Phase Estimation Algorithm

Carsten Urbach

Rotation Matrix

We use a rotation matrix

$$
U=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)
$$

with $c=\cos (\alpha), s=\sin (\alpha)$ and a real-valued angle α as an example. U has eigenvalues

$$
\lambda_{ \pm}=c \pm \mathrm{i} s=e^{ \pm i \alpha}
$$

Thus, $\phi=\alpha /(2 \pi)$. The corresponding eigenvectors are of the form

$$
u_{ \pm}=\binom{1}{ \pm \mathrm{i}}
$$

Phase Estimation

We use
$\mathrm{t}=6$
in the second register which allows us with probability $1-\epsilon$ to get the correct phase up to $t-\left\lceil\log \left(2+\frac{1}{2 \epsilon}\right)\right\rceil$ digits. Let us choose

```
epsilon <- 1/4
## note the log in base-2
digits <- t-ceiling(log(2+1/(2*epsilon))/log(2))
digits
```

[1] 4
and therefore expect an error of less than

```
2^(-digits)
```

[1] 0.0625
We start with qubit 1 in state u_{+}
$\mathrm{x}<-\mathrm{S}(1) *(\mathrm{H}(1) *$ qstate $(\mathrm{t}+1$, basis=""))
and we define the gate corresponding to U
alpha <- pi*3/7
s <- sin(alpha)
c <- cos(alpha)
\#\# note that R fills the matrix columns first
M <- array (as.complex (c(c, -s, s, c)), dim=c (2,2))
Uf <- sqgate(bit=1, M=M, type=paste0("Uf"))

Now we apply the Hadamard gate to qubits $2, \ldots, \mathrm{t}+1$

```
for(i in c(2:(t+1))) {
    x <- H(i) * x
}
```

and the controlled U_{f}
for (i in $c(2:(t+1)))$ \{
x <- cqgate(bits=c(i, 1),
gate=sqgate (bit=1,
M=M, type=paste0("Uf", 2~(i-2)))) * x
M <- M \%*\% M
\}
plot(x)

Next we apply the inverse Fourier transform
$\mathrm{x}<-\mathrm{qft}(\mathrm{x}$, inverse=TRUE, bits=c(2:(t+1))) plot(x)

x is now the state $|\tilde{\varphi}\rangle|u\rangle$. $|\tilde{\varphi}\rangle$ is not necessarily a pure state. The next step is a projective measurement of $|\tilde{\varphi}\rangle$
xtmp <- measure (x)
cbits <- genStateNumber(which(xtmp\$value==1)-1, t+1)
phi <- sum(cbits[1:t]/2~(1:t))
cbits[1:t]
[1] 0001101
phi
[1] 0.203125

Note that we can measure the complete state, because $|u\rangle$ is not entangled to the rest. We find that usually phi-alpha/(2*pi)
[1] -0.01116071
is indeed smaller than the maximal deviation $2^{- \text {digits }}=0.0625$ we expect. The distribution of probabilities over the states in $|\tilde{\varphi}\rangle$ is given as follows (factor 2 from dropping $|u\rangle$)
plot ($2 *$ abs (x@coefs $[$ seq $(1,128,2)]$) 2 , type="1", ylab="p", xlab="state index")

Starting from a random state

The algorithm also works in case the specific eigenvector cannot be prepared. Starting with a random initial state $|\psi\rangle=\sum_{u} c_{u}|u\rangle$, we may apply the very same algorithm and we will find the approximation to the phase φ_{u} with probability $\left|c_{u}\right|^{2}(1-\epsilon)$.
We prepare the second register in the state

$$
\binom{1}{1}=(1-i) u_{+}+(1+i) u_{-} .
$$

$\mathrm{x}<-(\mathrm{H}(1) *$ qstate $(\mathrm{t}+1$, basis=""))
This implies that we will find both φ_{u} with equal probability.

```
for(i in c(2:(t+1))) {
    x <- H(i) * x
}
M <- array(as.complex(c(c, -s, s, c)), dim=c(2,2))
for(i in c(2:(t+1))) {
    x <- cqgate(bits=c(i, 1),
        gate=sqgate(bit=1,
                        M=M, type=paste0("Uf", 2^(i-2)))) * x
```

```
    M <- M %*% M
}
x <- qft(x, inverse=TRUE, bits=c(2:(t+1)))
measurephi <- function(x, t) {
    xtmp <- measure(x)
    cbits <- genStateNumber(which(xtmp$value==1)-1, t+1)
    phi <- sum(cbits[1:t]/2~(1:t))
    return(invisible(phi))
}
phi <- measurephi(x, t=t)
2*pi*phi
[1] 1.079922
phi-c(+alpha, 2*pi-alpha)/2/pi
[1] -0.04241071 -0.61383929
```

We can draw the probability distribution again and observe the two peaks corresponding to the two eigenvalues plot(abs(x@coefs)~2, type="l", ylab="p", xlab="state index")

Let's measure 1000 times, which is easily possible in our simulator

```
phi <- c()
for(i in c(1:N)) {
    phi[i] <- measurephi(x, t)
}
hist(phi, breaks=2^t, xlim=c(0,1))
abline(v=c(alpha/2/pi, 1-alpha/2/pi), lwd=2, col="red")
```


Histogram of phi

The red vertical lines indicate the true values.

