
Package ‘queryparser’
January 17, 2021

Type Package

Title Translate 'SQL' Queries into 'R' Expressions

Version 0.3.1

Maintainer Ian Cook <ianmcook@gmail.com>

Description Translate 'SQL' 'SELECT' statements into lists of 'R' expressions.

URL https://github.com/ianmcook/queryparser

BugReports https://github.com/ianmcook/queryparser/issues

NeedsCompilation no

License Apache License 2.0

Encoding UTF-8

RoxygenNote 7.0.2

Collate 'compat.R' 'agg_scalar.R' 'check_expressions.R'
'column_references.R' 'common.R' 'extract_alias.R'
'parse_clauses.R' 'parse_expression.R' 'parse_join.R'
'translations.R' 'process_translations.R' 'parse_query.R'
'parse_table_reference.R' 'replace.R' 'secure.R'
'split_query.R' 'squish_sql.R' 'translate.R' 'unpipe.R'
'unqualify.R' 'wrap_bangs.R'

Suggests testthat (>= 2.1.0), covr (>= 3.2.0)

Author Ian Cook [aut, cre],
Cloudera [cph]

Repository CRAN

Date/Publication 2021-01-17 07:00:02 UTC

R topics documented:
column_references . 2
extract_alias . 3
parse_expression . 3
parse_query . 4

1

https://github.com/ianmcook/queryparser
https://github.com/ianmcook/queryparser/issues

2 column_references

split_query . 5
squish_sql . 6
unqualify_query . 7

Index 8

column_references Return the column references in a parsed SQL query

Description

Returns a character vector containing all the column references in the clauses of a parsed SQL
SELECT statement

Usage

column_references(tree, from = TRUE)

Arguments

tree a list returned by parse_query containing named elements representing the
clauses of a SQL SELECT statement

from a logical value indicating whether to include the column references from the join
conditions in the FROM clause

Details

The returned character vector includes only column references, not table references. Column aliases
assigned in the SELECT list are not included unless they are used in other clauses.

Value

A character vector containing all the unique column references found in the SELECT, FROM (if from
= TRUE), WHERE, GROUP BY, HAVING, and ORDER BY clauses of the SELECT statement

See Also

parse_query

Examples

my_query <- "SELECT f.flight,
manufacturer, p.model

FROM flights f
JOIN planes p USING (tailnum);"

column_references(parse_query(my_query), from = FALSE)

extract_alias 3

extract_alias Extract the column alias from a SQL expression

Description

Extracts the column alias assignment from an expression used in the SELECT list of a SQL query

Usage

extract_alias(expr)

Arguments

expr a character string containing a SQL expression which might have a column alias
assignment at the end

Details

The expression must not contain any unquoted whitespace characters except spaces, and there must
be no unquoted runs or two or more spaces. Use squish_sql to satisfy this whitespace requirement.

queryparser also uses this function internally to extract table aliases used in the FROM clause.

Value

a character string containing the inputted SQL expression with the column alias assignment re-
moved (if it existed) and with the assigned alias as its name

Examples

expr <- "round(AVG(arr_delay)) AS avg_delay"
extract_alias(expr)

parse_expression Parse a SQL expression

Description

Parses a SQL expression into an R expression

Usage

parse_expression(expr, tidyverse = FALSE, secure = TRUE)

4 parse_query

Arguments

expr a character string containing a SQL expression

tidyverse set to TRUE to use functions from tidyverse packages including dplyr, stringr,
and lubridate in the returned R expression

secure set to FALSE to allow potentially dangerous functions in the returned R expres-
sion

Details

The expression must not end with a column alias assignment. Use extract_alias to extract and
remove column alias assignments.

The expression must not contain any unquoted whitespace characters except spaces, and there must
be no unquoted runs or two or more spaces. The expression must not contain line comments (--)
or block comments (/* */). Use squish_sql to satisfy these whitespace requirements and remove
any comments.

Value

an unevaluated R expression (a call)

See Also

parse_query

Examples

expr <- "round(AVG(arr_delay))"
parse_expression(expr)

parse_query Parse a SQL query

Description

Parses a SQL SELECT statement into a list with R expressions

Usage

parse_query(query, tidyverse = FALSE, secure = TRUE)

Arguments

query a character string containing a SQL SELECT statement

tidyverse set to TRUE to use functions from tidyverse packages including dplyr, stringr,
and lubridate in the R expressions

secure set to FALSE to allow potentially dangerous functions in the returned R expres-
sions

split_query 5

Details

See the current limitations section of the README for information about what types of queries are
supported.

Value

A list object with named elements representing the clauses of the query, containing sublists of
unevaluated R expressions translated from the SQL expressions in the query.

Depending on the arguments, the returned list and its sublists will have attributes named distinct
and aggregate with logical values that can aid in the evaluation of the R expressions. If query
contains one or more joins, then the sublist named from will have attributes named join_types
and join_conditions specifying the types of join and the join conditions.

See Also

parse_expression

Examples

my_query <- "SELECT origin, dest,
COUNT(flight) AS num_flts,
round(AVG(distance)) AS dist,
round(AVG(arr_delay)) AS avg_delay

FROM flights
WHERE distance BETWEEN 200 AND 300

AND air_time IS NOT NULL
GROUP BY origin, dest
HAVING num_flts > 3000
ORDER BY num_flts DESC, avg_delay DESC
LIMIT 100;"

parse_query(my_query)

parse_query(my_query, tidyverse = TRUE)

split_query Split a SQL query

Description

Splits a SQL SELECT statement into clauses, and splits comma-separated column lists within the
clauses.

Usage

split_query(query, tidyverse)

https://cran.r-project.org/package=queryparser/readme/README.html#current-limitations

6 squish_sql

Arguments

query a character string containing a SQL SELECT statement

tidyverse for queryparser internal use only

Value

A list object with named elements representing the clauses of the query

See Also

parse_query

Examples

my_query <- "SELECT origin, dest,
COUNT(flight) AS num_flts,
round(AVG(distance)) AS dist,
round(AVG(arr_delay)) AS avg_delay

FROM flights
WHERE distance BETWEEN 200 AND 300

AND air_time IS NOT NULL
GROUP BY origin, dest
HAVING num_flts > 3000
ORDER BY num_flts DESC, avg_delay DESC
LIMIT 100;"

split_query(my_query)

squish_sql Squish a SQL query or SQL expression

Description

Replaces every unquoted run of whitespace characters with a single space and removes all line
comments (--) and block comments (/* */). Whitespace and comment marks within quotes are
not modified.

Usage

squish_sql(x)

Arguments

x a character string containing a SQL query or expression

Value

a character string containing the squished query or expression with comments removed

unqualify_query 7

unqualify_query Remove prefixes from column references in a parsed SQL query

Description

Unqualifies column references in the clauses of a parsed SQL SELECT statement that begin with any
of the specified prefixes followed by a dot

Usage

unqualify_query(tree, prefixes, except = character(0))

Arguments

tree a list returned by parse_query containing named elements representing the
clauses of a SQL SELECT statement

prefixes a character vector containing one or more table names or table aliases

except a character vector containing column references to leave as is (optional)

Details

In the returned list, the FROM clause is unmodified and column alias assignments made in the SELECT
clause are unmodified.

Value

A list the same as tree but with all column references in the SELECT, WHERE, GROUP BY, HAVING,
and ORDER BY clauses unqualified, except those in except

See Also

parse_query

Examples

my_query <- "SELECT f.flight,
manufacturer, p.model

FROM flights f
JOIN planes p USING (tailnum);"

unqualify_query(
parse_query(my_query),
prefixes = c("p", "f")

)

Index

call, 4
column_references, 2

extract_alias, 3, 4

parse_expression, 3, 5
parse_query, 2, 4, 4, 6, 7

split_query, 5
squish_sql, 3, 4, 6

unqualify_query, 7

8

	column_references
	extract_alias
	parse_expression
	parse_query
	split_query
	squish_sql
	unqualify_query
	Index

