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1 Discrete data: The Moby Dick data set

The Moby Dick data set contains the frequency of unique words in the novel Moby Dick by Herman
Melville. This data set can be downloaded from

http://tuvalu.santafe.edu/∼aaronc/powerlaws/data.htm

or loaded directly

library("poweRlaw")

data("moby", package = "poweRlaw")

To fit a discrete power law to this data1, we use the displ constructor

m_pl = displ$new(moby)

The resulting object, m pl, is a displ2 object. It also inherits the discrete distribution class.
After creating the displ object, a typical first step would be to infer model parameters.3 We
estimate the lower threshold via

est = estimate_xmin(m_pl)

and update the power law object

m_pl$setXmin(est)

For a given value xmin, the scaling parameter is estimated by numerically optimising the log-
likelihood. The optimiser is initialised using the analytical MLE

α̂ ' 1 + n

[
n∑

i=1

log

(
xi

xmin − 0.5

)]−1

.

This yields a threshold estimate of xmin = 7 and scaling parameter α = 1.95, which matches
results found in Clauset et al. (2009).

Alternatively, we could perform a parameter scan for each value of xmin

1The object moby is a simple R vector.
2displ: discrete power law.
3When the displ object is first created, the default parameter values are NULL and xmin is set to the minimum
x-value.
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Figure 1: Data CDF of the Moby Dick data set. The fitted power law (green line), log-normal
(red line) and poisson (blue) distributions are also given.

estimate_xmin(m_pl, pars = seq(1.8, 2.3, 0.1))

To fit a discrete log-normal distribution, we follow a similar procedure, except we begin by creating
a dislnorm object4

m_ln = dislnorm$new(moby)

est = estimate_xmin(m_ln)

which yields a lower threshold of xmin = 3 and parameters (−17.9, 4.87). A similar procedure is
applied to fit the Poisson distribution; we create a distribution object using dispois, then fit as
before.

The data CDF and lines of best fit can be easily plotted

plot(m_pl)

lines(m_pl, col = 2)

lines(m_ln, col = 3)

lines(m_pois, col = 4)

to obtain figure 1. It clear that the Poisson distribution is not appropriate for this data set.
However, the log-normal and power law distribution both provide reasonable fits to the data.

1.1 Parameter uncertainty

To get a handle on the uncertainty in the parameter estimates, we use a bootstrapping proce-
dure, via the bootstrap function. This procedure can be applied to any distribution object.5

Furthermore, the bootstrap procedure can utilize multiple CPU cores to speed up inference.6

4dislnorm: discrete log normal object
5For example, bootstrap(m ln).
6The output of this bootstrapping procedure can be obtained via data(bootstrap moby).
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## 5000 bootstraps using two cores

bs = bootstrap(m_pl, no_of_sims = 5000, threads = 2)

By default, the bootstrap function will use the maximum likelihood estimate to estimate the
parameter and check all values of xmin. When possible xmin values are large, then it is recommend
that the search space is reduced. For example, this function call

bootstrap(m_pl, xmins = seq(2, 20, 2))

will only calculate the Kolmogorov-Smirnoff statistics at values of xmin equal to

2, 4, 6, . . . , 20 .

A similar argument exists for the parameters.7

The bootstrap function, returns bs xmin object that has a number of components:

1. The goodness of fit statistic obtained from the Kolmogorov-Smirnoff test. This value should
correspond to the value obtained from the estimate xmin function.

2. A data frame containing the results for the bootstrap procedure.

3. The average simulation time, in seconds, for a single bootstrap.

4. The random number seed.

5. The package version.

The boostrap results can be explored in a variety way. First we can estimate the standard deviation
of the parameter uncertainty, i.e.

sd(bs$bootstraps[, 2])

## [1] 1.780825

sd(bs$bootstraps[, 3])

## [1] 0.02428821

Alternatively, we can visualise the results using the plot function:

## trim=0.1 only displays the final 90% of iterations

plot(bs, trim = 0.1)

to obtain figure 2. This top row of graphics in figure 2 give a 95% confidence interval for the mean
estimate of the parameters. The bottom row of graphics give a 95% confidence for the standard
deviation of the parameters. The parameter trim in the plot function controls the percentage of
samples displayed.8 When trim=0.1, we only display the final 90% of data.

We can also construct histograms.

7For single parameter models, pars should be a vector. For the log-normal distribution, pars should be a matrix
of values.

8When trim=0, all iterations are displayed.
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Figure 2: Results from the standard bootstrap procedure (for the power law model) using the
Moby Dick data set: bootstrap(m pl). The top row shows the mean estimate of pa-
rameters xmin, α and ntail. The bottom row shows the estimate of standard deviation
for each parameter. The dashed-lines give approximate 95% confidence intervals. After
5,000 iterations, the standard deviation of xmin and α is estimated to be 2.1 and 0.03
respectively.

hist(bs$bootstraps[, 2])

hist(bs$bootstraps[, 3])

to get figure 3.
A similar bootstrap analysis can be obtained for the log-normal distribution

bs1 = bootstrap(m_ln)

in this case we would obtain uncertainty estimates for both of the log-normal parameters.

1.2 Testing the power law hypothesis

Since it is possible to fit a power law distribution to any data set, it is appropriate to test
whether the observed data set actually follows a power law. Clauset et al. (2009) suggest that
this hypothesis is tested using a goodness-of-fit test, via a bootstrapping procedure. This test
generates a p -value that can be used to quantify the plausibility of the hypothesis. If the p -value
is large, than any difference between the empirical data and the model can be explained with
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Figure 3: Characterising uncertainty in parameter values. (a) xmin uncertainty (standard deviation
2) (b) α uncertainty (std dev. 0.03)

statistical fluctuations. If p ' 0, then the model does not provide a plausible fit to the data and
another distribution may be more appropriate. In this scenario,

H0 : data is generated from a power law distribution.

H1 : data is not generated from a power law distribution.

To test these hypothesis, we use the bootstrap p function

bs_p = bootstrap_p(m_pl)

The point estimate of the p -value is one of the elements of the bs p object9

bs_p$p

## [1] 0.6738

Alternatively we can plot the results

plot(bs_p)

to obtain figure 4. The graph in the top right hand corner gives the cumulative estimate of the
p -value; the final value of the purple line corresponds to bs p$p. Also given are approximate 95%
confidence intervals.

1.3 Comparing distributions

A second approach to test the power law hypothesis is a direct comparison of two models.10 A
standard technique is to use Vuong’s test, which a likelihood ratio test for model selection using
the Kullback-Leibler criteria. The test statistic, R, is the ratio of the log-likelihoods of the data
between the two competing models. The sign of R indicates which model is better. Since the value
of R is obviously subject to error, we use the method proposed by Vuong (1989).

9Also given is the average time of a single bootstrap: bs p$sim time = 3.16 seconds.
10While the bootstrap method is useful, it is computationally intensive and will be unsuitable for most models.
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Figure 4: Results from the bootstrap procedure (for the power law model) using the Moby Dick
data set: bootstrap p(m pl). The top row shows the mean estimate of parameters
xmin, α and the p -value. The bottom row shows the estimate of standard deviation for
each parameter. The dashed-lines give approximate 95% confidence intervals.

To compare two distributions, each distribution must have the same lower threshold. So we first
set the log normal distribution object to have the same xmin as the power law object

m_ln$setXmin(m_pl$getXmin())

Next we estimate the parameters for this particular value of xmin:

est = estimate_pars(m_ln)

m_ln$setPars(est)

Then we can compare distributions

comp = compare_distributions(m_pl, m_ln)

This comparison gives a p-value of 0.6773. This p -value corresponds to the p-value on page 29 of
the Clauset et al. paper (the paper gives 0.69).

Overall these results suggest that one model can’t be favoured over the other.

1.4 Investigating the lower bound

The estimate of the scaling parameter, α, is typically highly correlated with the threshold limit,
xmin. This relationship can be easily investigated with the poweRlaw package. First, we create a
vector of thresholds to scan
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Figure 5: Estimated parameter values conditional on the threshold, xmin. The horizontal line
corresponds to α = 1.95.

xmins = seq(1, 1001, 5)

then a vector to store the results

est_scan = 0 * xmins

Next, we loop over the xmin values and estimate the parameter value conditional on the xmin value

for (i in seq_along(xmins)) {
m_pl$setXmin(xmins[i])

est_scan[i] = estimate_pars(m_pl)$pars

}

The results are plotted figure 5. For this data set, as the lower threshold increases, so does the
point estimate of α.
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Figure 6: Log-log plot for the Swiss-Prot data sets.

2 Discrete data: Swiss prot

UniProtKB/Swiss-Prot is a manually annotated, non-redundant protein sequence database. It
combines information extracted from scientific literature and biocurator-evaluated computational
analysis. In a recent paper, Bell et al. (2012) used the power law distribution to investigate the
evolution of the database over time.

A single version of the data set is available with the package and can be accessed via

data("swiss_prot", package = "poweRlaw")

head(swiss_prot, 3)

## Key Value

## 1 chondroitin-4-sulfate 2

## 2 & 732

## 3 % 5

This dataset contains all the words extracted from the Swiss-Prot version 9 data (with the resulting
frequency for each word). Other datasets for other database versions can be obtained by contacting
Michael Bell

http://homepages.cs.ncl.ac.uk/m.j.bell1/annotationQualityPaper.php

The first column gives the word/symbol, while the second column gives the number of times that
particular word occurs.

We can fit a discrete power law in the usual way

m_sp = displ$new(swiss_prot$Value)

est_sp = estimate_xmin(m_sp)

m_sp$setXmin(est_sp)

which gives estimates of xmin = 47 and α = 2.07.
We can spice up the base graphics plot by changing the plotting defaults. First, we change the

graphical parameters

8

http://homepages.cs.ncl.ac.uk/m.j.bell1/annotationQualityPaper.php


Examples

par(mar = c(3, 3, 2, 1), mgp = c(2, 0.4, 0), tck = -.01,

cex.axis = 0.9, las = 1)

Then plot data and model, but adding in a background grid, and changing the symbol

plot(m_sp, pch = 21, bg = 2, panel.first = grid(col = "grey80"),

xlab = "Word Occurance", ylab = "CDF")

lines(m_sp, col = 3, lwd = 3)

to get figure 6.
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3 Continuous data: electrical blackouts

In this example, we will investigate the numbers of customers affected in electrical blackouts in
the United States between 1984 and 2002 (see Newman (2005) for further details). The data set
can be downloaded from Clauset’s website

http://tuvalu.santafe.edu/∼aaronc/powerlaws/data/blackouts.txt

and loaded into R in the usual way

blackouts = read.table("blackouts.txt")$V1

Although the blackouts data set is discrete, since the values are large it makes sense to treat the
data as continuous. Continuous power law objects take vectors as inputs, so

m_bl = conpl$new(blackouts)

then we estimate the lower-bound via

est = estimate_xmin(m_bl)

## xmin search space truncated at 1e+05

## You have three options

## 1. Increase xmax in estimate xmins

## 2. Specify xmins explicitly

## 3. Ignore and hope for the best (which may be OK)

This gives a point estimate of xmin = 9.4285× 104. We can then update the distribution object

m_bl$setXmin(est)

and plot the data with line of best fit

plot(m_bl)

lines(m_bl, col = 2, lwd = 2)

to get figure 7. To fit a discrete log-normal distribution we follow a similar procedure

## xmin search space truncated at 1e+05

## You have three options

## 1. Increase xmax in estimate xmins

## 2. Specify xmins explicitly

## 3. Ignore and hope for the best (which may be OK)

m_bl_ln = conlnorm$new(blackouts)

est = estimate_xmin(m_bl_ln)

m_bl_ln$setXmin(est)

and add the line of best fit to the plot via

10
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lines(m_bl_ln, col = 3, lwd = 2)

It is clear from figure 7 that the log-normal distribution provides a better fit to this data set.
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Figure 7: CDF plot of the blackout data set with line of best fit. Since the minimum value of x is
large, we fit a continuous power law as this is more it efficient. The power law fit is the
green line, the discrete log-normal is the red line.
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4 Multiple data sets: the American-Indian war

In a recent paper, Bohorquez et al. investigated insurgent attacks in Afghanistan, Iraq, Colombia,
and Peru. Each time, the data resembled power laws. Friedman used the power law nature of
casualties to infer under-reporting in the American-Indian war. Briefly, by fitting a power law
distribution to the observed process, the latent, unobserved casualties can be inferred (Friedman
(2014)).

The number of casualties observed in the American-Indian War can be obtained via

data("native_american", package = "poweRlaw")

data("us_american", package = "poweRlaw")

Each data set is a data frame with two columns. The first column is number of casualties recorded,
the second the conflict date

head(native_american, 3)

## Cas Date

## 1 18 1776-07-15

## 2 26 1776-07-20

## 3 13 1776-07-20

The records span around one hundred years, 1776 – 1890. The data is plotted in figure 8.
It is straightforward to fit a discrete power law to this data set. First, we create discrete power

law objects
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Figure 8: Casualty record for the Indian-American war, 1776 – 1890. Native Americans casual-
ties (purple circles) and US Americans casualties (green triangles). Data taken from
Friedman (2014).
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Figure 9: Plots of the CDFs for the Native American and US American casualties. The lines of
best fit are also given.

m_na = displ$new(native_american$Cas)

m_us = displ$new(us_american$Cas)

then we estimate xmin for each data set

est_na = estimate_xmin(m_na, pars = seq(1.5, 2.5, 0.01))

est_us = estimate_xmin(m_us, pars = seq(1.5, 2.5, 0.01))

and update the power law objects

m_na$setXmin(est_na)

m_us$setXmin(est_us)

The resulting fitted distributions can be plotted on the same figure

plot(m_na)

lines(m_na)

## Don't create a new plot, just store the output

d = plot(m_us, draw = FALSE)

points(d$x, d$y, col = 2)

lines(m_us, col = 2)

The result is given in figure 9. The tails of the distributions appear to follow a power law. This
is consistent with the expectation that smaller-scale engagements are less likely to be recorded.
However, for larger scale engagements it is likely that the event was recorded.
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