Package 'profoc'

April 21, 2022

```
Type Package
Title Probabilistic Forecast Combination Using CRPS Learning
Version 0.9.3
Date 2022-04-21
Description Combine probabilistic forecasts using CRPS learning algorithms pro-
      posed in Berrisch, Ziel (2021) <arXiv:2102.00968> <doi:10.1016/j.jeconom.2021.11.008>. The pack-
      age implements multiple online learning algorithms like Bernstein online aggregation; see Win-
      tenberger (2014) <arXiv:1404.1356>. Quantile regression is also implemented for compari-
      son purposes. Model parameters can be tuned automatically with respect to the loss of the fore-
      cast combination. Methods like predict(), update(), plot() and print() are available for conve-
      nience. This package utilizes the optim C++ library for numeric optimiza-
      tion <https://github.com/kthohr/optim>.
License GPL (>= 3)
Encoding UTF-8
Depends R (>= 3.0.2)
Imports Rcpp (>= 1.0.5), Matrix, abind, methods
LinkingTo Rcpp, RcppArmadillo (>= 0.10.7.5.0), RcppProgress, splines2
      (>=0.4.4)
SystemRequirements C++11
URL https://profoc.berrisch.biz/, https://github.com/BerriJ/profoc
BugReports https://github.com/BerriJ/profoc/issues
RoxygenNote 7.1.2
Language en-US
Suggests testthat (>= 3.0.0), gamlss.dist, ggplot2
Config/testthat/edition 3
NeedsCompilation yes
Author Jonathan Berrisch [cre] (<a href="https://orcid.org/0000-0002-4944-9074">https://orcid.org/0000-0002-4944-9074</a>),
      Florian Ziel [aut] (<a href="https://orcid.org/0000-0002-2974-2660">https://orcid.org/0000-0002-2974-2660</a>)
Maintainer Jonathan Berrisch < Jonathan@Berrisch.biz>
Repository CRAN
Date/Publication 2022-04-21 16:30:02 UTC
```

2 profoc-package

R topics documented:

prof	oc-package		Pa	ıck	kaş	зe	Inj	fo																						
Index																														17
	update.online	 •		•	•	•	•		•	•	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	16
	summary.online																													
	print.online .																													
	print.batch																													
	predict.online																													
	plot.online															 														14
	plot.batch																													13
	oracle															 														12
	online															 														8
	conline																													8
	batch																													5
	autoplot.online																													4
	autoplot autoplot.batch																													3 4
	profoc-package																													2

Description

Use multiple online-aggregation algorithms to combine probabilistic forecasts using CRPS Learning as described in Berrisch, Ziel: "CRPS Learning", 2021. The primary function of this package is called profoc.

Details

Index of help topics:

autoplot	Create a complete ggplot appropriate to a
	particular data type
autoplot.batch	Autoplot method for batch models
autoplot.online	Autoplot method for online models
batch	Probabilistic Forecast Combination - Batch
conline	Create an conline Object from the conline C++
	Class
online	Probabilistic Forecast Combination - Online
oracle	Probabilistic Forecast Combination - Oracle
plot.batch	Plot method for batch models
plot.online	Plot method for online models
predict.online	Predict method for online models
print.batch	Print method for batch models
print.online	Print method for online models
profoc-package	Package Info

autoplot 3

```
summary.online Summary method for online models update.online Update method for online models
```

Author(s)

Maintainer: Jonathan Berrisch mailto: Jonathan@Berrisch.biz

Co-Author: Florian Ziel

References

Berrisch, Ziel: "CRPS Learning", 2021

See Also

Source Code: https://github.com/BerriJ/profoc

BugReports: https://github.com/BerriJ/profoc/issues

autoplot *Create a complete ggplot appropriate to a particular data type*

Description

'autoplot()' uses ggplot2 to draw a particular plot for an object of a particular class in a single command. This defines the S3 generic that other classes and packages can extend.

Usage

```
autoplot(object, ...)
```

Arguments

object an object, whose class will determine the behavior of autoplot
... other arguments passed to specific methods

Value

a ggplot object

See Also

```
[autolayer()], [ggplot()] and [fortify()]
```

4 autoplot.online

autoplot.batch

Autoplot method for batch models

Description

Plots the most recent weights in each quantile using ggplot2.

Usage

```
## S3 method for class 'batch'
autoplot(object, ...)
```

Arguments

object Object of class inheriting from 'batch'
... further arguments are ignored

autoplot.online

Autoplot method for online models

Description

Plots the most recent weights in each quantile using ggplot2.

Usage

```
## S3 method for class 'online'
autoplot(object, ...)
```

Arguments

object Object of class inheriting from 'online'

... further arguments are ignored

batch 5

batch

Probabilistic Forecast Combination - Batch

Description

Returns predictions and weights calculated by sequential numeric optimization. The optimization is done stepwise, always calculating a one-step-ahead forecast.

Usage

```
batch(
  у,
  experts,
  tau = 1:dim(experts)[2]/(dim(experts)[2] + 1),
  affine = FALSE,
  positive = FALSE,
  intercept = FALSE,
  debias = TRUE,
  lead_time = 0,
  initial_window = 30,
  rolling_window = initial_window,
  loss_function = "quantile",
  loss_parameter = 1,
  qw_crps = FALSE,
  basis_knot_distance = 1/(dim(experts)[2] + 1),
  basis_knot_distance_power = 1,
  basis_deg = 1,
  forget = 0,
  soft_threshold = -Inf,
  hard_threshold = -Inf,
  fixed\_share = 0,
  p_smooth_lambda = -Inf,
  p_smooth_knot_distance = basis_knot_distance,
  p_smooth_knot_distance_power = basis_knot_distance_power,
  p_smooth_deg = basis_deg,
  p_smooth_ndiff = 1.5,
  parametergrid_max_combinations = 100,
  parametergrid = NULL,
  forget_past_performance = 0,
  allow_quantile_crossing = FALSE,
  trace = TRUE
)
```

Arguments

У

A numeric matrix of realizations. In probabilistic settings a matrix of dimension Tx1, in multivariate settings a TxP matrix. In the latter case, each slice of the expert's array gets evaluated using the corresponding column of the y matrix.

6 batch

experts An array of predictions with dimension (Observations, Quantiles, Experts).

tau A numeric vector of probabilities.

affine Defines whether weights are summing to 1 or now. Defaults to FALSE.

positive Defines if a positivity constraint is applied to the weights. Defaults to FALSE.

intercept Determines if an intercept is added, defaults to FALSE. If true, a new first expert

is added, always predicting 1.

debias Defines whether the intercepts weight is constrained or not. If TRUE (the de-

fault), the intercept weight is unconstrained. Only affects the results if affine and

or positive is set to TRUE. If FALSE, the intercept is treated as an expert.

lead_time offset for expert forecasts. Defaults to 0, which means that experts forecast t+1

at t. Setting this to h means experts predictions refer to t+1+h at time t. The

weight updates delay accordingly.

initial_window Defines the size of the initial estimation window.

rolling_window Defines the size of the rolling window. Defaults to the value of initial window.

Set it to the number of observations to receive an expanding window.

loss_function Either "quantile", "expectile" or "percentage".

loss_parameter Optional parameter scaling the power of the loss function.

qw_crps Decides whether the sum of quantile scores (FALSE) or the quantile weighted

CRPS (TRUE) should be minimized. Defaults to FALSE. Which corresponds to

Berrisch & Ziel (2021)

basis_knot_distance

determines the distance of the knots in the probability basis. Defaults to 1 /

 $(\dim(\text{experts})[2] + 1).$

basis_knot_distance_power

Parameter which defines the symmetry of the basis reducing the probability space. Defaults to 1, which corresponds to equidistant knots. Values less than 1 create more knots in the center, while values above 1 concentrate more knots in

the tails.

basis_deg Degree of the basis reducing the probability space. Defaults to 1.

forget Adds an exponential forgetting to the optimization. Past observations will get

less influence on the optimization. Defaults to 0, which corresponds to no for-

getting.

soft_threshold If specified, the following soft threshold will be applied to the weights: w =

sgn(w)*max(abs(w)-t,0) where t is the soft_threshold parameter. Defaults to inf, which means that no threshold will be applied. If all expert weights are thresholded to 0, a weight of 1 will be assigned to the expert with the highest weights prior to thresholding. Thus soft_threshold = 1 leads to the 'follow the

leader' strategy if method is set to "ewa".

 $hard_threshold$ If specified, the following hard thresholding will be applied to the weights: $w = \frac{1}{2} \left(\frac{1}{2} \right)^{-1}$

w*(abs(w)>t) where t is the threshold_hard parameter. Defaults to -inf, which means that no threshold will be applied. If all expert weights are thresholded to 0, a weight of 1 will be assigned to the expert with the highest weight prior to thresholding. Thus hard_threshold = 1 leads to the 'follow the leader' strategy

if method is set to "ewa".

7 batch

fixed_share

Amount of fixed share to be added to the weights. Defaults to 0. 1 leads to uniform weights.

p_smooth_lambda

Penalization parameter used in the smoothing step. -Inf causes the smoothing step to be skipped (default).

p_smooth_knot_distance

determines the distance of the knots. Defaults to the value of basis knot distance. Corresponds to the grid steps when knot distance power = 1 (the default).

p_smooth_knot_distance_power

Parameter which defines the symmetry of the P-Spline basis. Takes the value of basis_knot_distance_power if unspecified.

p_smooth_deg

Degree of the B-Spine basis functions. Defaults to the value of basis deg.

p_smooth_ndiff Degree of the differencing operator in the smoothing equation. 1.5 (default) leads to shrinkage towards a constant. Can take values from 1 to 2. If a value in between is used, a weighted sum of the first and second differentiation matrix is calculated.

parametergrid_max_combinations

Integer specifying the maximum number of parameter combinations that should be considered. If the number of possible combinations exceeds this threshold, the maximum allowed number is randomly sampled. Defaults to 100.

parametergrid

User supplied grid of parameters. Can be used if not all combinations of the input vectors should be considered. Must be a matrix with 13 columns (online) or 12 columns batch with the following order: basis knot distance, basis knot distance power, basis deg, forget regret, soft threshold, hard threshold, fixed share, p smooth lambda, p smooth knot distance, p smooth knot distance power, p_smooth_deg, p_smooth_ndiff, gamma.

forget_past_performance

Share of past performance not to be considered, resp. to be forgotten in every iteration of the algorithm when selecting the best parameter combination.

allow_quantile_crossing

Shall quantile crossing be allowed? Defaults to false, which means that predictions are sorted in ascending order.

trace

Print a progress bar to the console? Defaults to TRUE.

Value

Returns weights and corresponding predictions. It is possible to impose a convexity constraint to the weights by setting affine and positive to TRUE.

Examples

```
## Not run:
T <- 50 # Observations
N <- 2 # Experts
P <- 9 # Quantiles
prob_grid <- 1:P / (P + 1)</pre>
```

```
y <- rnorm(n = T) # Realized
experts <- array(dim = c(T, P, N)) # Predictions
for (t in 1:T) {
    experts[t, , 1] <- qnorm(prob_grid, mean = -1, sd = 1)
    experts[t, , 2] <- qnorm(prob_grid, mean = 3, sd = sqrt(4))
}

model <- batch(
    y = matrix(y),
    experts = experts,
    p_smooth_lambda = 10
)

print(model)
plot(model)
autoplot(model)
## End(Not run)</pre>
```

conline

Create an conline Object from the conline C++ Class

Description

Allows for the creation of a Online Object in _C++_ from _R_ using the _C++_ conline class.

Value

A 'conline' object from the _C++_ conline Class.

Examples

```
conline_obj <- new(conline)</pre>
```

online

Probabilistic Forecast Combination - Online

Description

Returns predictions and weights calculated by online-learning algorithms using CRPS Learning.

Usage

```
online(
 у,
  experts,
  tau,
  lead_time = 0,
  loss_function = "quantile",
  loss_parameter = 1,
 loss_gradient = TRUE,
 method = "bewa",
 b_smooth_pr = list(knots = P, mu = 0.5, sigma = 1, nonc = 0, tailweight = 1, deg = 1),
 p_smooth_pr = list(knots = P, mu = 0.5, sigma = 1, nonc = 0, tailweight = 1, deg = 1,
    ndiff = 1.5, lambda = -Inf),
 b_smooth_mv = list(knots = D, mu = 0.5, sigma = 1, nonc = 0, tailweight = 1, deg = 1),
 p_smooth_mv = list(knots = D, mu = 0.5, sigma = 1, nonc = 0, tailweight = 1, deg = 1,
    ndiff = 1.5, lambda = -Inf),
  forget_regret = 0,
  soft_threshold = -Inf,
  hard_threshold = -Inf,
  fixed\_share = 0,
  gamma = 1,
  parametergrid_max_combinations = 100,
  parametergrid = NULL,
  forget_past_performance = 0,
  allow_quantile_crossing = FALSE,
  init = NULL,
  loss = NULL,
  regret = NULL,
  trace = TRUE
)
```

Arguments

loss_function

A numeric matrix of realizations. In probabilistic settings a matrix of dimension Tx1, in multivariate settings a TxP matrix. In the latter case, each slice of the expert's array gets evaluated using the corresponding column of the y matrix.

experts

An array of predictions with dimension T x D x P x K (Observations x Variables x Quantiles x Experts) or T x D x K or T x P x K.

tau A numeric vector of probabilities.

lead_time offset for expert forecasts. Defaults to 0, which means that experts forecast t+1 at t. Setting this to h means experts predictions refer to t+1+h at time t. The weight updates delay accordingly.

Either "quantile", "expectile" or "percentage".

loss_parameter Optional parameter scaling the power of the loss function.

loss_gradient Determines if a linearized version of the loss is used.

method One of "boa", "bewa", "ml_poly" or "ewa". Where "bewa" refers to a mixture of boa and ewa, including the second order refinement of boa, but updating weights

with the simple exponential weighting.

b_smooth_pr A named list determining how the B-Spline matrices for probabilistic smoothing

are created. Default corresponds to no probabilistic smoothing. See details.

p_smooth_pr A named list determining how the hat matrices for probabilistic P-Spline smooth-

ing are created. Default corresponds to no smoothing. See details.

b_smooth_mv A named list determining how the B-Spline matrices for multivariate smoothing

are created. Default corresponds to no probabilistic smoothing. See details.

p_smooth_mv A named list determining how the hat matrices for probabilistic P-Spline smooth-

ing are created. Default corresponds to no smoothing. See details.

forget_regret Share of past regret not to be considered, resp. to be forgotten in every iteration

of the algorithm. Defaults to 0.

soft_threshold If specified, the following soft threshold will be applied to the weights: w =

sgn(w)*max(abs(w)-t,0) where t is the soft_threshold parameter. Defaults to-inf, which means that no threshold will be applied. If all expert weights are thresholded to 0, a weight of 1 will be assigned to the expert with the highest weights prior to thresholding. Thus $soft_threshold = 1$ leads to the 'follow the

leader' strategy if method is set to "ewa".

hard_threshold If specified, the following hard thresholding will be applied to the weights: $w = w^*(abs(w)>t)$ where t is the threshold hard parameter. Defaults to -inf, which

w*(abs(w)>t) where t is the threshold_hard parameter. Defaults to -inf, which means that no threshold will be applied. If all expert weights are thresholded to 0, a weight of 1 will be assigned to the expert with the highest weight prior to thresholding. Thus hard_threshold = 1 leads to the 'follow the leader' strategy

if method is set to "ewa".

fixed_share Amount of fixed share to be added to the weights. Defaults to 0. 1 leads to

uniform weights.

gamma Scaling parameter for the learning rate.

parametergrid_max_combinations

Integer specifying the maximum number of parameter combinations that should be considered. If the number of possible combinations exceeds this threshold,

the maximum allowed number is randomly sampled. Defaults to 100.

parametergrid User supplied grid of parameters. Can be used if not all combinations of the

input vectors should be considered. Must be a matrix with 13 columns (online) or 12 columns batch with the following order: basis_knot_distance, basis_knot_distance_power, basis_deg, forget_regret, soft_threshold, hard_threshold, fixed_share_p_smooth_lambda_p_smooth_knot_distance_power.

fixed_share, p_smooth_lambda, p_smooth_knot_distance, p_smooth_knot_distance_power,

p_smooth_deg, p_smooth_ndiff, gamma.

forget_past_performance

Share of past performance not to be considered, resp. to be forgotten in every iteration of the algorithm when selecting the best parameter combination.

Defaults to 0.

allow_quantile_crossing

Shall quantile crossing be allowed? Defaults to false, which means that predictions are sorted in ascending order.

init	A named list containing "init_weights": Array of dimension DxPxK used as starting weights. "R0" a matrix of dimension PxK or 1xK used as starting regret.
loss	User specified loss array. Can also be a list with elements "loss_array" and "share", share mixes the provided loss with the loss calculated by profoc. 1 means, only the provided loss will be used. share can also be vector of shares to consider.
regret	User specified regret array. If specific, the regret will not be calculated by profoc. Can also be a list with elements "regret_array" and "share", share mixes the provided regret with the regret calculated by profoc. 1 means, only the provided regret will be used. share can also be vector of shares to consider.
trace	Print a progress bar to the console? Defaults to TRUE.

Details

online selects various parameters automatically based on the past loss. For this, lambda, forget, fixed_share, gamma, and the smoothing parameters (see below) can be specified as numeric vectors containing values to consider.

This package offers two options for smoothing (Basis Smoothing and P-Splines). Both options can be used to smooth the weights over dimension D (covariates) or P (quantiles) or both. Parameters b_smooth_pr and b_smooth_mv take named lists to create the corresponding basis matrices. The arguments include are: knots which determines the number of knots to be created, mu, sigma, sigma, nonc, tailweight correspond to to parameters of the beta distribution, which defines how the knots are #distributed (see ?make_knots2 for details) the defaults will create an equidistant knot sequence, deg sets the degree of the spline function and also influences how many outer knots will be used. It's possible to provide vectors of values for each of these parameters. In that case, all parameter combinations will be used to create the respective matrices and all candidates will be considered during online-learning. Parameters p_smooth_pr and p_smooth_mv determine the hatmatrix creation for P-Spline smoothing. In addition to the inputs mentioned before, they require to provide ndiff which determines the degree of differentiation applied to the basis-matrix (can take any value between and including 1 and 2), lambda which determines the degree of penalization applied to the smoothing, higher values will give smoother weight functions. As for the other parameters, it is possible to provide multiple values.

Value

Returns weights and corresponding predictions.

Examples

```
## Not run:
T <- 50 # Observations
N <- 2 # Experts
P <- 9 # Quantiles
prob_grid <- 1:P / (P + 1)

y <- rnorm(n = T) # Realized
experts <- array(dim = c(T, P, N)) # Predictions
for (t in 1:T) {
    experts[t, , 1] <- qnorm(prob_grid, mean = -1, sd = 1)</pre>
```

12 oracle

```
experts[t, , 2] <- qnorm(prob_grid, mean = 3, sd = sqrt(4))</pre>
}
model <- online(</pre>
    y = matrix(y),
    experts = experts,
    tau = prob_grid,
    p_smooth_pr = list(lambda = 10)
)
print(model)
plot(model)
new_y <- matrix(rnorm(1)) # Realized</pre>
new_experts <- experts[T, , , drop = FALSE]</pre>
# Update will update the models weights etc if you provide new realizations
model <- update(model, new_y = new_y, new_experts = new_experts)</pre>
# Predict will expand \code{model$predictions} by default
model <- predict(model, new_experts = new_experts, update_model = TRUE)</pre>
## End(Not run)
```

oracle

Probabilistic Forecast Combination - Oracle

Description

Returns predictions and weights calculated by numeric optimization. The optimization is done in hindsight. This means all observations are used.

Usage

```
oracle(y, experts, tau, affine = FALSE,
positive = FALSE, intercept = FALSE, debias = TRUE,
loss_function = "quantile", loss_parameter = 1, forget = 0)
```

Arguments

У	A numeric matrix of realizations. In probabilistic settings a matrix of dimension Tx1, in multivariate settings a TxP matrix. In the latter case, each slice of the expert's array gets evaluated using the corresponding column of the y matrix.
experts	An array of predictions with dimension (Observations, Quantiles, Experts).
tau	A numeric vector of probabilities.
affine	Defines whether weights are summing to 1 or now. Defaults to FALSE.
positive	Defines if a positivity constraint is applied to the weights. Defaults to FALSE.

plot.batch 13

intercept Determines if an intercept is added, defaults to FALSE. If true, a new first expert

is added, always predicting 1.

debias Defines whether the intercepts weight is constrained or not. If TRUE (the de-

fault), the intercept weight is unconstrained. Only affects the results if affine and

or positive is set to TRUE. If FALSE, the intercept is treated as an expert.

loss_function Either "quantile", "expectile" or "percentage".

loss_parameter Optional parameter scaling the power of the loss function.

forget Adds an exponential forgetting to the optimization. Past observations will get

less influence on the optimization. Defaults to 0, which corresponds to no for-

getting.

Value

Returns weights and corresponding predictions. It is possible to calculate the best convex combination of weights by setting affine and positive to TRUE.

Examples

```
## Not run:
T <- 50 # Observations
N <- 2 # Experts
P <- 9 # Quantiles
prob_grid <- 1:P / (P + 1)

y <- rnorm(n = T) # Realized
experts <- array(dim = c(T, P, N)) # Predictions
for (t in 1:T) {
    experts[t, , 1] <- qnorm(prob_grid, mean = -1, sd = 1)
    experts[t, , 2] <- qnorm(prob_grid, mean = 3, sd = sqrt(4))
}

model <- oracle(
    y = matrix(y),
    experts = experts
)

## End(Not run)</pre>
```

plot.batch

Plot method for batch models

Description

Plots the most recent weights in each quantile.

14 predict.online

Usage

```
## S3 method for class 'batch' plot(x, ...)
```

Arguments

x Object of class inheriting from 'batch'... further arguments are ignored

plot.online

Plot method for online models

Description

Plots the most recent weights in each quantile.

Usage

```
## S3 method for class 'online' plot(x, ...)
```

Arguments

x Object of class inheriting from 'online'
... further arguments are ignored

predict.online

Predict method for online models

Description

Calculates predictions based on new expert advice. This does not update weights. If new observations are available use update instead. The latter updates and weights and computes predictions.

Usage

```
## S3 method for class 'online'
predict(object, new_experts, update_model = TRUE, ...)
```

Arguments

object Object of class inheriting from 'online'

new_experts new expert predictions

update_model Defines whether the model object should be updated or not. If TRUE, new

forecaster and expert predictions are appended onto the respective object items.

Defaults to TRUE.

... further arguments are ignored

print.batch 15

Value

predict.online produces an updated model object.

print.batch

Print method for batch models

Description

Prints the average loss of all and the forecast combination.

Usage

```
## S3 method for class 'batch'
print(x, ...)
```

Arguments

x Object of class inheriting from 'batch'

... further arguments are ignored

print.online

Print method for online models

Description

Prints the average loss of all experts and the forecast combination.

Usage

```
## S3 method for class 'online' print(x, ...)
```

Arguments

x Object of class inheriting from 'online'

... further arguments are ignored

16 update.online

summary.online Summary method for online models	
---	--

Description

Calculates parameters chosen during optimization and aggregates losses.

Usage

```
## S3 method for class 'online'
summary(object, ...)
```

Arguments

object Object of class inheriting from 'online'

... further arguments are ignored

update.online Update method for online models

Description

Continues learning using new observations and new expert advice.

Usage

```
## S3 method for class 'online'
update(object, new_y, new_experts = NULL, trace = FALSE, ...)
```

Arguments

object Object of class inheriting from 'online'

new_y new observations

new_experts new expert predictions. This must be left unspecified

trace If a progress bar shall be shown. Defaults to FALSE if the model already con-

tains the expert predictions corresponding to new_y.

... further arguments are ignored

Value

update.online produces an updated model object.

Index

```
* package
    profoc-package, 2
{\tt autoplot}, {\color{red} 3}
autoplot.batch, 4
autoplot.online, 4
batch, 5
conline, 8
online, 8
oracle, 12
plot.batch, 13
plot.online, 14
predict.online, 14
print.batch, 15
print.online, 15
profoc-package, 2
summary.online, 16
update.online, \\ 16
```