This vignette gives a brief overview of the code structure of the quadtree
package.
The bulk of the code is written in C++ and interfaced with R via ‘Rcpp’.
The overall design philosophy was to keep the core C++ code completely independent from the R code (i.e. no ‘Rcpp’-related code in the core C++ files.) This results in a three-tiered organization of the code - core C++ code, ‘Rcpp’ C++ code, and R code.
This consists of the following files (only the .h files are listed to avoid redundancy, but each of these files has a corresponding .cpp file):
Matrix
class implementing basic matrix functionalityNode
class, which are the nodes of the quadtreePoint
classPoint
objectsQuadtree
class, which can be seen as a wrapper that provides a link to the interconnected nodes that make up the quadtreeLcpFinder
class, which is used for finding least-cost paths using a quadtree as a cost surfaceAs mentioned before, these files are completely independent of R and can be built and run independently of R.
These files are called ‘wrappers’ - essentially they each contain an instance of the relevant object and provide additional ‘Rcpp’-related functions that can be accessed from R. These essentially provide the “bridge” that allows the functionality in the core C++ files to be accessed from R.
Node
. This class is exposed to R as CppNode
.Quadtree
. This class is exposed to R as CppQuadtree
.LcpFinder
. This class is exposed to R as CppLcpFinder
.Matrix
class I created. This function is separate from the other files because it is a general-purpose function and thus didn’t fit in any of the wrapper classes.Almost all of the core functionality of the quadtree package is contained in the C++ code, and the R code serves primarily as an interface for working with the C++ quadtree data structure. A Quadtree
S4 class is defined which consists only of one slot, which contains a CppQuadtree
object. The methods for this class are often quite simple, merely consisting of calling one of the methods on the CppQuadtree
object. Similarly, the LcpFinder
class contains a CppLcpFinder
object. Using this approach has a few benefits. First, wrapping the C++ class in an S4 class allows the quadtree functionality to be accessed in a way that is much more consistent with typical R syntax, which will hopefully be more intuitive to R users. Second, it allows for me to add R code to validate and make any necessary modifications to parameters before calling the C++ methods - this helps make the functions more robust. This also allows me to take advantage of existing R functionality (for example, resampling a raster from the ‘raster’ package).
I won’t discuss each R file/function here - see the the function help files for details on each R function.