages must first be translated and then emitted. Any
character literals found in the package’s R code used in cat but not translated will be flagged by
this function.

For flagged calls, a potential replacement is offered, built using gettext or gettextf (depending
on whether one or more ... arguments are supplied to cat). For the gettextf case, the suggested
template is always %s (string) since this works for all inputs; the author should tighten this to the
appropriate sprintf template marker as appropriate.

NB: not all cat calls are included – in particular, no cat call specifying a non-default file are
flagged, nor are any where the supplied sep is not a character literal (e.g., sep=x instead of sep="")

Value

A data.table with columns call, file, line_number, and replacement summarizing the results.

Author(s)

Michael Chirico

See Also

translate_package, update_pkg_po

check_untranslated_src 5

Examples

pkg <- file.path(system.file(package = 'potools'), 'pkg')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

first, extract message data
message_data = get_message_data(tmp_pkg)

now, diagnose the messages for any untranslated strings shown through cat()
check_untranslated_cat(message_data)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg, message_data)

check_untranslated_src

Check for cracked messages in C/C++ sources

Description

Diagnose the C/C++ messages in a package to discover untranslated messages

Usage

check_untranslated_src(message_data)

Arguments

message_data A data.table, or object convertible to one.

Details

This diagnostic looks for literal char arrays passed to messaging functions (as identified by translate_package)
which are not marked for translation (by tagging them for translation with _ or N_ macros). These
strings cannot be translated until they are so marked.

Value

A data.table with columns call, file, line_number, and replacement summarizing the results.
replacement is NA at this time, i.e., no replacement is provided.

Author(s)

Michael Chirico

6 get_message_data

See Also

translate_package, update_pkg_po

Examples

pkg <- file.path(system.file(package = 'potools'), 'pkg')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

first, extract message data
message_data = get_message_data(

tmp_pkg,
custom_translation_functions = list(src = "ReverseTemplateMessage:2")

)

now, diagnose the messages for any untranslated messages in C/C++
check_untranslated_src(message_data)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg, message_data)

get_message_data Extract user-visible messages from a package

Description

This function looks in the R and src directories of a package for user-visible messages and compiles
them as a data.table to facilitate analyzing this corpus as such.

Usage

get_message_data(
dir=".",
custom_translation_functions = list(R = NULL, src = NULL),
verbose=FALSE

)

Arguments

dir Character, default the present directory; a directory in which an R package is
stored.

custom_translation_functions

A list with either/both of two components, R and src, together governing how
to extract any non-standard strings from the package. See Details in translate_package.

verbose Logical, default FALSE. Should extra information about progress, etc. be re-
ported?

get_message_data 7

Value

A data.table with the following schema:

1. message_source, character, either "R" or "src", saying whether the string was found in
the R or the src folder of the package

2. type, character, either "singular" or "plural"; "plural" means the string came from
ngettext and can be pluralized

3. file, character, the file where the string was found

4. msgid, character, the string (character literal or char array as found in the source); missing
for all type == "plural" strings

5. msgid_plural, list(character,character), the strings (character literals or char arrays
as found in the source); the first applies in English for n=1 (see ngettext), while the second
applies for n!=1; missing for all type == "singular" strings

6. call, character, the full call containing the string that was found

7. line_number, integer, the line in file where the string was found

8. is_repeat, logical, whether the msgid is a duplicate within this message_source

9. is_marked_for_translation, logical, whether the string is marked for translation (e.g., in
R, all character literals supplied to a ... argument in stop are so marked)

10. is_templated, logical, whether the string is templatable (e.g., uses %s or other formatting
markers)

Author(s)

Michael Chirico

See Also

translate_package, write_po_file

Examples

pkg <- system.file('pkg', package = 'potools')

get_message_data(pkg)

includes strings provided to the custom R wrapper function catf()
get_message_data(pkg, custom_translation_functions = list(R = "catf:fmt|1"))

includes untranslated strings provided to the custom
C/C++ wrapper function ReverseTemplateMessage()
get_message_data(

pkg,
custom_translation_functions = list(src = "ReverseTemplateMessage:2")

)

cleanup
rm(pkg)

8 translate_package

translate_package Interactively provide translations for a package’s messages

Description

This function handles the "grunt work" of building and updating translation libraries. In addition to
providing a friendly interface for supplying translations, some internal logic is built to help make
your package more translation-friendly.

To do so, it builds on low-level command line tools from gettext. See Details.

Usage

translate_package(
dir='.', languages,
diagnostics = list(
check_cracked_messages,
check_untranslated_cat,
check_untranslated_src

),
custom_translation_functions = list(R = NULL, src = NULL),
max_translations = Inf,
use_base_rules = package %chin% .potools$base_package_names,
copyright = NULL, bugs = '', verbose=FALSE

)

Arguments

dir Character, default the present directory; a directory in which an R package is
stored.

languages Character vector; locale codes to which to translate. See Details.

diagnostics A list of diagnostic functions to be run on the package’s message data. See
Details.

custom_translation_functions

A list with either/both of two components, R and src, together governing how
to extract any non-standard strings from the package. See Details.

max_translations

Numeric; used for setting a cap on the number of translations to be done for
each language. Defaults to Inf, meaning all messages in the package.

use_base_rules Logical; Should internal behavior match base behavior as strictly as possible?
TRUE if being run on a base package (i.e., base or one of the default packages
like utils, graphics, etc.). See Details.

copyright Character; passed on to write_po_file.

bugs Character; passed on to write_po_file.

verbose Logical, default FALSE. Should extra information about progress, etc. be re-
ported?

translate_package 9

Details

translate_package goes through roughly three "phases" of translation.

Phase one is setup – dir is checked for existing translations (toggling between "update" and "new"
modes), and R files are parsed and combed for user-facing messages.

Phase two is for diagnostics; see the Diagnostics section below. Any diagnostic detecting "un-
healthy" messages will result in a yes/no prompt to exit translation to address the issues before
continuing.

Phase three is translation. All of the messages found in phase one are iterated over – the user is
shown a message in English and prompted for the translation in the target language. This process is
repeated for each domain in languages.

An attempt is made to provide hints for some translations that require special care (e.g. that have
escape sequences or use templates). For templated messages (e.g., that use %s), the user-provided
message must match the templates of the English message. The templates don’t have to be in the
same order – R understands template reordering, e.g. %2$s says "interpret the second input as a
string". See sprintf for more details.

After each language is completed, a corresponding ‘.po’ file is written to the package’s ‘po’ direc-
tory (which is created if it does not yet exist).

There are some discrepancies in the default behavior of translate_package and the translation
workflow used to generate the ‘.po’/‘.pot’ files for R itself (mainly, the suite of functions from
tools, update_pkg_po, xgettext2pot, xgettext, and xngettext). They should only be superfi-
cial (e.g., whitespace or comments), but nevertheless may represent a barrier to smoothly submitting
patchings to R Core. To make the process of translating base R and the default packages (tools,
utils, stats, etc.) as smooth as possible, set the use_base_rules argument to TRUE and your
resulting ‘.po’/‘.pot’/‘.mo’ file will match base’s.

Custom translation functions:
Some package developers may want to write their own messaging interface, or to use wrappers
around the base interface (i.e., stop, warning, message, and a few others) which won’t be detected
by default (e.g. with update_pkg_po).

In such cases, use the custom_translation_functions argument, whose interface is inspired by
the --keyword argument to the xgettext command-line tool. This argument consists of a list with
two components, R and src (either can be excluded), owing to differences between R and C/C++.
Both components, if present, should consist of a character vector.

For R, there are two types of input: one for named arguments, the other for unnamed arguments.

Entries for named arguments will look like "fname:arg|num" (singular string) or "fname:arg1|num1,arg2|num2"
(plural string). fname gives the name of the function/call to be extracted from the R source,
arg/arg1/arg2 specify the name of the argument to fname from which strings should be extracted,
and num/num1/num2 specify the order of the named argument within the signature of fname.

Entries for unnamed arguments will look like "fname:...\xarg1,...,xargn", i.e., fname, fol-
lowed by :, followed by ... (three dots), followed by a backslash (\), followed by a comma-
separated list of argument names. All strings within calls to fname except those supplied to the
arguments named among xarg1, ..., xargn will be extracted.

To clarify, consider the how we would (redundantly) specify custom_translation_functions for
some of the default messagers, gettext, gettextf, and ngettext: custom_translation_functions
= list(R = c("gettext:...\domain","gettextf:fmt|1","ngettext:msg1|2,msg2|3")).

10 translate_package

For src, there is only one type of input, which looks like "fname:num", which says to look at the
num argument of calls to fname for char arrays.

Note that there is a difference in how translation works for src vs. R – in R, all strings passed to
certain functions are considered marked for translations, but in src, all translatable strings must be
explicitly marked as such. So for src translations, custom_translation_functions is not used
to customize which strings are marked for translation, but rather, to expand the set of calls which
are searched for potentially untranslated arrays (i.e., arrays passed to the specified calls that are not
explicitly marked for translation). These can then be reported in the check_untranslated_src
diagnostic, for example.

Diagnostics:

A diagnostic is a function which takes as input a data.table summarizing the translatable strings
in a package (e.g. as generated by get_message_data), evaluates whether these messages are
"healthy" in some sense, and produces a digest of "unhealthy" strings and (optionally) suggested
replacements.

The diagnostic function must have an attribute named diagnostic_tag that describes what the di-
agnostic does; it is reproduced in the format Found {nrow(result)} {diagnostic_tag}:. For ex-
ample, check_untranslated_cat has diagnostic_tag = "untranslated messaging calls passed
through cat()".

The output diagnostic result has the following schema:

1. call, character, the call identified as problematic

2. file, character, the file where call was found

3. line_number, integer, the line in file where call was found

4. replacement, character, optional, a suggested fix to make the call "healthy"

See check_cracked_messages, check_untranslated_cat, and check_untranslated_src for
examples of diagnostics.

Domains:

The input to languages conform to the valid languages accepted by gettext. This almost always
takes the form of (1) an ISO 639 2-letter language code; or (2) ll_CC, where ll is an ISO 639
2-letter language code and CC is an ISO 3166 2-letter country code e.g. es for Spanish, es_AR for
Argentinian Spanish, ro for Romanian, etc. See Sys.getlocale for some helpful tips about how to
tell which locales are currently available on your machine, and see the References below for some
web resources listing more locales.

Note also the advice given in the R Installation and Administration manual (also cited below) –
if you are writing Spanish translations, a typical package should use language = "es" to generate
Spanish translations for all Spanish domains. If you want to add more regional flair to your mes-
saging, you can do so through supplemental .po files. For example, you can add some Argentinian
messages to es_AR; users running R in the es_AR locale will see messages specifically written for
es_AR first; absent that, the es message will be shown; and absent that, the default message (i.e., in
the language written in the source code, usually English).

Chinese is a slightly different case – typically, the zh_CN domain is used to write with simplified
characters while zh_TW is used for traditional characters. In principal you could leverage zh_TW for
Taiwanisms and zh_HK for Hongkieisms.

translate_package 11

Currently, translation is limited to the same set of domains as is available for base R: Danish,
German, English, British English, Spanish, Farsi, French, Italian, Japanese, Korean, Dutch, Polish,
Brazilian Portugese, Russian, Turkish, Mainland Chinese, and Taiwanese Chinese.

This list can be expanded; please file an Issue request on GitHub.

Value

This function returns nothing invisibly. As a side effect, a ‘.pot’ file is written to the package’s
‘po’ directory (updated if one does not yet exist, or created from scratch otherwise), and a ‘.po’ file
is written in the same directory for each element of languages.

Author(s)

Michael Chirico

References

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-ints.html#Internationalization-in-the-R-sources
https://developer.r-project.org/Translations30.html
https://www.isi-web.org/publications/glossary-of-statistical-terms
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html#
Usual-Language-Codes
https://www.gnu.org/software/gettext/manual/html_node/Country-Codes.html#Country-Codes
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
https://saimana.com/list-of-country-locale-code/

See Also

get_message_data, write_po_file, xgettext, update_pkg_po, checkPoFile, gettext

Examples

pkg <- system.file('pkg', package = 'potools')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

run translate_package() without any languages
this will generate a .pot template file and en@quot translations (in UTF-8 locales)
we can also pass empty 'diagnostics' to skip the diagnostic step
(skip if gettext isn't available to avoid an error)
if (isTRUE(check_potools_sys_reqs)) {

translate_package(tmp_pkg, diagnostics = NULL)
}

Not run:
launches the interactive translation dialog for translations into Estonian:

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-ints.html#Internationalization-in-the-R-sources
https://developer.r-project.org/Translations30.html
https://www.isi-web.org/publications/glossary-of-statistical-terms
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html#Usual-Language-Codes
https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html#Usual-Language-Codes
https://www.gnu.org/software/gettext/manual/html_node/Country-Codes.html#Country-Codes
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
https://saimana.com/list-of-country-locale-code/

12 write_po_file

translate_package(tmp_pkg, "et_EE", diagnostics = NULL, verbose = TRUE)

End(Not run)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg)

write_po_file Write a .po or .pot file corresponding to a message database

Description

Serialize a message database in the ‘.po’ and ‘.pot’ formats recognized by the gettext ecosystem.

Usage

write_po_file(
message_data, po_file, metadata,
width = 79L, wrap_at_newline = TRUE,
use_base_rules = metadata$package %chin% .potools$base_package_names

)
po_metadata(
package='', version='', language='',
author='', email='',
bugs='', copyright = NULL,
...

)

S3 method for class 'po_metadata'
format(x, template = FALSE, use_plurals = FALSE, ...)
S3 method for class 'po_metadata'
print(x, ...)

Arguments

message_data data.table, as returned from get_message_data. NB: R creates separate do-
mains for R and C/C++ code; it is recommended you do the same by filtering the
get_message_data output for message_source == "R" or message_source ==
"src". Other approaches are untested.

po_file Character vector giving a destination path. Paths ending in ‘.pot’ will be written
with template files (e.g., msgstr entries will be blanked).

metadata A po_metadata object as returned by po_metadata().

width Numeric governing the wrapping width of the output file. Default is 79L to
match the behavior of the xgettext utility. Inf turns off wrapping (except for
file source markers comments).

write_po_file 13

wrap_at_newline

Logical, default TRUE to match the xgettext utility’s behavior. If TRUE, any
msgid or msgstr will always be wrapped at an internal newline (i.e., literally
matching \n).

use_base_rules Logical; Should internal behavior match base behavior as strictly as possible?
TRUE if being run on a base package (i.e., base or one of the default packages
like utils, graphics, etc.). See Details.

package Character; the name of the package being translated.

version Character; the version of the package being translated.

language Character; the language of the msgstr. See translate_package for details.

author Character; an author (combined with email) to whom to attribute the transla-
tions (as Last-Translator).

email Character; an e-mail address associated with author.

bugs Character; a URL where issues with the translations can be reported.

copyright An object used to construct the initial Copyright reference in the output. If NULL,
no such comment is written. If a list, it should the following structure:

• year - [Required] A year or hyphen-separated range of years
• holder - [Required] The name of the copyright holder
• title - [Optional] A title for the ‘.po’
• additional - [Optional] A character vector of additional lines for the copy-

right comment section

If a character scalar, it is interpreted as the holder and the year is set as the
POT-Creation-Date’s year.

... Additional (named) components to add to the metadata. For print.po_metadata,
passed on to format.po_metadata

x A po_metadata object.

template Logical; format the metadata as in a ‘.pot’ template?

use_plurals Logical; should the Plural-Forms entry be included?

Details

Three components are set automatically if not provided:

• pot_timestamp - A POSIXct used to write the POT-Creation-Date entry. Defaults to the
Sys.time at run time.

• po_timestamp - A POSIXct used to write the PO-Revision-Date entry. Defaults to be the
same as pot_timestamp.

• language_team - A string used to write the Language-Team entry. Defaults to be the same as
language; if provided manually, the format LANGUAGE <LL@li.org> is recommended.

The charset for output is always set to "UTF-8"; this is intentional to make it more cumbersome
to create non-UTF-8 files.

14 write_po_file

Value

For po_metadata, an object of class po_metadata that has a format method used to serialize the
metadata.

Author(s)

Michael Chirico

References

https://www.gnu.org/software/gettext/manual/html_node/Header-Entry.html

See Also

translate_package, get_message_data, xgettext2pot, update_pkg_po

Examples

message_data <- get_message_data(system.file('pkg', package='potools'))
desc_data <- read.dcf(system.file('pkg', 'DESCRIPTION', package='potools'), c('Package', 'Version'))
metadata <- po_metadata(

package = desc_data[, "Package"], version = desc_data[, "Version"],
language = 'ar_SY', author = 'R User', email = 'ruser@gmail.com',
bugs = 'https://github.com/ruser/potoolsExample/issues'

)

add fake translations
message_data[type == "singular", msgstr := "<arabic translation>"]
Arabic has 6 plural forms
message_data[type == "plural", msgstr_plural := .(as.list(sprintf("<%d translation>", 0:5)))]

Preview metadata
print(metadata)
write .po file
write_po_file(

message_data[message_source == "R"],
tmp_po <- tempfile(fileext = '.po'),
metadata

)
writeLines(readLines(tmp_po))

write .pot template
write_po_file(

message_data[message_source == "R"],
tmp_pot <- tempfile(fileext = '.pot'),
metadata

)
writeLines(readLines(tmp_pot))

cleanup
file.remove(tmp_po, tmp_pot)

https://www.gnu.org/software/gettext/manual/html_node/Header-Entry.html

write_po_file 15

rm(message_data, desc_data, metadata, tmp_po, tmp_pot)

Index

cat, 4
check_cracked_messages, 2, 10
check_potools_sys_reqs, 3
check_untranslated_cat, 4, 10
check_untranslated_src, 5, 10
checkPoFile, 11

data.table, 6

format.po_metadata (write_po_file), 12

get_message_data, 6, 10–12, 14
gettext, 4, 11
gettextf, 2, 4

ngettext, 4, 7

po_metadata (write_po_file), 12
print.po_metadata (write_po_file), 12

sprintf, 4, 9
stop, 7
Sys.getlocale, 10
Sys.time, 13

translate_package, 2, 4–7, 8, 13, 14

update_pkg_po, 2–4, 6, 9, 11, 14

write_po_file, 7, 8, 11, 12

xgettext, 9, 11
xgettext2pot, 9, 14
xngettext, 9

16

	check_cracked_messages
	check_potools_sys_reqs
	check_untranslated_cat
	check_untranslated_src
	get_message_data
	translate_package
	write_po_file
	Index

