Package 'propr'

December 16, 2019
Title Calculating Proportionality Between Vectors of Compositional
Data
Version 4.2.6
URL http://github.com/tpq/propr
BugReports http://github.com/tpq/propr/issues
Description The bioinformatic evaluation of gene co-expression often begins with correlation-based analyses. However, correlation lacks validity when applied to relative data, including count data generated by next-generation sequencing. This package implements several metrics for proportionality, including phi [Lovell et al (2015) DOI:10.1371/journal.pcbi.1004075] and rho [Erb and Notredame (2016) DOI:10.1007/s12064-015-0220-8]. This package also implements several metrics for differential proportionality. Unlike correlation, these measures give the same result for both relative and absolute data.

License GPL-2
LazyData true
VignetteBuilder knitr
RoxygenNote 6.1.1
Encoding UTF-8
Depends methods, R ($>=3.2 .2$)
Imports fastcluster, ggplot2, grDevices, igraph, Rcpp, stats, utils
Suggests ALDEx2, Biobase, cccrm, compositions, data.table, datasets, grid, ggdendro, knitr, limma, parallel, plotly, reshape2, rgl, rmarkdown, SDMTools, testhat, vegan

LinkingTo Rcpp
NeedsCompilation yes
Author Thomas Quinn [aut, cre], David Lovell [aut], Ionas Erb [aut], Anders Bilgrau [ctb], Greg Gloor [ctb], Ryan Moore [ctb]

Maintainer Thomas Quinn contacttomquinn@gmail.com
 Repository CRAN
 Date/Publication 2019-12-16 06:10:10 UTC
 R topics documented:

aldex.cor 3
aldex.glm 4
aldex2propr 4
all 5
alphaThetaW_old 7
alphaTheta_old 7
calculateFDR 8
calculateFDR_old 8
calculateTheta 9
calculateThetaW_old 9
calculateTheta_old 10
caneToad.counts 10
caneToad.groups 11
dendroCheck 11
getAdj 12
getAdjacency 12
getColours 13
getMatrix 14
getNetwork 14
getNormTheta 15
getRatios 16
getReference 17
getResults 17
ggdend 18
ivar2index 18
lr2cor 19
lr2glm 19
mail 20
marg.abs 20
migraph 21
multiplot 21
packageCheck 22
pals 22
pd.d 23
pd.e 23
permuteTheta 24
permuteTheta_false 24
permuteTheta_naive 25
permuteTheta_old 25
permuteTheta_prime 26
plotCheck 26
posthoc 27
pra 27
progress 28
promptCheck 29
propd 29
propr 31
proprALR 34
proprCLR 34
proprPairs 35
proprPerb 35
proprPhit 36
proprSym 36
proprTri 37
proprVLR 37
qtheta 38
ratios 38
shale 39
slate 40
top.counts 40
top.lr 41
updateCutoffs 41
visualize 42
wide2long 45
Index 46
aldex.cor Correlate CLR Data with a Continuous Measurement

Description

This function uses the Monte Carlo instances from an aldex.clr object to correlate each log-ratio transformed feature vector with a continuous numeric variable. See lr2cor.

Usage

aldex.cor(clr, conditions, ...)

Arguments

clr An aldex.clr object.
conditions A numeric vector of a continuous variable.
Arguments passed to cor. test.

Value

Returns a data.frame of the average correlation statistic (e.g., r) and p-value (p) for each log-ratio transformed feature, with FDR appended as the BH column.

Description

This function uses the Monte Carlo instances from an aldex. clr object to build a generalized linear model from log-ratio transformed data. See lr2glm.

Usage

aldex.glm(clr, model.matrix, ...)

Arguments

clr
An aldex.clr object.
model.matrix
A model.matrix.
... Arguments passed to glm.

Value

Returns a data.frame of the average coefficients and their p-values for each feature, with FDR appended as a BH column.

```
aldex2propr Import ALDEx2 Object
```


Description

This method constructs a propr object from an aldex.clr object. See Details.

Usage

aldex2propr(aldex.clr, how = "rho", select)

Arguments

aldex.clr An aldex.clr object.
how A character string. The proportionality metric used to build the propr object. Choose from "rho", "phi", or "phs".
select Optional. Use this to subset the final proportionality matrix without altering the result.

Details

The ALDEx2 package has two exceptional features useful in proportionality analysis too. First, ALDEx2 offers a number of extra log-ratio transformations, toggled by the denom argument in aldex.clr. Second, ALDEx2 estimates per-feature technical variation within each sample using Monte-Carlo instances drawn from the Dirichlet distribution.
The aldex2propr function takes advantage of both of these features by constructing a propr object directly from an aldex. clr object. When interpreting the resultant propr object, keep in mind that ALDEx2 adds 0.5 to all @counts regardless of whether the counts contain any zeros. Otherwise, the @logratio slot contains the log-ratio transformed counts as averaged across all Monte Carlo instances. Likewise, the @matrix slot gets filled with the proportionality matrix as averaged across all Monte Carlo instances.
The select argument subsets the feature matrix after log-ratio transformation but before calculating proportionality. This reduces the run-time and RAM overhead without impacting the final result. Removing lowly abundant features prior to log-ratio transformation could otherwise change the proportionality measure.

Value

Returns a propr object.

all A list of most parameters.

Description

A list of most parameters.

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
metric A character string. The proportionality metric to calculate. Choose from "rho", "phi", or "phs".
ivar A numeric scalar. Specifies reference feature(s) for additive log-ratio transformation. The argument will also accept feature name(s) instead of the index position(s). Set to "iqlr" to use inter-quartile log-ratio transformation. Ignore to use centered log-ratio transformation.
select Optional. Use this to subset the final proportionality matrix without altering the result. Use this argument to rearrange feature order.
symmetrize A logical. If TRUE, forces symmetry by reflecting the "lower left triangle".
alpha A double. See vignette for details. Leave missing to skip Box-Cox transformation.
$\mathrm{p} \quad$ An integer. The number of permutation cycles.
... Arguments passed to the wrapped method.
$\left.\begin{array}{ll}\text { object, } x, \text { rho, propr, propd } \\ & \text { A propr or propd object. } \\ \text { subset } & \begin{array}{l}\text { Subsets via object@counts[subset,]. Use this argument to rearrange subject } \\ \text { order. For backwards compatibility. }\end{array} \\ \text { i } & \begin{array}{l}\text { Operation used for the subset indexing. Select from "==", "=", ">", ">=", "<", } \\ \text { "<=", "!=", or "all". For backwards compatibility. }\end{array} \\ \text { j Provide a numeric value to which to compare the proportionality measures in } \\ \text { the @matrix slot. For backwards compatibility. }\end{array}\right\}$

Description

Do not use this function. For testing purposes only.

Usage

alphaThetaW_old(counts, group, alpha, weights)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
alpha A double. See vignette for details. Leave missing to skip Box-Cox transformation.
weights A matrix. Pre-computed limma-based weights. Optional parameter.

```
alphaTheta_old Calculate alpha Theta
```


Description

Do not use this function. For testing purposes only.

Usage

alphaTheta_old(counts, group, alpha)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
alpha A double. See vignette for details. Leave missing to skip Box-Cox transformation.

```
calculateFDR Calculate FDR Cutoffs
```


Description

This function uses the result of a permuteTheta call to calculate false discovery rate (FDR) cutoffs.

Usage

calculateFDR(theta, ptheta, cutoff $=\operatorname{seq}(0.6,0.9,0.1))$

Arguments

theta A data.frame. The result of a calculateTheta call.
ptheta A data.frame. The result of a permuteTheta call.
cutoff For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs to test. For graph functions, a numeric scalar. This argument indicates the maximum theta to include in the figure. For graph functions, a large integer will instead retrieve the top N pairs as ranked by theta.

```
calculateFDR_old Calculate FDR Cutoffs
```


Description

Do not use this function. For testing purposes only.

Usage

calculateFDR_old(theta, ptheta, cutoff $=\operatorname{seq}(0.6,0.9,0.1))$

Arguments

theta
A data.frame. The result of a calculateTheta call.
ptheta A data.frame. The result of a permuteTheta call.
cutoff For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs to test. For graph functions, a numeric scalar. This argument indicates the maximum theta to include in the figure. For graph functions, a large integer will instead retrieve the top N pairs as ranked by theta.

```
calculateTheta
Calculate Theta
```


Description

Calculate differential proportionality measure, theta. Used by propd to build the @results slot. A numeric alpha argument will trigger the Box-Cox transformation.

Usage

calculateTheta(counts, group, alpha = NA, lrv = NA, only = "all", weighted $=$ FALSE, weights $=$ as.matrix(NA))

Arguments

counts	A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group	A character vector. Group or sub-group memberships, ordered according to the row names in counts.
alpha	A double. See vignette for details. Leave missing to skip Box-Cox transforma- tion.
lrv	A numeric vector. A vector of pre-computed log-ratio variances. Optional pa- rameter.
only	A character string. The name of the theta type to return if only calculating one theta type. Used to make updateCutoffs faster.
weighted	A boolean. Toggles whether to calculate theta using limma: :voom weights.
weights	A matrix. Pre-computed limma-based weights. Optional parameter.

Value

A data.frame of theta values if only = "all". Otherwise, this function returns a numeric vector.

```
calculateThetaW_old Calculate Weighted Theta
```


Description

Do not use this function. For testing purposes only.

Usage

calculateThetaW_old(counts, group)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.

```
calculateTheta_old Calculate Theta
```


Description

Do not use this function. For testing purposes only.

Usage

calculateTheta_old(counts, group)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
caneToad. counts Example Cane Toad Count Data

Description

Raw RNA-seq counts for twenty toads sampled from one of two regions in Australia. Data set reduced to exclude any transcripts without at least 10 counts in at least 10 samples.

Usage

data(caneToad. counts)

Format

An object of class matrix with 20 rows and 25774 columns.

Source

DOI:10.1111/mec.13184

Description

Group labels for twenty toads sampled from one of two regions in Australia. Data set reduced to exclude any transcripts without at least 10 counts in at least 10 samples.

Usage

```
data(caneToad.groups)
```


Format

An object of class character of length 20.

Source

DOI:10.1111/mec.13184

Description

Performs data checks before plotting, triggering messages or errors when appropriate. For back-end use only.

Usage

dendroCheck()

```
getAdj Get Object as Adjacency Matrix
```


Description

This function uses getMatrix to return a propr or propd object as an adjacency matrix. The diagonal is set to 0 .

Usage

getAdj(object, cutoff = 1)

Arguments

object A propr or propd object.
cutoff This argument indicates the value at which to cutoff the results. For "rho" and "cor", the function returns pairs with a value greater than the cutoff. For "theta", "phi", and "phs", the function returns pairs with a value less than the cutoff. Leave the argument as NA to return all results.

Details

This function is faster than getAdjacency, but has fewer arguments to tailor results.

Value

An adjacency matrix.
getAdjacency Get Object as Adjacency Matrix

Description

This function uses getNetwork to return a propr or propd object as an adjacency matrix. The diagonal is set to 0 .

Usage

getAdjacency(object, cutoff $=$ NA, include $=$ NA, or $=$ TRUE)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { A propr or propd object. } \\
\text { cutoff } & \text { This argument indicates the value at which to cutoff the results. For "rho" and } \\
\text { "cor", the function returns pairs with a value greater than the cutoff. For "theta", } \\
\text { "phi", and "phs", the function returns pairs with a value less than the cutoff. } \\
\text { Leave the argument as NA to return all results. } \\
\text { include } & \begin{array}{l}
\text { This argument indicates which features by name should belong to a pair for that } \\
\text { pair to get included in the results. Subset performed by Partner \%in\% subset } \\
\text { I Pair \%in\% subset. }
\end{array} \\
\text { or } & \begin{array}{l}
\text { A boolean. If FALSE, include subsets by Partner \%in\% subset \& Pair \%in\% } \\
\text { subset. }
\end{array}
\end{array}
$$

Value

An adjacency matrix.
getColours Label propd Pairs by DE Results

Description

The getColours function "colours" the pairs based on a vector of differential expression (DE) results. If both members in the pair are DE, the colour is "Green". If both members in the pair are not DE, the colour is "Red". If only one is DE, the colour is "Yellow". This allows the results of a DE analysis to affect the interpretation of differential proportionality. Importantly, the significance of differential proportionality is independent of the DE method used.

Usage

getColours(object, DE, cutoff = NA, include = NA, or = TRUE)
getColors(object, DE, cutoff = NA, include = NA, or = TRUE)

Arguments

object
DE
cutoff For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs to test. For graph functions, a numeric scalar. This argument indicates the maximum theta to include in the figure. For graph functions, a large integer will instead retrieve the top N pairs as ranked by theta.
include This argument indicates which features by name should belong to a pair for that pair to get included in the results. Subset performed by Partner \%in\% subset | Pair \%in\% subset.
or A boolean. If FALSE, include subsets by Partner \%in\% subset \& Pair \%in\% subset.

Details

For use in conjunction with getNormTheta.

Value

A data.frame. The output of getResults with a "colour" column.

```
getMatrix Get Object as Symmetric Matrix
```


Description

This function returns a symmetric matrix of propr or propd values. The diagonal is set to 0 .

Usage

getMatrix (object)

Arguments

$$
\text { object } \quad \text { A propr or propd object. }
$$

Value

A symmetric matrix.

Description

This function provides a unified wrapper to build networks from propr and propd objects.

Usage

getNetwork(object, cutoff = NA, propr.object, propr.cutoff = NA, thetad.object, thetad.cutoff $=$ NA, thetae.object, thetae.cutoff $=$ NA, col1, col2, include = NA, or = TRUE, d3 = FALSE)

Arguments

$$
\begin{aligned}
& \text { object Any propr or propd object. } \\
& \text { cutoff A cutoff argument for object, passed to getResults. } \\
& \text { propr.object, thetad.object, thetae.object } \\
& \text { A propr object or an appropriate propd object. } \\
& \text { propr.cutoff, thetad.cutoff, thetae.cutoff } \\
& \text { A cutoff argument passed to getResults. } \\
& \text { col1 A character vector. Specifies which nodes to color red or blue, respectively. } \\
& \text { col2 A character vector. Specifies which nodes to color red or blue, respectively. } \\
& \text { include This argument indicates which features by name should belong to a pair for that } \\
& \text { pair to get included in the results. Subset performed by Partner \%in\% subset } \\
& \text { | Pair \%in\% subset. } \\
& \text { or A boolean. If FALSE, include subsets by Partner \%in\% subset \& Pair \%in\% } \\
& \text { subset. } \\
& \text { d3 } \\
& \text { A boolean. Use rgl to plot 3D network. }
\end{aligned}
$$

Value

A network object.

```
getNormTheta Get Per-Feature Theta
```


Description

The getNormTheta function calculates the differential proportionality between each feature and a set of normalization factors. When the normalization factors correctly remove the compositional bias, the resultant thetas indicate differential expression (DE). However, unlike other DE tests, the pvalue for differential proportionality is not linked to the normalization factors. Here, normalization factors only affect the interpretation, not the statistics.

Usage

getNormTheta(object, norm.factors)

Arguments

object Any propd object.
norm.factors A numeric vector. The effective library size normalization factors (e.g., from edgeR or DESeq2).

Details

For use in conjunction with getColours.

Value

A numeric vector. A theta for each feature.
getRatios Get (Log-)ratios from Object

Description

This function provides a unified wrapper to retrieve (log-)ratios from propr and propd objects.

Usage

```
    getRatios(object, cutoff = NA, include = NA, or = TRUE,
```

 melt = FALSE)

Arguments

object	A propr or propd object.		
cutoff	This argument indicates the value at which to cutoff the results. For "rho" and "cor", the function returns pairs with a value greater than the cutoff. For "theta", "phi", and "phs", the function returns pairs with a value less than the cutoff. Leave the argument as NA to return all results.		
include	This argument indicates which features by name should belong to a pair for that pair to get included in the results. Subset performed by Partner \%in\% subset \| Pair \%in\% subset.		
or A boolean. If FALSE, include subsets by Partner \%in\% subset \& Pair \%in\%			
subset.		\quad	A boolean. Toggles whether to melt the results for visualization with ggplot2.
:---			

Details

When the alpha argument is provided, this function returns the (log-)ratios as (partner^alpha -pair^alpha) / alpha.

Value

A data.frame of (log-)ratios.
getReference Get Reference to Approximate CLR

Description

This function finds the reference that is most proportional to the geometric mean of the samples. Using this reference for an alr-transformation will permit an analysis that resembles that of a clrtransformation, but arguably with greater interpretability.

Usage

getReference(counts, alpha = NA)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
alpha A double. See vignette for details. Leave missing to skip Box-Cox transformation.

Value

A reference as a character or integer.

```
getResults Get Results from Object
```


Description

This function provides a unified wrapper to retrieve results from a propr or propd object.

Usage

getResults(object, cutoff = NA, include = NA, or = TRUE)

Arguments

object A propr or propd object.
cutoff This argument indicates the value at which to cutoff the results. For "rho" and "cor", the function returns pairs with a value greater than the cutoff. For "theta", "phi", and "phs", the function returns pairs with a value less than the cutoff. Leave the argument as NA to return all results.
include This argument indicates which features by name should belong to a pair for that pair to get included in the results. Subset performed by Partner \%in\% subset | Pair \%in\% subset.
or A boolean. If FALSE, include subsets by Partner \%in\% subset \& Pair \%in\% subset.

Value

A data. frame of results.
ggdend Dendrogram Plot Wrapper

Description

Builds ggplot2 dendrograms. For back-end use only.

Usage

ggdend(dendrogram)

Arguments

dendrogram A result from as.dendrogram.

Value

Returns a ggplot object.
ivar2index Build Index from ivar Argument

Description

This function builds an index from the ivar argument. Used by the propr initialize method and updateF.

Usage

ivar2index(counts, ivar)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
ivar A numeric scalar. Specifies reference feature(s) for additive log-ratio transformation. The argument will also accept feature name(s) instead of the index position(s). Set to "iqlr" to use inter-quartile log-ratio transformation. Ignore to use centered log-ratio transformation.

Value

A numeric vector of indices for the reference set.
lr2cor Correlate CLR Data with a Continuous Measurement

Description

This function correlates each log-ratio transformed feature vector with a continuous numeric variable.

Usage

lr2cor(lr, conditions, ...)

Arguments

lr	A data.frame. A log-ratio transformed counts matrix.
conditions	A numeric vector of a continuous variable.
\ldots	Arguments passed to cor.test.

Value

Returns a data.frame of the estimated correlation statistic (e.g., r) and p-value (p) for each log-ratio transformed feature, with FDR appended as the BH column.
lr2glm
Build a Generalized Linear Model from CLR Data

Description

This function builds a generalized linear model from log-ratio transformed data.

Usage

lr2glm(lr, model.matrix, ...)

Arguments

lr A data.frame. A log-ratio transformed counts matrix.
model.matrix A model.matrix.
... Arguments passed to glm.

Value

Returns a data.frame of the estimated coefficients and their p-values for each feature, with FDR appended as a BH column.

Description

Includes mock count data for 5 days and 4 zip codes.

```
Usage
data(mail)
```


Format

An object of class matrix with 5 rows and 4 columns.

Description

Data generated with supplemental script provided by DOI:10.1371/journal.pcbi.1004075. Data originally sourced from $<\mathrm{DOI}: 10.1016 / \mathrm{j}$. cell.2012.09.019 $>$. A time series of yeast mRNA abundance after removal of a key nutrient. Absolute abundance estimated by multiplying microarray signal (relative to first time point) by the initial nCounter-calibrated and copy-per-cell-adjusted RNA-seq abundance (averaged across two replicates). Divide absolute abundances by total sample abundance to make data relative.

Usage

data(marg.abs)

Format

An object of class data. frame with 16 rows and 3031 columns.

```
migraph igraph Helper Functions
```


Description

igraph Helper Functions

Usage

migraph.add(g, names1, names2, force = TRUE)
migraph.color(g, names1, names2, col)
migraph.clean (g)

Arguments

$$
\left.\begin{array}{ll}
\text { g } \\
\text { names1, names2 } & \text { An igraph object. } \\
\text { A character vector. The names1 argument defines a first set of vertices. The } \\
\text { names2 argument defines a second set of vertices to which the first set connects } \\
\text { (i.e., element-wise), thereby defining a set of edges. }
\end{array}\right\} \begin{aligned}
& \text { A boolean. If true, the function adds any missing vertices before adding edges. } \\
& \text { If false, the function only adds edges that have both vertices already present. } \\
& \text { force } \\
& \text { col }
\end{aligned} \begin{aligned}
& \text { A character string. The color applied to all vertices (or edges) specified by the } \\
& \text { names1 (or names2) argument. }
\end{aligned}
$$

Value

An igraph object.

```
multiplot
```

Plot Multiple Graphs

Description

Easily plot multiple graphs within the same window. Code adapted from http://www.cookbookr.com/. For back-end use only.

Usage

multiplot(..., cols = 1)

Arguments

...
Multiple plots.
cols
A numeric scalar. The number of plot columns.
packageCheck Package Check

Description

Checks whether the user has the required package installed. For back-end use only.

```
Usage
    packageCheck(package)
```


Arguments

$$
\text { package } \quad \text { A character string. An R package. }
$$

```
pals Calculate PALs for Pairs
```


Description

This function finds the Popular Adjacent Ligand or Self (PALs) for each feature in the @results slot of a propd object. Specifically, we define PALs as the adjacent node with the highest amount of connectivity. If node itself has more connectivity than any of its neighbors, it is its own PAL.

Usage

pals(object, k)

Arguments

object
k

A propr or propd object.
An integer. For propr methods, the number of co-clusters (where all pairs receive a specified color if and only if both members belong to same the cluster). For propd methods, the maximum number of PALs to index when calculating pals in the network.

Value

A named vector of PALs, ordered by decreasing connectivity of the input nodes. The names of the result refer to the input nodes themselves.

```
pd.d Example propd Object
```


Description

Includes results from propd as applied to cane toad transcripts with at least 40 counts in at least 20 samples (after removing any transcripts with 0 counts). The resultant object is filtered to include only the top 1000 theta_d values in the @results slot.

Usage

data(pd.d)

Format

An object of class propd of length 1.

Source

DOI:10.1111/mec.13184
pd.e Example propd Object

Description

Includes results from propd as applied to cane toad transcripts with at least 40 counts in at least 20 samples (after removing any transcripts with 0 counts). The resultant object is filtered to include only the top 1000 theta_e values in the @results slot.

Usage

data(pd.e)

Format

An object of class propd of length 1.

Source
DOI:10.1111/mec.13184

```
permuteTheta Permute Theta
```


Description

Permute differential proportionality measure, theta.

Usage

permuteTheta(counts, group, $p=64$)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
$p \quad$ An integer. The number of permutation cycles.

Details

This function randomizes group membership $p * n f e a t$ times.

```
permuteTheta_false Permute Theta
```


Description

Permute differential proportionality measure, theta.

Usage

permuteTheta_false(counts, group, $\mathrm{p}=64$)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
$\mathrm{p} \quad$ An integer. The number of permutation cycles.

Details

For back-end use only.

```
permuteTheta_naive Permute Theta
```


Description

Permute differential proportionality measure, theta.

Usage

permuteTheta_naive(counts, group, $p=64$)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
p An integer. The number of permutation cycles.

Details

This function randomizes all feature vectors p times.

```
permuteTheta_old Permute Theta
```


Description

Do not use this function. For testing purposes only.

Usage

permuteTheta_old(counts, group, p)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
p
An integer. The number of permutation cycles.

```
permuteTheta_prime Permute Theta
```


Description

Permute differential proportionality measure, theta.

Usage

permuteTheta_prime(counts, group, $\mathrm{p}=64$)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
group A character vector. Group or sub-group memberships, ordered according to the row names in counts.
p An integer. The number of permutation cycles.

Details

This function randomizes group labels p times.

```
plotCheck Plot Check
```


Description

Performs data checks before plotting, triggering messages or errors when appropriate. For back-end use only.

Usage

plotCheck(rho, prompt, plotly, indexNaive)

Arguments

rho	A propr or propd object.
prompt	A logical scalar. Set to FALSE to disable the courtesy prompt when working with big data.
plotly	A logical scalar. Set to TRUE to produce a dynamic plot using the plotly pack- age.
indexNaive	Toggles whether to perform checks for an "index-naive" plot function.

Value

Returns a propr object with guaranteed column names and row names.

```
posthoc Perform Post-Hoc Testing
```


Description

After running an ANOVA of more than 2 groups, it is useful to know which of the groups differ from the others. This question is often answered with post-hoc testing. This function implements post-hoc pairwise differential proportionality analyses for more than 2 groups.

Usage
 posthoc(object)

Arguments

object A propd object.

Details

The ANOVA p-values are adjusted once (column-wise) during the original multi-group analysis. The post-hoc p-values are adjusted once (row-wise) for the number of post-hoc tests. The post-hoc adjustment is p times the number of post-hoc tests.
Please note that a significant post-hoc test without a significant ANOVA test is never significant!

Value

A propd object.
pra Principal Ratio Analysis

Description

This function finds which feature ratios explain the most variance. This is a computationally expensive procedure that we approximate with the heuristic described below.

Usage

pra(counts, ndim $=3$, nclust $=2 *$ round(sqrt(ncol(counts))), nsearch $=3$, ndenom $=4$)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
ndim An integer. The number of ratios to find.
nclust An integer. The number of clusters to build from the data.
nsearch An integer. The number of clusters to search exhaustively.
ndenom An integer. The number of best denominators to use when searching for the best numerators.

Details

This function resembles the method described by Michael Greenacre in "Variable Selection in Compositional Data Analysis Using Pairwise Logratios", except that we have modified the method to use a heuristic that scales to high-dimensional data.
For each ratio, the heuristic will search CLR-based clusters for the best denominator, and then will search ALR-based clusters for the best numerator. It does this by dividing the transformed data into nclust clusters, calculating vegan::rda on the geometric mean of each cluster, then searching the best clusters exhaustively. The ndenom argument toggles how many best denominators to use during the next step. This process is repeated ndim times, finding that number of ratios that explain the most variance.

Value

A list of: (1) "best", the best ratios and the variance they explain, (2) "all", all ratios tested and the variance they explain, (3) "Z", the standardized data used by the constrained PCA, and (4) "Y", the final ratios used to constrain the PCA.

```
progress Make Progress Bar
```


Description

Make Progress Bar

Usage

progress(i, k, numTicks)

Arguments

i The current iteration.
k Total iterations.
numTicks The result of progress.

Value

The next numTicks argument.

```
promptCheck Feature Check
```


Description

Prompts user when performing an operation on an unusually large set of features. For back-end use only.

Usage

promptCheck(N)

Arguments

N
An integer. The number of features.
propd The propd Method

Description

Welcome to the propd method!
Let X and Y be non-zero positive feature vectors measured across N samples belonging to one of two groups, sized $N 1$ and $N 2$. We use VLR to denote the variance of the log of the ratio of the vectors X over Y. We define theta as the weighted sum of the within-group VLR divided by the weighted total VLR.
The propd method calculates theta. This fails in the setting of zero counts. The propd method will use a Box-Cox transformation to approximate VLR based on the parameter α, if provided. We refer the user to the vignette for more details.
Note that Group 1 always refers to the first element of the group vector argument supplied to propd.

Usage

```
## S4 method for signature 'propd'
show(object)
    propd(counts, group, alpha, p = 100, weighted = FALSE)
    setActive(propd, what = "theta_d")
    setDisjointed(propd)
    setEmergent(propd)
    updateCutoffs.propd(object, cutoff = seq(0.05, 0.95, 0.3))
    updateF(propd, moderated = FALSE, ivar = "clr")
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { A propr or propd object. } \\
\text { counts } & \begin{array}{l}
\text { A data.frame or matrix. A "count matrix" with subjects as rows and features as } \\
\text { columns. Note that this matrix does not necessarily have to contain counts. } \\
\text { A character vector. Group or sub-group memberships, ordered according to the } \\
\text { row names in counts. }
\end{array} \\
\text { group } & \begin{array}{l}
\text { A double. See vignette for details. Leave missing to skip Box-Cox transforma- } \\
\text { tion. }
\end{array} \\
\text { alpha } & \text { An integer. The number of permutation cycles. } \\
\text { p } & \text { A boolean. Toggles whether to calculate theta using limma: : voom weights. } \\
\text { propd } & \begin{array}{l}
\text { A propr or propd object. }
\end{array} \\
\text { what } & \begin{array}{l}
\text { A character string. The theta type to set active. }
\end{array} \\
\text { cutoff } & \begin{array}{l}
\text { For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs } \\
\text { to test. For graph functions, a numeric scalar. This argument indicates the max- } \\
\text { imum theta to include in the figure. For graph functions, a large integer will } \\
\text { instead retrieve the top N pairs as ranked by theta. }
\end{array} \\
\text { moderated } & \begin{array}{l}
\text { For updateF, a boolean. Toggles whether to calculate a moderated F-statistic. }
\end{array} \\
\text { ivar } & \begin{array}{l}
\text { A numeric scalar. Specifies reference feature(s) for additive log-ratio transfor- } \\
\text { mation. The argument will also accept feature name(s) instead of the index }
\end{array} \\
& \begin{array}{l}
\text { position(s). Set to "iqlr" to use inter-quartile log-ratio transformation. Ignore to } \\
\text { use centered log-ratio transformation. }
\end{array}
\end{array}
$$

Value

Returns a propr object.

Slots

counts A data.frame. Stores the original "count matrix" input.
alpha A double. Stores the alpha value used for transformation.
group A character vector. Stores the original group labels.
weighted A logical. Stores whether the theta is weighted.
weights A matrix. If weighted, stores the limma-based weights.
active A character. Stores the name of the active theta type.
Fivar ANY. Stores the reference used to moderate theta.
dfz A double. Stores the prior df used to moderate theta.
results A data.frame. Stores the pairwise propd measurements.
permutes A data.frame. Stores the shuffled group labels, used to reproduce permutations of propd. fdr A data.frame. Stores the FDR cutoffs for propd.

Methods (by generic)

show: Method to show propd object.

Functions

setActive: Build analyses and figures using a specific theta type. For example, set what = "theta_d" to analyze disjointed proportionality and what = "theta_e" to analyze emergent proportionality.
setDisjointed: A wrapper for setActive(propd, what = "theta_d").
setEmergent: A wrapper for setActive(propd, what = "theta_e").
updateCutoffs: Use the propd object to permute theta across a number of theta cutoffs. Since the permutations get saved when the object is created, calling updateCutoffs will use the same random seed each time.
updateF: Use the propd object to calculate the F-statistic from theta as described in the Erb et al. 2017 manuscript on differential proportionality. Optionally calculates a moderated F-statistic using the limma-voom method. Supports weighted and alpha transformed theta values.

propr The propr Package

Description

Welcome to the propr package!
To learn more about calculating proportionality, see Details.
To learn more about visualizing proportionality, see visualize.
To learn more about ALDEx2 package integration, see aldex2propr.
To learn more about differential proportionality, see propd.
To learn more about compositional data analysis, and its relevance to biological count data, see the bundled vignette.

Usage

```
## S4 method for signature 'propr'
show(object)
    propr(counts, metric = c("rho", "phi", "phs", "cor", "vlr"),
        ivar = "clr", select, symmetrize = FALSE, alpha, p = 100)
    phit(counts, ...)
    perb(counts, ...)
    phis(counts, ...)
    corr(counts, ...)
    ## S4 method for signature 'propr'
    subset(x, subset, select)
```

```
## S4 method for signature 'propr'
x[i = "all", j, tiny = FALSE]
simplify(object)
updateCutoffs.propr(object, cutoff, ncores)
```


Arguments

object	A propr or propd object.
counts	A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
metric	A character string. The proportionality metric to calculate. Choose from "rho", "phi", or "phs". ivar
A numeric scalar. Specifies reference feature(s) for additive log-ratio transfor- mation. The argument will also accept feature name(s) instead of the index position(s). Set to "iqlr" to use inter-quartile log-ratio transformation. Ignore to use centered log-ratio transformation.	
select	Optional. Use this to subset the final proportionality matrix without altering the result. Use this argument to rearrange feature order.
symmetrize	A logical. If TRUE, forces symmetry by reflecting the "lower left triangle".
alpha	A double. See vignette for details. Leave missing to skip Box-Cox transforma- tion.
An integer. The number of permutation cycles.	

Details

Let D represent a number of features measured across N samples. This function calculates proportionality from a data set with N rows and D columns. One can think of phi as analogous to a distance matrix, except that it has no symmetry unless forced. One can think of rho as analogous to a correlation matrix. One can think of phs as either a naturally symmetric variant of phi or a monotonic variant of rho. Also, one can use corr to calculate correlation from log-ratio transformed data.
This function depends on a reference and uses the centered log-ratio transformation by default. The user may also specify any number of features (by index or name) to use as a reference instead. Alternatively, ivar = "iqlr" will transform data using the geometric mean of features with variances that fall in the inter-quartile range of all per-feature variances (based on the ALDEx2 package).
The propr method calculates proportionality. This fails in the setting of zero counts. The propr method will use a Box-Cox transformation to approximate VLR based on the parameter α, if provided. We refer the user to the vignette for more details.

Value

Returns a propr object.

Slots

counts A data.frame. Stores the original "count matrix" input.
alpha A double. Stores the alpha value used for transformation.
metric A character string. The metric used to calculate proportionality.
ivar A vector. The reference used to calculate proportionality.
logratio A data.frame. Stores the transformed "count matrix".
matrix A matrix. Stores the proportionality matrix.
pairs A vector. Indexes the proportional pairs of interest.
results A data.frame. Stores the pairwise propr measurements.
permutes A list. Stores the shuffled transformed "count matrix" instances, used to reproduce permutations of propr.
fdr A data.frame. Stores the FDR cutoffs for propr.

Methods (by generic)

show: Method to show propr object.
subset: Method to subset propr object.
[: Method to subset propr object.

Functions

phit: A wrapper for propr (counts,metric = "phi", . .) .
perb: A wrapper for propr (counts, metric = "rho", . . .).
phis: A wrapper for propr (counts,metric = "phs", . . .) .
corr: A wrapper for propr (counts, metric = "cor", . . .).
simplify: This convenience function takes an indexed propr object and subsets the object based on that index. Then, it populates the @pairs slot of the new object with an updated version of the original index. You can call simplify from within the [method using the argument tiny.
updateCutoffs: Use the propr object to permute proportionality across a number of cutoffs. Since the permutations get saved when the object is created, calling updateCutoffs will use the same random seed each time.

```
proprALR
Calculates the additive log-ratio transformation.
```


Description

Provided for backend use.

Usage

proprALR(X, ivar, check = FALSE)

Arguments

X A data.frame or matrix. A "count matrix" with subjects as rows and features as columns.
ivar A numeric scalar. Specifies feature to use as reference for additive log-ratio transformation.
check A logical. If TRUE, function first checks for negative and NA values.

Value

A matrix. Returns the additive log-ratio transformation of X .

```
proprCLR Calculates the centered log-ratio transformation.
```


Description

Provided for backend use.

Usage
 $\operatorname{proprCLR}(X$, check $=$ FALSE $)$

Arguments

X
check

A data.frame or matrix. A "count matrix" with subjects as rows and features as columns.
A logical. If TRUE, function first checks for negative and NA values.

Value

A matrix. Returns the centered log-ratio transformation of X.

Description

Provided for backend use.

Usage

proprPairs(prop)

Arguments

prop A data.frame or matrix. A proportionality matrix.

Value

A data.frame. Returns a table of feature pairs.

```
proprPerb
Calculate proportionality metric rho (Erb 2016).
```


Description

Provided for backend use.

Usage

proprPerb(counts, ivar = 0)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
ivar A numeric scalar. Specifies reference feature(s) for additive log-ratio transformation. The argument will also accept feature name(s) instead of the index position(s). Set to "iqlr" to use inter-quartile log-ratio transformation. Ignore to use centered log-ratio transformation.

Value

Returns proportionality matrix.
proprPhit Calculate proportionality metric phi (Lovell 2015).

Description

Provided for backend use.

Usage

proprPhit(counts, symmetrize $=$ TRUE)

Arguments

counts A data.frame or matrix. A "count matrix" with subjects as rows and features as columns. Note that this matrix does not necessarily have to contain counts.
symmetrize A logical. If TRUE, forces symmetry by reflecting the "lower left triangle".

Value

Returns proportionality matrix.

```
proprSym
Symmetrizes a proportionality matrix.
```


Description

Provided for backend use.

Usage

proprSym(prop)

Arguments

prop A data.frame or matrix. A proportionality matrix.

Value

A matrix. Returns a symmetrized proportionality matrix.
proprTri \quad Retrieve the lower left triangle of a proportionality matrix.

Description

Provided for backend use.

Usage

proprTri (prop)

Arguments

prop A data.frame or matrix. A proportionality matrix.

Value

A vector. Returns the lower left triangle of a proportionality matrix.

```
proprVLR
```


Description

Provided for backend use.

Usage

$\operatorname{proprVLR}(X$, check $=$ FALSE $)$

Arguments

X A data.frame or matrix. A "count matrix" with subjects as rows and features as columns.
check A logical. If TRUE, function first checks for negative and NA values.

Value

Returns a matrix containing the variance of the \log of the ratios.
qtheta Calculate a theta Cutoff

Description

This function uses the F distribution to calculate a cutoff of theta for a p-value given by the pval argument.

Usage

qtheta(propd, pval $=0.05$, fdr $=$ FALSE)

Arguments

propd A propr or propd object.
pval A p-value at which to calculate a theta cutoff.
fdr A boolean. Toggles whether to calculate the theta cutoff for an FDR-adjusted p-value.

Details

If the argument fdr = TRUE, this function returns the empiric cutoff that corresponds to the FDRadjusted p-value stored in the @results $\$$ FDR slot.

Value

A cutoff of theta from $[0,1]$.
ratios Recast Matrix as Feature (Log-)Ratios

Description

The ratios function recasts a matrix with N feature columns as a new matrix with $N *(N-1) / 2$ feature (log-)ratio columns.

Usage

ratios(matrix, alpha = NA)

Arguments

matrix A matrix. The data to recast.
alpha A double. See vignette for details. Leave missing to skip Box-Cox transformation.

Details

When the alpha argument is provided, this function returns the (log-)ratios as (partner^alpha -pair^alpha) / alpha.

Value

A matrix of (log-)ratios.

```
shale Build propd Results Table
```


Description

Builds a table of within-group and total log-ratio variances, log-ratio means, and PALs (see: pals). If the argument k is provided, the table will label at most k top PALs. Just as each node gets assigned a PAL, shale aims to assign each edge a PAL. Edges that have a top PAL as one and only one of their nodes get assigned that PAL. Edges that have top PALs as both of their nodes get assigned "Bridged". Edges without a top PAL as one of their nodes will get assigned a PAL if either (a) both nodes have the same neighbor PAL or (b) one node has a "Missing" neighbor PAL. The cutoff argument guides the maximum value of theta above which to exclude the pair. A large integer cutoff will instead retrieve the top N pairs as ranked by theta.

Usage

shale(object, cutoff $=1000, k$, prompt $=$ TRUE, clean $=$ FALSE)

Arguments

object A propr or propd object.
cutoff For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs to test. For graph functions, a numeric scalar. This argument indicates the maximum theta to include in the figure. For graph functions, a large integer will instead retrieve the top N pairs as ranked by theta.
k
An integer. For propr methods, the number of co-clusters (where all pairs receive a specified color if and only if both members belong to same the cluster). For propd methods, the maximum number of PALs to index when calculating pals in the network.
prompt A logical scalar. Set to FALSE to disable the courtesy prompt when working with big data.
clean A boolean. Toggles whether to remove pairs with "Bridged" or "Missing" PALs. Used by geyser, bowtie, and gemini.

Description

Builds a table of VLR, VLS, and proportionality for each feature pair in a propr object. If the argument k is provided, the table will also include co-cluster membership. Returns a data.frame of all pairwise relationships. If the argument k is provided, returns a list of the data.frame of pairwise relationships and the cluster membership.

Usage

slate(rho, k, prompt = TRUE, plotly = FALSE)

Arguments

rho A propr or propd object.
$k \quad$ An integer. For propr methods, the number of co-clusters (where all pairs receive a specified color if and only if both members belong to same the cluster). For propd methods, the maximum number of PALs to index when calculating pals in the network.
prompt A logical scalar. Set to FALSE to disable the courtesy prompt when working with big data.
plotly A logical scalar. Set to TRUE to produce a dynamic plot using the plotly package.
top. counts Example propr Object

Description

Includes the non-transformed count abundances from all cane toad transcripts with at least 10 counts in at least 10 samples, subsetted to include only those indexed by rho > .995. Used for vignette.

Usage

data(top.counts)

Format

An object of class matrix with 20 rows and 409 columns.

Source

DOI:10.1111/mec.13184
top.lr Example propr Object

Description

Includes the log-ratio transformed abundances from all cane toad transcripts with at least 10 counts in at least 10 samples, subsetted to include only those indexed by rho > .995. Used for vignette.

Usage

data(top.lr)

Format

An object of class matrix with 20 rows and 409 columns.

Source

DOI:10.1111/mec.13184

```
updateCutoffs Update FDR by Permutation
```


Description

This function updates FDR for a set of cutoffs.

Usage

updateCutoffs (object, cutoff $=\operatorname{seq}(0.05,0.95,0.3)$, ncores $=1$)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { A propr or propd object. } \\
\text { cutoff } & \begin{array}{l}
\text { For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs } \\
\text { to test. For graph functions, a numeric scalar. This argument indicates the max- } \\
\text { imum theta to include in the figure. For graph functions, a large integer will } \\
\text { instead retrieve the top N pairs as ranked by theta. }
\end{array} \\
\text { ncores } & \text { An integer. The number of parallel cores to use. }
\end{array}
$$

Details

This function wraps updateCutoffs.propr and updateCutoffs.propd.

Value

A propr or propd object.
visualize Visualize Proportionality

Description

Visualize proportionality and differential proportionality.

Usage

\#\# S4 method for signature 'propr,missing' plot $(x, y$, prompt $=$ TRUE, plotly = FALSE)
smear (rho, prompt = TRUE, plotly = FALSE)
dendrogram(rho, prompt $=$ TRUE, plotly = FALSE)
bucket(rho, group, k, prompt = TRUE, plotly = FALSE)
prism(rho, k, prompt = TRUE, plotly = FALSE)
bokeh(rho, k, prompt = TRUE, plotly = FALSE)
pca(rho, group, prompt $=$ TRUE, plotly = FALSE)
snapshot(rho, prompt $=$ TRUE, plotly = FALSE)
cytescape(object, col1, col2, prompt = TRUE, d3 = FALSE)
propd2propr(object, ivar)
\#\# S4 method for signature 'propd,missing'
plot(x, y, cutoff = 1000, col1, col2, propr, prompt $=$ TRUE, $\mathrm{d} 3=$ FALSE, plotSkip $=$ FALSE)
geyser (object, cutoff $=1000, k=5$, prompt $=$ TRUE, plotly $=$ FALSE)
bowtie(object, cutoff $=1000, k=5$, prompt $=$ TRUE, plotly $=$ FALSE)
gemini(object, cutoff = 1000, k = 5, prompt = TRUE, plotly = FALSE)
decomposed(object, cutoff = 1000)
parallel(object, cutoff $=1000$, include $=$ NA, or $=$ TRUE, plotly = FALSE)

Arguments

y	Missing. Ignore. Leftover from the generic method definition.
prompt	A logical scalar. Set to FALSE to disable the courtesy prompt when working with big data.
plotly	A logical scalar. Set to TRUE to produce a dynamic plot using the plotly package.
rho	A propr or propd object.
group	A character vector. Group or sub-group memberships, ordered according to the row names in counts.
k	An integer. For propr methods, the number of co-clusters (where all pairs receive a specified color if and only if both members belong to same the cluster). For propd methods, the maximum number of PALs to index when calculating pals in the network.
object	A propr or propd object.
col1	A character vector. Specifies which nodes to color red or blue, respectively.
col2	A character vector. Specifies which nodes to color red or blue, respectively.
d3	A boolean. Use rgl to plot 3D network.
ivar	A numeric scalar. Specifies reference feature(s) for additive log-ratio transformation. The argument will also accept feature name(s) instead of the index position(s). Set to "iqlr" to use inter-quartile log-ratio transformation. Ignore to use centered log-ratio transformation.
cutoff	For updateCutoffs, a numeric vector. this argument provides the FDR cutoffs to test. For graph functions, a numeric scalar. This argument indicates the maximum theta to include in the figure. For graph functions, a large integer will instead retrieve the top N pairs as ranked by theta.
propr	A propr or propd object.
plotSkip	A boolean. Toggles whether to build the network graph without plotting it. Used by pals.
include	This argument indicates which features by name should belong to a pair for that pair to get included in the results. Subset performed by Partner \%in\% subset \| Pair \%in\% subset.
or	A boolean. If FALSE, include subsets by Partner \%in\% subset \& Pair \%in\% subset.

propr Functions

plot: A wrapper for smear (x, \ldots. . .
smear: Plots log-ratio transformed abundances pairwise. Index-aware, meaning that it only plots pairs indexed in @pairs, unless no pairs are indexed. Returns a ggplot object.
dendrogram: Plots a clustering of the proportionality matrix. Index-aware, meaning that it only plots pairs indexed in @pairs, unless no pairs are indexed. Heatmap intensity is not scaled. Returns a dendrogram object.
bucket: Plots an estimation of the degree to which a feature pair differentiates the experimental groups versus the measure of the proportionality between that feature pair. The discrimination score
is defined as the negative \log of the p -values for each feature in the pair, computed independently using kruskal. test. "It's pronounced, 'bouquet'." - Hyacinth Bucket Returns cluster membership if k is provided. Otherwise, returns a ggplot object.
prism: Plots the variance of the ratio of the log-ratio transformed feature pair (VLR) versus the sum of the individual variances of each log-ratio transformed feature (VLS). The ratio of the VLR to the VLS equals 1 -rho. As such, we use here seven rainbow colored lines to indicate where rho equals $[.01, .05, .50,0,1.50,1.95,1.99]$, going from red to violet. Returns cluster membership if k is provided. Otherwise, returns a ggplot object.
bokeh: Plots the feature variances for each log-ratio transformed feature pair in the propr object. Highly proportional pairs will aggregate near the $y=x$ diagonal. Clusters that appear toward the top-right of the figure contain features with highly variable abundance across all samples. Clusters that appear toward the bottom-left of the figure contain features with fixed abundance across all samples. Uses a \log scale. Returns cluster membership if k is provided. Otherwise, returns a ggplot object.
pca: Plots the first two principal components as calculated using the log-ratio transformed feature vectors. This provides a statistically valid alternative to conventional principal components analysis (PCA). For more information, see $<\mathrm{DOI}: 10.1139 / \mathrm{cjm}-2015-0821>$. Returns a ggplot object.
snapshot: Plots the log-ratio transformed feature abundance as a heatmap, along with the respective dendrograms. Heatmap intensity is not scaled. Returns a dendrogram object.
cytescape: Builds a table of indexed pairs and their proportionality. In doing so, this function displays a preview of the interaction network, built using igraph. We recommend using the result as input to a network visualization tool like Cytoscape. Returns a data. frame of indexed pairs.

propd Functions

propd2propr: Transforms a propd object into a propr object where the @matrix slot contains $1-\theta$. Allows the user to interrogate theta using any visualization built for propr objects.
plot: Plots the interactions between pairs as a network. When plotting disjointed proportionality, red edges indicate that LRM1 > LRM2 while blue edges indicate that LRM1 < LRM2. When plotting emergent proportionality, red edges indicate that VLR1 < VLR2 while blue edges indicate that VLR1 > VLR2. Group labels numbered based on the order of the group argument to propd. Use col1 and col2 arguments to color nodes. For more control over the visualization of the network, consider exporting the table from shale to a network visualization tool like Cytoscape.
geyser: Plots indexed pairs based on the within-group log-ratio variance (VLR) for each group. Pairs near the origin show a highly proportional relationship in both groups. Each line away from the $y=x$ line indicates a doubling of VLR compared to the other group. All pairs colored based on PAL (see: pals). See gemini.
bowtie: Plots indexed pairs based on the log-ratio means (LRM), relative to its PAL, for each group. Pairs near the origin show comparable LRM, relative to its PAL, in both groups. Each line away from the $y=x$ line indicates a doubling of LRM compared to the other group. All pairs colored based on PAL (see: pals). See gemini.
gemini: Plots indexed pairs based on the log-fold difference in log-ratio variance (VLR) between the two groups versus the difference in log-ratio means (LRM). In this figure, the LRM for each group is signed (i.e., positive or negative) such that the PAL is the denominator of the log-ratio. This allows for a fluid comparison between pairs within the same PAL module. Pairs with a "Bridged"
or "Missing" PAL get excluded from this graph. Remember that an increase in VLR suggests less proportionality. All pairs colored based on PAL (see: pals).
decomposed: Plots the decomposition of log-ratio variance into (weighted) group variances and between-group variance. Useful for visualizing how a theta type selects pairs.
parallel: Plots the sample-wise log-ratio abundance across all pairs selected by the provided cutoff. Use the reference argument to subset the plot to only include pairs that contain this reference.
wide2long Make Long Data from Wide Data

Description

Make Long Data from Wide Data

Usage

wide2long(wide)

Arguments

wide A data set in wide format.

Value

A data set in long format.

Index

*Topic datasets
caneToad.counts, 10
caneToad.groups, 11
mail, 20
marg.abs, 20
pd.d, 23
pd.e, 23
top. counts, 40
top. $1 \mathrm{r}, 41$
[,propr-method (propr), 31
aldex.cor, 3
aldex.glm, 4
aldex2propr, 4, 31
all, 5
alphaTheta_old, 7
alphaThetaW_old, 7
bokeh (visualize), 42
bowtie (visualize), 42
bucket (visualize), 42
calculateFDR, 8
calculateFDR_old, 8
calculateTheta, 9
calculateTheta_old, 10
calculateThetaW_old, 9
caneToad.counts, 10
caneToad.groups, 11
corr (propr), 31
cytescape (visualize), 42
decomposed (visualize), 42
dendroCheck, 11
dendrogram (visualize), 42
gemini (visualize), 42
getAdj, 12
getAdjacency, 12
getColors (getColours), 13
getColours, 13, 15
getMatrix, 14
getNetwork, 14
getNormTheta, 14, 15
getRatios, 16
getReference, 17
getResults, 14, 15, 17
geyser (visualize), 42
ggdend, 18
ivar2index, 18
lr2cor, 3, 19
lr2glm, 4, 19
mail, 20
marg. abs, 20
migraph, 21
multiplot, 21
packageCheck, 22
pals, 6, 22, 22, 39, 40, 43-45
parallel (visualize), 42
pca (visualize), 42
pd.d, 23
pd.e, 23
perb (propr), 31
permuteTheta, 24
permuteTheta_false, 24
permuteTheta_naive, 25
permuteTheta_old, 25
permuteTheta_prime, 26
phis (propr), 31
phit (propr), 31
plot, propd,missing-method (visualize), 42
plot, propr,missing-method (visualize), 42
plotCheck, 26
posthoc, 27
pra, 27

```
prism(visualize),42
progress,28
promptCheck, 29
propd, 9, 23, 27, 29, 31
propd-class (propd), 29
propd2propr (visualize),42
propr,31
propr-class (propr), 31
proprALR, 34
proprCLR,34
proprPairs,35
proprPerb, 35
proprPhit,36
proprSym, 36
proprTri,37
proprVLR,37
qtheta,38
ratios,38
setActive (propd), 29
setDisjointed (propd), 29
setEmergent (propd), 29
shale, }3
show, propd-method (propd), 29
show, propr-method (propr), 31
simplify, 6, }3
simplify (propr), 31
slate,40
smear (visualize), 42
snapshot (visualize),42
subset, propr-method (propr), 31
top.counts,40
top.lr,41
updateCutoffs, 41
updateCutoffs.propd (propd), 29
updateCutoffs.propr (propr), 31
updateF (propd), 29
visualize, 31,42
wide2long,45
```

