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Abstract

In this note, we provide several mathematical formulas of the factors which are used for
constructing the control limits. These factors can be easily obtained by using the factors.cc
function in the robust quality control chart (rQCC) R package.

1 Factors for computing control chart lines

In this section, we provide a brief summary of mathematical relations of factors for computing
the control chart lines. For more details, see Supplement A of ASTM (STP 15-D) [1] and
Supplement B of ASTM (STP 15-C) [2].

The mathematical relations for factors (c2, c4, d2, d3) are based on sampling randomly from
a normal distribution. These are given by

c2(n) =

√
2

n
· Γ(n/2)

Γ(n/2− 1/2)
,

c4(n) =

√
2

n− 1
· Γ(n/2)

Γ(n/2− 1/2)
,

d2(n) = 2

∫ ∞
0

{
1−

[
Φ(z)

]n − [1− Φ(z)
]n}

dz,

and

d3(n) =
√
E(R2)− d2(n)2,

where Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution
and E(Rk) is given in (2) of Appendix B. All the detailed derivations of c4(n) are provided in
Appendix A and those of d2(n) and d3(n) are given in Appendix B. Note that c2(n) has been
used in ASTM (STP 15-C) [2] and it is replaced by c4(n) in ASTM (STP 15-D) [1]. Thus, c2(n)
is rarely used after the year of 1976.
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2 Factors for computing control limits

The factors below are used for constructing a variety of control charts with the choice of g ·σ
limits. For more details, see Supplement A of ASTM (STP 15-D) [1] and Supplement B of ASTM
(STP 15-C) [2]. Note that the American Standard uses 3·σ limits with 0.27% false alarm rate,
while the British Standard uses 3.09·σ limits with 0.20% false alarm rate.

� For averages:

A(n) =
g√
n
,

A1(n) =
g

c2(n)
√
n

=
A(n)

c2(n)
,

A2(n) =
g

d2(n)
√
n

=
A(n)

d2(n)
,

A3(n) =
g

c4(n)
√
n

=
A(n)

c4(n)
.

Note that A1(n) in ASTM (STP 15-C) [2] was replaced by A3(n) in ASTM (STP 15-D)
[1] in the year of 1976. Since then, A1(n) is rarely used.

� For standard deviations:

B1(n) = max

{
c2(n)− g ·

√
n− 1

n
− c2(n)2, 0

}
,

B2(n) = c2(n) + g ·
√
n− 1

n
− c2(n)2,

B3(n) = max

{
1− g

c4(n)
·
√

1− c4(n)2, 0

}
,

B4(n) = 1 +
g

c4(n)
·
√

1− c4(n)2,

B5(n) = max
{
c4(n)− g ·

√
1− c4(n)2, 0

}
= c4(n) ·B3(n),

B6(n) = c4(n) + g ·
√

1− c4(n)2 = c4(n) ·B4(n).

Note that B1(n) and B2(n) in ASTM (STP 15-C) [2] are replaced by B5(n) and B6(n),
respectively, in ASTM (STP 15-D) [1].

In ASTM (STP 15-C), however, B3(n) and B4(n) are defined as

B3(n) = max

{
1− g

c2(n)
·
√
n− 1

n
− c2(n)2, 0

}
,

B4(n) = 1 +
g

c2(n)
·
√
n− 1

n
− c2(n)2,

which are easily obtained by B1(n)/c2(n) and B2(n)/c2(n) in ASTM (STP 15-C), respec-
tively. Thus, we calculate B3(n) and B4(n) based only on ASTM (STP 15-D) [1] instead
of ASTM (STP 15-C).
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� For ranges:

D1(n) = max {d2(n)− g · d3(n), 0} ,
D2(n) = d2(n) + g · d3(n),

D3(n) = max

{
1− g · d3(n)

d2(n)
, 0

}
=
D1(n)

d2(n)
,

D4(n) = 1 + g · d3(n)

d2(n)
=
D2(n)

d2(n)
.

� For individuals:

E1(n) =
g

c2(n)
,

E2(n) =
g

d2(n)
,

E3(n) =
g

c4(n)
.

Note that E1(n) in ASTM (STP 15-C) [2] is replaced by E3(n) in ASTM (STP 15-D) [1].
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Appendices

A The bias correction factor for the sample standard deviation

It is well known that
E(S2) = σ2,

where S2 =
∑n

i=1(Xi−X̄)2/(n−1), Xi ∼ N(µ, σ2), and X̄ =
∑n

i=1Xi/n. It deserves mentioning
that E(S) 6= σ.

Using the fact that Y = (n − 1)S2/σ2 has the chi-square distribution with n − 1 degrees of
freedom which is equivalent to the gamma distribution with α = (n − 1)/2 (shape) and θ = 2
(scale), we obtain the unbiased estimator of σ. Now, it is well known that

E
[
Y c
]

=
Γ(α+ c)θc

Γ(α)
,

when Y has the gamma distribution with shape α and scale θ. Clearly, for c = 1/2, we have

E
[√
Y
]

=
Γ(α+ 1/2)

√
θ

Γ(α)
.

Then we obtain

E
[√

(n− 1)S2/σ2
]

=
Γ(n/2)

√
2

Γ(n/2− 1/2)
.

This implies that
E(S) = c4(n)σ,

where

c4(n) =

√
2

n− 1
· Γ(n/2)

Γ(n/2− 1/2)
.

Thus, the estimator S/c4(n) is unbiased for σ.

B The bias correction factors for the range

We can also estimate σ using the range, R = X(n) − X(1), where X(1), X(2), . . ., X(n) are the
order statistics of a random sample of size n from N(µ, σ). It is known that R = X(n)−X(1) by
itself is not unbiased for σ. In this section, we provide the bias correction factor for the range
to estimate σ so that E(R/d2(n)) = σ. We also provide the bias correction factor defined by
Var(R/d3(n)) = σ2. First, we provide the following theorems and lemmas which are needed to
obtain d2(n) and d3(n).

Theorem 1. Let X1, X2, . . . , Xn be a random sample with continuous cdf F (x) and pdf f(x). Let
X(1), X(2), . . . , X(n) be the order statistics of a random sample. Then the joint pdf of U = X(i)

and V = X(j) for 1 ≤ i < j ≤ n is given by

f(i,j)(u, v) =
n!

(i− 1)!× 1!× (j − i− 1)!× 1!× (n− j)!
×[

F (u)
]i−1

f(u)
[
F (v)− F (u)

]j−i−1
f(v)

[
1− F (v)

]n−j
4



for −∞ < u < v <∞.

Proof. For more details, refer to Theorem 5.4.6 in Casella and Berger [3].

Let Z1, Z2, . . . , Zn be a random sample from a standard normal distribution with the pdf
φ(z) and the cdf Φ(z). For notational convenience, we denote U = Z(1) and V = Z(n). Using
Theorem 1, we have the joint pdf of U and V

f(1,n)(u, v) = n(n− 1)φ(u)φ(v)
[
Φ(v)− Φ(u)

]n−2
.

The goal is to derive the distribution of the range of the sample, V − U = Z(n) − Z(1). Next we
consider the new random variables given by Y1 = U and Y2 = V − U . Notice that the random
variable Y2 is the range. The inverse transforms are easily obtained by u = y1 and v = y1 + y2.
Then the joint pdf of Y1 and Y2, denoted by g(y1, y2), is given by

g(y1, y2) = n(n− 1)φ(y1)φ(y1 + y2)
[
Φ(y1 + y2)− Φ(y1)

]n−2
|J |,

where −∞ < y1 <∞, y2 > 0 and

J = det


∂u

∂y1

∂u

∂y2

∂v

∂y1

∂v

∂y2

 = 1.

Thus, we have

g2(y2) =

∫ ∞
−∞

g(y1, y2) dy1

= n(n− 1)

∫ ∞
−∞

φ(y1)φ(y1 + y2)
[
Φ(y1 + y2)− Φ(y1)

]n−2
dy1. (1)

Note that the cdf of Y2 can be easily obtained by

G2(y2) = n

∫ ∞
−∞

φ(y1)
[
Φ(y1 + y2)− Φ(y1)

]n−1
dy1.

Next we consider the k-th moment of the range which was provided by Harter [4]. We provide
a detailed derivation here. Using the pdf of the range in (1), we can obtain the k-th moment of
the range, Y2 = Z(n) − Z(1), by calculating the expectation as follows:

E(Y k
2 ) =

∫ ∞
0

yk2 g2(y2) dy2

= n(n− 1)

∫ ∞
0

yk2

∫ ∞
−∞

φ(y1)φ(y1 + y2)
[
Φ(y1 + y2)− Φ(y1)

]n−2
dy1 dy2

= n(n− 1)

∫ ∞
−∞

{∫ ∞
0

yk2

[
Φ(y1 + y2)− Φ(y1)

]n−2
φ(y1 + y2)dy2

}
φ(y1) dy1.
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For notational convenience, we replace (y1, y2) with (x, r). Then we have

E(Rk) = n(n− 1)

∫ ∞
−∞

{∫ ∞
0

rk
[
Φ(x+ r)− Φ(x)

]n−2
φ(x+ r)dr

}
φ(x) dx, (2)

where R = Z(n) − Z(1).
Clearly, the expression for the k-th moment of the range requires the evaluation of a com-

plicated double integral. Fortunately, for the case where k = 1 which is the expectation, we can
derive an alternative formula involving only a single integral. The derivation of this formula will
require the application of three different lemmas which we state and prove below.

Lemma 2. Let X be a continuous random variable with cdf F (x). If E(|X|k) exists, then we have

(i) lim
x→∞

xk
{

1− F (x)
}

= 0 and (ii) lim
x→−∞

|x|kF (x) = 0.

Proof. (i) For x > 0, we have

0 ≤ xk
{

1− F (x)
}

= xk
∫ ∞
x

dF (t) =

∫ ∞
x

xkdF (t) ≤
∫ ∞
x

tkdF (t).

Now, if we can show that the last term
∫∞
x
tkdF (t) → 0 in the limit as x → ∞, then this will

complete the proof because we just showed that 0 ≤ xk
{

1− F (x)
}
≤
∫∞
x
tkdF (t) for x > 0. To

prove that
∫∞
x
tkdF (t)→ 0 in the limit as x→∞, we observe that∫ ∞

x

tkdF (t) =

∫ ∞
−∞
|t|kdF (t)−

∫ x

−∞
|t|kdF (t) = E(|X|k)−

∫ x

−∞
|t|kdF (t).

Since E(|X|k) exists and limx→∞
∫ x

−∞ |t|
kdF (t) = E(|X|k), we have∫ ∞

x

tkdF (t) = E(|X|k)−
∫ x

−∞
|t|kdF (t)→ 0

in the limit as x→∞.
(ii) For x < 0, we have

0 ≤ |x|kF (x) = |x|k
∫ x

−∞
dF (t) =

∫ x

−∞
|x|kdF (t) ≤

∫ x

−∞
|t|kdF (t).

Now, if we can show that the last term
∫ x

−∞ |t|
kdF (t) → 0 in the limit as x → −∞, then this

will complete the proof because we just showed that 0 ≤ |x|kF (x) ≤
∫ x

−∞ |t|
kdF (t) for x < 0.

To prove that
∫ x

−∞ |t|
kdF (t)→ 0 in the limit as x→ −∞, we have∫ x

−∞
|t|kdF (t) =

∫ ∞
−∞
|t|kdF (t)−

∫ ∞
x

|t|kdF (t) = E(|X|k)−
∫ ∞
x

|t|kdF (t).

Since E(|X|k) exists and limx→−∞
∫∞
x
|t|kdF (t) = E(|X|k), we have∫ x

−∞
|t|kdF (t) = E(|X|k)−

∫ ∞
x

|t|kdF (t)→ 0

in the limit as x→ −∞.
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Lemma 3. Let X be a continuous random variable with cdf F (x). Then we have

E(X) =

∫ ∞
0

[
1− F (x)− F (−x)

]
dx.

Proof. We have

E(X) =

∫ 0

−∞
x dF (x) +

∫ ∞
0

x dF (x) =

∫ 0

−∞
x dF (x)−

∫ ∞
0

x d
[
1− F (x)

]
. (3)

Using the integration by parts, we have∫ 0

−∞
x dF (x) =

[
xF (x)

]0
−∞
−
∫ 0

−∞
F (x) dx (4)

and ∫ ∞
0

x d
[
1− F (x)

]
=
[
x
{

1− F (x)
}]∞

0
−
∫ ∞
0

[
1− F (x)

]
dx. (5)

Applying Lemma 2 to both (4) and (5), we have∫ 0

−∞
x dF (x) = −

∫ 0

−∞
F (x) dx and

∫ ∞
0

x d
[
1− F (x)

]
= −

∫ ∞
0

[
1− F (x)

]
dx. (6)

Substituting (6) into (3) gives

E(X) =

∫ ∞
0

[
1− F (x)

]
dx−

∫ 0

−∞
F (x)dx.

Since
∫ 0

−∞ F (x)dx =
∫∞
0
F (−x)dx, we have

E(X) =

∫ ∞
0

[
1− F (x)− F (−x)

]
dx.

which completes the proof.

It should be noted that Lemma 3 is also valid for discrete random variables, but the proof is
omitted.

Lemma 4. Let X1, X2, . . . , Xn be a random sample with the cdf F (x). Let F(j)(x) denote the cdf
of the j-th order statistic X(j). Then we have

(i) F(n)(x) =
[
F (x)

]n
and (ii) F(1)(x) = 1−

[
1− F (x)

]n
. (7)

Proof. The proof is omitted.

Theorem 5. Let X1, X2, . . . , Xn be a random sample with cdf F (x). Then the expectation of the
range, R = X(n) −X(1), is given by

E
(
X(n) −X(1)

)
=

∫ ∞
−∞

{
1−

[
F (x)

]n − [1− F (x)
]n}

dx.
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Proof. Using Lemma 3, we have

E
(
X(n)

)
=

∫ ∞
0

[
1− F(n)(x)− F(n)(−x)

]
dx

and

E
(
X(1)

)
=

∫ ∞
0

[
1− F(1)(x)− F(1)(−x)

]
dx.

Applying (7) in Lemma 4 to the integral above, we obtain

E
(
X(n)

)
=

∫ ∞
0

{
1−

[
F (x)

]n − [F (−x)
]n}

dx,

and

E
(
X(1)

)
=

∫ ∞
0

{[
1− F (x)

]n
dx− 1 +

[
1− F (−x)

]n}
dx.

Thus, we have

E
(
X(n) −X(1)

)
=

∫ ∞
0

{
1−

[
F (x)

]n−[F (−x)
]n − [1− F (x)

]n
+ 1−

[
1− F (−x)

]n}
dx

=

∫ ∞
0

{
1−

[
F (x)

]n − [1− F (x)
]n}

dx+

∫ ∞
0

{
1−

[
F (−x)

]n − [1− F (−x)
]n}

dx.

Using the change of the integration variable technique for the last term in the above, we have∫ ∞
0

{
1−

[
F (−x)

]n − [1− F (−x)
]n}

dx =

∫ 0

−∞

{
1−

[
F (x)

]n − [1− F (x)
]n}

dx.

It is immediate from this result that we have

E
(
X(n) −X(1)

)
=

∫ ∞
0

{
1−

[
F (x)

]n − [1− F (x)
]n}

dx+

∫ 0

−∞

{
1−

[
F (x)

]n − [1− F (x)
]n}

dx

=

∫ ∞
−∞

{
1−

[
F (x)

]n − [1− F (x)
]n}

dx,

which completes the proof.

It should be noted that the above lemmas and theorems are also valid for non-normal distri-
butions. But, we use the results specifically in the case of the normal distribution. Now suppose
that we have a random sample from a standard normal distribution, Z1, Z2, . . . , Zn and that we
want to calculate the expectation of the sample range. Then we have

E
(
Z(n) − Z(1)

)
=

∫ ∞
−∞

{
1−

[
Φ(z)

]n − [1− Φ(z)
]n}

dz.
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Figure 1: The plot of d3(n) versus n.

Note that the integrand, 1 −
[
Φ(z)

]n − [1 − Φ(z)
]n

, is an even function due to the fact that
Φ(−z) = 1− Φ(z) which allows for the simplification of the expectation:

d2(n) = E
(
Z(n) − Z(1)

)
= 2

∫ ∞
0

{
1−

[
Φ(z)

]n − [1− Φ(z)
]n}

dz.

Thus, the estimator R/d2(n) = (X(n)−X(1))/d2(n) is unbiased for σ with Xi ∼ N(µ, σ2). Then
it is easily seen that R = X(n) −X(1) = σ(Z(n) − Z(1)), where Zi ∼ N(0, 1).

Next, we consider the factor d3(n) which is defined by Var(R/d3(n)) = σ2. Then, using
Var(R) = σ2Var(Z(n) − Z(1)), we have

d3(n) =
√

Var(R) =
√
E(R2)− {E(R)}2 =

√
E(R2)− d2(n)2,

where E(R2) can be obtained by (2).
The value of d3(n) is involved with the double integration as shown in (2). We calculated

the value of d3(n) using the numerical integration. This double integration is accurate for small
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values of n (say, n < 100). As seen in Figure 1, the numerical calculation of d3(n) (denoted
by red line) is not reliable especially for large values of n. We double-checked these values by
comparing with those obtained by the Monte Carlo simulation. To obtain more reliable and
accurate calculation of d3(n) especially for large values of n, we calculated the value of d3(n)
by Monte Carlo simulation, we generated a sample of size n from N(0, 1) and calculated the
range. We iterated this simulation one hundred million times (I = 108) and then calculated the
empirical variance of this range (denoted by a circle in Figure 1).

We also obtained the approximation of d3(n) by using the least squares method with the
empirical variances of the ranges, which is given by

d3(n) ≈ exp
(

0.73784298 + 0.06390565 · ln(n)− 0.71491753 ·
√

ln(n)
)
. (8)

Figure 1 clearly shows that this approximation is very close to the simulated value of d3(n) for
large values of n. It is worth mentioning that The factors.cc function calculates d3(n) using
the numerical integration for n ≤ 100 and using the approximation in (8) for n > 100.
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