
Package ‘rTLS’
December 11, 2021

Type Package

Title Tools to Process Point Clouds Derived from Terrestrial Laser
Scanning

Version 0.2.5.2

Maintainer J. Antonio Guzmán Q. <antguz06@gmail.com>

Description A set of tools to process and calculate
metrics on point clouds derived from terrestrial LiDAR
(Light Detection and Ranging; TLS). Its creation is based on key
aspects of the TLS application in forestry and ecology.
Currently, the main routines are based on filtering, neighboring
features of points, voxelization, canopy structure,
and the creation of artificial stands. It is written using
data.table and C++ language and in most of the functions it is
possible to use parallel processing to speed-up the routines.

License GPL (>= 3)

URL https://github.com/Antguz/rTLS

BugReports https://github.com/Antguz/rTLS/issues

Depends data.table (>= 1.0), R (>= 4.0.0)

Imports alphashape3d, boot, doSNOW (>= 1.0.16), foreach (>= 1.4.4),
parallel (>= 3.6.0), Rcpp (>= 1.0.3), RcppProgress (>= 0.4.2),
RcppHNSW (>= 0.3.0), rgeos, rgl, sp

Suggests knitr, rmarkdown, covr, testthat (>= 3.0.1)

LinkingTo Rcpp, RcppArmadillo (>= 0.9.870), RcppProgress (>= 0.4.2)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

LazyDataCompression bzip2

RoxygenNote 7.1.2

SystemRequirements GNU make

ByteCompile true

1

https://github.com/Antguz/rTLS
https://github.com/Antguz/rTLS/issues

2 R topics documented:

Config/testthat/edition 3

NeedsCompilation yes

Author J. Antonio Guzmán Q. [cre, aut, ths, cph]
(<https://orcid.org/0000-0002-0721-148X>),
Ronny Hernandez [aut] (<https://orcid.org/0000-0001-6225-7096>),
Arturo Sanchez-Azofeifa [dgs, sad]
(<https://orcid.org/0000-0001-7768-6600>)

Repository CRAN

Date/Publication 2021-12-10 23:50:02 UTC

R topics documented:

rTLS-package . 3
artificial_stand . 3
canopy_structure . 6
cartesian_to_polar . 9
circleRANSAC . 10
euclidean_distance . 11
filter . 12
geometry_features . 14
knn . 16
lines_interception . 17
line_AABB . 19
min_distance . 21
pc_tree . 22
plot_voxels . 23
polar_to_cartesian . 24
radius_search . 25
rotate2D . 27
rotate3D . 28
stand_counting . 29
summary_voxels . 30
TLS_scan . 32
tree_metrics . 33
trunk_volume . 34
voxels . 35
voxels_counting . 36

Index 38

https://orcid.org/0000-0002-0721-148X
https://orcid.org/0000-0001-6225-7096
https://orcid.org/0000-0001-7768-6600

rTLS-package 3

rTLS-package rTLS: Tools to Process Point Clouds Derived From Terrestrial Laser
Scanning

Description

rTLS is a package that compiles a set of tools to process and calculate metrics on point clouds
derived from terrestrial LiDAR (Light Detection and Ranging). Its creation is based on key aspects
of the TLS application in forestry. Currently, the main routines are based on filtering, neighboring
features of points, voxelization, optimal sphere or voxel size, and the creation of artificial stands.
rTLS is written using data.table and C++ language and in most of the functions it is posible to use
parallel processing to speed-up the routines.

Author(s)

Maintainer: J. Antonio Guzmán Q. <antguz06@gmail.com> (ORCID) [thesis advisor, copyright
holder]

Authors:

• Ronny Hernandez <ronny.hernandezm@gmail.com> (ORCID)

Other contributors:

• Arturo Sanchez-Azofeifa <arturo.sanchez@ualberta.ca> (ORCID) [degree supervisor, sci-
entific advisor]

See Also

Useful links:

• https://github.com/Antguz/rTLS

• Report bugs at https://github.com/Antguz/rTLS/issues

artificial_stand Artificial Forest Stand

Description

Create an artificial forest stand of a given area using tree point clouds.

https://orcid.org/0000-0002-0721-148X
https://orcid.org/0000-0001-6225-7096
https://orcid.org/0000-0001-7768-6600
https://github.com/Antguz/rTLS
https://github.com/Antguz/rTLS/issues

4 artificial_stand

Usage

artificial_stand(
files,
n.trees,
dimension,
coordinates = NULL,
sample = TRUE,
replace = TRUE,
overlap = NULL,
rotation = TRUE,
degrees = NULL,
n_attempts = 100,
progress = TRUE,
plot = TRUE,
...

)

Arguments

files A character vector describing the file name or path of the tree point cloud to
use. Those files most contain three columns representing the *XYZ* coordi-
nates of a given point cloud.

n.trees A positive numeric vector describing the number of point clouds to use.

dimension A positive numeric vector of length two describing the width and length of the
future forest stand.

coordinates A data.table of two columns and with nrows equal to n.trees describing the
basal *XYZ* coordinates of the point clouds in the future stand. If NULL, it uses
random basal coordinates based on stand dimension. NULL as default.

sample Logical. If TRUE, it performs a sample of the files to determine the order to
build the artificial stand. If FALSE, it use the file order described in files. TRUE
as default.

replace Logical. If TRUE, it performs a sample selection with a replacement if sample =
TRUE to determine the order to build the artificial stand. Useful if the n.trees
is lower than length(files). TRUE as default.

overlap A positive numeric vector between 0 and 100 describing the overlap percentage
of a given the tree crowns in the future forest stand. If NULL, the degree of
overlap is not controlled.

rotation Logical. If TRUE, it performs a rotation in yaw axis of the point cloud. TRUE as
default.

degrees A positive numeric vector describing the degrees of rotation of the point clouds
in the future stand. The length(degree) should be the same as n.trees. If
NULL, it creates random degrees of rotation for each n.trees.

n_attempts A positive numeric vector of length one describing the number of attempts to
provide random coordinates until a tree met the overlap criteria. This needs
to be used if coordinate = NULL and overlap != NULL. n_attempts = 100 as
default.

artificial_stand 5

progress Logical, if TRUE displays a graphical progress bar. TRUE as default.

plot Logical. If TRUE, it provides visual tracking of the distribution of each tree in
the artificial stand. This can not be exported as a return object.

... Parameters passed to fread for the reading of files.

Details

When coordinates = NULL, artifical_stand adds, in sequence, random coordinates to each
files in the future stand based on the crown area overlap. That is, first a tree from files is
randomly located within the stand dimention, then a second tree from files will be located in
the future stand based on the crown area overlap from the previous tree, and so on. If during the
random location a given tree does not meet the requirements of overlap, new random coordinates
will be provided until the requirements are met.

Since artificial_stand will try to add tree to the stand until the requirements are met, this could
lead to an infinite loop if the stand dimention is small or if the trees on files are large or many
n.trees. Therefore, the use of n_attempts is recommended to avoid this scenario.

Value

A list which contain a data.table (Trees) with the information of the point clouds used and their
current coordinates in the stand, and another data.table with that compile all the point clouds
used.

Author(s)

J. Antonio Guzmán Q.

See Also

voxels_counting

Examples

#' #Import an example point cloud
path <- system.file("extdata", "pc_tree.txt", package = "rTLS")

#Creates a stand of 4 trees with 10% of overlap
files <- rep(path, 4)
artificial_stand(files, n.trees = 4, dimension = c(15, 15), overlap = 10)

#Creates a stand of 4 trees with their locations
location <- data.table(X = c(5, 10, 10, 5), Y = c(5, 5, 10, 10))
artificial_stand(files, n.trees = 4, dimension = c(15, 15), coordinates = location)

6 canopy_structure

canopy_structure Canopy Structure

Description

Estimates the canopy structure from a discrete returns scan from different TLS.

Usage

canopy_structure(
TLS.type,
scan,
zenith.range,
zenith.rings,
azimuth.range,
vertical.resolution,
TLS.pulse.counts,
TLS.resolution = NULL,
TLS.coordinates = c(0, 0, 0),
TLS.frame = NULL,
TLS.angles = NULL,
threads = 1

)

Arguments

TLS.type A character describing is the TLS used. It most be one of "single" return,
"multiple" return, or "fixed.angle" scanner.

scan If TLS.type is equal to "single" or "fixed.angle", a data.table with three
columns describing *XYZ* coordinates of the discrete return. If TLS.type is
equal to "multiple", a data.table with four columns describing *XYZ* co-
ordinates and the target count pulses. Currently, "fixed.angle" present errors,
use with discretion.

zenith.range If TLS.type is equal to "single" or "multiple", a numeric vector of length
two describing the min and max range of the zenith angle to use. Theoretically,
the max range should be lower than 90 degrees.

zenith.rings If TLS.type is equal to "single" or "multiple", a numeric vector of length
one describing the number of zenith rings to use between zenith.range. This
is used to estimate the frequency of laser shots from the scanner and returns in
scan. If TLS.type = "fixed.angle", zenith.rings = 1 be default.

azimuth.range A numeric vector of length two describing the range of the azimuth angle to
use. Theoretically, it should be between 0 and 360 degrees.

vertical.resolution

A numeric vector of length one describing the vertical resolution to extract the
vertical profiles. Low values lead to more variable profiles. The scale used needs
to be in congruence with the scale of scan.

canopy_structure 7

TLS.pulse.counts

If TLS.type is equal to "single" or "multiple", a numeric vector of length
two describing the horizontal and vertical pulse counts of the scanner. If TLS.type
is equal to "fixed.angle", a numeric vector of length one describing the hor-
izontal pulse counts resolution. Preferred parameter over TLS.resolution to
estimate the number of pulses.

TLS.resolution If TLS.pulse.counts = NULL, the code use the angles resolution to estimate
the pulse counts in a given TLS.frame. If TLS.type is equal to "single" or
"multiple", a numeric vector of length two describing the horizontal and ver-
tical angle resolution of the scanner. If TLS.type is equal to "fixed.angle", a
numeric vector of length one describing the horizontal angle resolution.

TLS.coordinates

A numeric vector of length three describing the scanner coordinates within
scan. It assumes that the coordinates are c(X = 0,Y = 0,Z = 0) for default.

TLS.frame If TLS.type is equal to "single" or "multiple", a numeric vector of length
four describing the min and max of the zenith and azimuth angle of the scanner
frame. If TLS.type = "fixed.angle", a numeric vector of length three de-
scribing the fixed zenith angle and the min and max of the azimuth angle of the
scanner frame. If NULL, it assumes that a complete hemisphere (c(zenith.min
= 0,zenith.max = 90,azimuth.min = 0,azimuth.max = 360)), or a cone pro-
jection (c(zenith = 57.5,azimuth.min = 0,azimuth.max = 360)) depending
on TLS.type.

TLS.angles A numeric vector of length three describing the roll (*X*), pitch (*Y*), and
yaw (*Z*) angles of the scanner during the scan. If NULL, it assumes that there
is no need to to correction of angles. This needs to be used if TLS.type is equal
to "single" or "multiple", since it assumes that "fixed.angle" scanner is
previously balanced. NULL as default.

threads An integer specifying the number of threads to use. Experiment to see what
works best for your data on your hardware.

Details

Since scan describes discrete returns measured by the TLS, canopy_structre first simulates the
number of pulses emitted based on Danson et al. (2007). The simulated pulses are created based
on the TLS properties (TLS.pulse.counts,TLS.resolution,TLS.frame) assuming that the scan-
ner is perfectly balance. Then these pulses are rotated (rotate3D) based on the TLS.angles roll,
pitch, and yaw, and move to TLS.coordintates to simulate the positioning of the scanner during
the scan. Rotated simulated-pulses of interest and scan returns are then extracted based on the
zenith.range and azimuth.range for a given number of zenith.rings, azimuth.rings and
vertical profiles. The probability of gap (Pgap) is then estimated using the frequency of pulses
and returns. For TLS.type = "multiple", the frequency of returns is estimated using the sum of
1/target count following Lovell et al. (2011).

Using the Pgap estimated per each zenith ring and vertical profile, canopy_structure then esti-
mates the accumulative L(z) profiles based on the closest zenith ring to 57.5 (hinge region) and, if
TLS.type = "fixed.angle", the f(z) or commonly named PAVD based on the ratio of the derivative
of L(z) and height (z) following Jupp et al. 2009 (Equation 18). If TLS.type is equal to "single" or
"multiple", canopy_structure also estimates the normalized average weighted L/LAI, and then

8 canopy_structure

PAVD based on the L (hinge angle) at the highest height (LAI) and the ratio between the derivative
of L/LAI (average weighted) and the derivative of z (Jupp et al. 2009; Equation 21).

Jupp et al. 2009 excludes the zero zenith or fist ring to conduct the average weighted L/LAI estima-
tions, canopy_structre does not excludes this sections since it depends on the regions of interest
of the user. Therefore, user should consider this difference since it may introduce more variability
to profile estimations.

Value

For any TLS.type, it returns a data.table with the height profiles defined by vertical.resolution,
the gap probability based on the zenith.range and zenith.rings, and the accumulative L(z)
profiles based on the closest zenith ring to 57.5 degrees (hinge angle). If TLS.type is equal to
"fixed.angle", it returns f(z) or commonly named PAVD based on on the ratio of the derivative
of L(z) and the derivative of height (z). If TLS.type is equal to "single" or "multiple", it returns
the normalized average weighting L/LAI, and PAVD: based on the L (hinge angle) at the highest
height and the ratio between the derivative of L/LAI average weighted and the derivative of z.

Author(s)

J. Antonio Guzmán Q.

References

Danson F.M., Hetherington D., Morsdorf F., Koetz B., Allgower B. 2007. Forest canopy gap
fraction from terrestrial laser scanning. IEEE Geosci. Remote Sensing Letters 4:157-160. doi:
10.1109/LGRS.2006.887064

Lovell J.L., Jupp D.L.B., van Gorsel E., Jimenez-Berni J., Hopkinson C., Chasmer L. 2011. Fo-
liage profiles from ground based waveform and discrete point LiDAR. In: SilviLaser 2011, Hobart,
Australia, 16–20 October 2011.

Jupp D.L.B., Culvenor D.S., Lovell J.L., Newnham G.J., Strahler A.H., Woodcock C.E. 2009. Esti-
mating forest LAI profiles and structural parameters using a ground-based laser called “Echidna®”.
Tree Physiology 29(2): 171-181. doi: 10.1093/treephys/tpn022

Examples

data(TLS_scan)
#Using a multiple return file
#Select the four columns required
TLS_scan <- TLS_scan[, 1:4]

#This will take a while#
a <- canopy_structure(TLS.type = "multiple",

scan = TLS_scan,
zenith.range = c(50, 70),
zenith.rings = 4,
azimuth.range = c(0, 360),
vertical.resolution = 0.25,
TLS.pulse.counts = c(2082, 580),

cartesian_to_polar 9

TLS.frame = c(30, 130.024, 0, 359.90),
TLS.angles = c(1.026, 0.760, -110.019))

#Using a single return file

data(TLS_scan)
#Subset to first return observations
TLS_scan <- TLS_scan[Target_index == 1, 1:3]

#This will take a while#
canopy_structure(TLS.type = "single",

scan = TLS_scan,
zenith.range = c(50, 70),
zenith.rings = 4,
azimuth.range = c(0, 360),
vertical.resolution = 0.25,
TLS.pulse.counts = c(2082, 580),
TLS.frame = c(30, 130.024, 0, 359.90),
TLS.angles = c(1.026, 0.760, -110.019))

cartesian_to_polar Cartesian to Polar Coordinates

Description

Convert from East-North-Up cartesian coordinates to polar coordinates.

Usage

cartesian_to_polar(cartesian, anchor = c(0, 0, 0), digits = NULL)

Arguments

cartesian A data.table with three columns describing the *XYZ* coordinates of a point
cloud.

anchor A numeric vector of length three which describe the *XYZ* anchor coordinate
for reference to get the polar coordinates. It assumes that the reference coordi-
nates are c(X = 0,Y = 0,Z = 0) as default.

digits A numeric vector of length 1 describing the decimal numbers to round the
zenith and azimuth angles. If NULL, round does not apply. NULL as default.

Details

It assumes that the positive *Z* axis is the reference vector for the zenith angle. Likewise, it assumes
that the *Y* axis is the north-south direction (positive to negative) for the azimuth angle. If a point
from cartesian presents the same *XY* coordinates than anchor, angles returns NA.

10 circleRANSAC

Value

A data.table with the zenith and azimuth angles (degrees), and the distance to the anchor coordi-
nate.

Author(s)

J. Antonio Guzmán Q.

See Also

polar_to_cartesian

Examples

data(pc_tree)
cartesian_to_polar(pc_tree)
anchor <- c(1, 1, 1)
cartesian_to_polar(pc_tree, anchor)

circleRANSAC Adaptive RANSAC Circle Fitting

Description

Adaptive random sample consensus for cicle fitting.

Usage

circleRANSAC(
cloud,
fpoints,
pconf,
poutlier,
max_iterations,
threads = 1L,
plot = TRUE

)

Arguments

cloud A data.table with *XY* coordinates in the first two columns.

fpoints A numeric vector between 0 and 1 representing the fraction of point samples
that will be used during each iteration.

pconf A numeric vector between 0 and 1 describing the confidence threshold to con-
sider a point in a given fitted circle outlier or inlier.

euclidean_distance 11

poutlier A numeric vector of length two describing the proportion of outliers to consider
inside or outsite of the pconf threshold.

max_iterations An integer specifying the number of iterations. If NULL, the number of iter-
ations are automaticaly estimated using pconf, 1 -poutlier, and 1 -fpoints;
see details.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

plot Logical. If TRUE, it provides visual representation of the fitted circle.

Value

A data.table with the *XY* coordinate information of the circle center, the radius, the error based
on the least squares fit, and the proportion of inliers.

Author(s)

J. Antonio Guzmán Q.

See Also

tree_metrics, trunk_volume

Examples

#Point cloud
data("pc_tree")

#Subset region at at breast height
sub <- pc_tree[between(Z, 1.25, 1.35),]

#Fit circle
circleRANSAC(sub, fpoints = 0.2, pconf = 0.95, poutlier = c(0.5, 0.5), max_iterations = 100)

euclidean_distance Euclidean Distance Between 3D points

Description

Estimate the distance between a point and a group of point.

Usage

euclidean_distance(point, cloud, threads = 1L)

12 filter

Arguments

point A numeric vector of length three describing the *XYZ* coordinates.

cloud A data.table with *XYZ* coordinates in the first three columns representing
a point cloud.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

Value

A numeric vector describing of point to each row of cloud.

Author(s)

J. Antonio Guzmán Q.

Examples

data("pc_tree")

euclidean_distance(point = c(0, 0, 0), pc_tree)

filter Filtering of Point Clouds

Description

Filtering of point clouds using different methods

Usage

filter(
cloud,
method,
radius,
min_neighbours,
k,
nSigma,
edge_length,
distance = "euclidean",
threads = 1L,
verbose = FALSE,
progress = FALSE,
...

)

filter 13

Arguments

cloud A data.table contain three columns representing the *XYZ* coordinates.

method A filtering method to use. It most be "SOR", "min_neighbors", or "min_neighbors".

radius A numeric vector representing the radius of the sphere to consider. This needs
to be used if method = "voxel_center".

min_neighbours An integer representing the minimum number of neighbors to keep a given
point. This needs to be used if method = "min_n".

k An integer vector representing the number of neighbors to consider. This
needs be used if method = "SOR".

nSigma A numeric vector representing the standard deviation multiplier. This needs to
be used if method = "SOR".

edge_length A positive numeric vector with the voxel-edge length for the x, y, and z coordi-
nates. This needs to be used if method = "voxel_center".

distance Type of distance to calculate. "euclidean" as default. Look hnsw_knn for more
options.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

verbose If TRUE, log messages to the console.

progress If TRUE, log a progress bar when verbose = TRUE. Tracking progress could
cause a small overhead.

... Arguments passed to hnsw_build and hnsw_search.

Value

A data.table with the filtered points

Author(s)

J. Antonio Guzmán Q.

Examples

#Load data
data("pc_tree")

#Move pc_tree for comparison
pc_compare <- pc_tree
pc_compare$X <- pc_compare$X - 7

#SOR filter
r1 <- filter(pc_tree, method = "SOR", k = 30, nSigma = 1)
rgl::plot3d(r1, col = "red") #Filter
rgl::points3d(pc_compare, col = "black") #Original

14 geometry_features

#min_neighbours filter
r2 <- filter(pc_tree, "min_neighbors", radius = 0.02, min_neighbours = 20)
rgl::plot3d(r2, col = "red") #Filter
rgl::points3d(pc_compare, col = "black") #Original

#voxel_center filter
r3 <- filter(pc_tree, method = "voxel_center", edge_length = 0.1)
rgl::plot3d(r3, col = "red") #Filter
rgl::points3d(pc_compare, col = "black") #Original

geometry_features Geometry features of Neighboring Points.

Description

Estimate geometry features of neighboring points in a cloud.

Usage

geometry_features(
cloud,
method,
radius,
k,
max_neighbour,
distance = "euclidean",
target = FALSE,
threads = 1L,
verbose = FALSE,
progress = TRUE,
...

)

Arguments

cloud A data.table with *XYZ* coordinates in the first three columns.

method A character string specifying the method to estimate the neighbors. It most be
one of "radius_search" or "knn".

radius A numeric vector representing the radius for search to consider. This needs be
used if method = "radius_search".

k An integer vector representing the number of neighbors to consider. This
needs be used if method = "knn".

max_neighbour An integer specifying the maximum number of points to look around each
query point for a given radius. This needs be used if method = "radius_search".

geometry_features 15

distance Type of distance to calculate. "euclidean" as default. Look hnsw_knn for more
options.

target Logic. If TRUE, it consider the each target point for the calculations of geometry
features.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

verbose If TRUE, log messages to the console.

progress If TRUE, log a progress bar when verbose = TRUE. Tracking progress could cause
a small overhead.

... Arguments passed to hnsw_build and hnsw_search.

Details

The function returns the geometry features of the neighboring points of a given point in cloud. Ge-
ometry features are represented by the relative values of the eigenvalues derived from a covariance
matrix of the neighboring points. Geometry features are not estimated on target points with less
than 3 neighboring points.

Value

A array describing the point of the cloud in rows, the relative eigenvalues in columns, and the
radius or k per slide. If method = "radius_search", it add in the first column the number of
neighboring points.

Author(s)

J. Antonio Guzmán Q.

Examples

#Create cloud
example <- data.table(X = runif(200, min=0, max=10),

Y = runif(200, min=0, max=10),
Z = runif(200, min=0, max=10))

#Using knn method with two different k
k_test <- c(5, 10)
geometry_features(example, method = "knn", k = k_test)

#Using radius search method with two different radius
radius_test <- c(3, 4)
geometry_features(example, method = "radius_search", radius = radius_test, max_neighbour = 200)

16 knn

knn K Nearest Neighbors

Description

Adapted K nearest neighbors based on RcppHNSW

Usage

knn(
query,
ref,
k,
distance = "euclidean",
same = FALSE,
threads = 1L,
verbose = FALSE,
progress = FALSE,
...

)

Arguments

query A data.table containing the set of query points where each row represent a
point and each column a given coordinate.

ref A numeric containing the set of reference points where each row represent a
point and each column a given coordinate.

k An integer describing the number of nearest neighbors to search for.

distance Type of distance to calculate. "euclidean" as default. Look hnsw_knn for more
options.

same Logic. If TRUE, it delete neighbors with distance of 0, useful when the k search
is based on the same query.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

verbose If TRUE, log messages to the console.

progress If TRUE, log a progress bar when verbose = TRUE. Tracking progress could
cause a small overhead.

... Arguments passed to hnsw_build and hnsw_search.

Details

This function is based on hnswlib C++ library (Malkov & Yashunin 2016) and its bindings for R
(RcppHNSW; Melville 2020) for a fast estimation of neighbors points. It is adapted to simplify the
workflow within rTLS. If you use this function, please consider cite the C++ library and RcppHNSW
package.

lines_interception 17

Value

A data.table with three columns describing the indices of the query, ref, and k neighbors and the
distances.

Author(s)

J. Antonio Guzmán Q.

References

Malkov, Y. A., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs. arXiv preprint arXiv:1603.09320.

See Also

radius_search

Examples

#Point cloud
data("pc_tree")

#knn search using k = 3
knn(pc_tree, pc_tree, k = 3, same = TRUE)

lines_interception Intersection of Lines by AABBs

Description

Intersection of lines by several Axis-Aligned Bounding Boxs.

Usage

lines_interception(orig, end, AABBs, edge_length, threads = 1, progress = TRUE)

Arguments

orig A data.table with the describing *XYZ* coordinates of the the start path of
the rays.

end A data.table with the describing *XYZ* coordinates of the the end path of
the rays.

AABBs A data.table with *XYZ* coordinates of the center of AABBs.

edge_length A positive numeric vector with the AABB length edge for the X, Y, and Z
coordinates.

18 lines_interception

threads An integer >= 0 describing the number of threads to use. This need to be used
if parallel = TRUE.

progress Logical, if TRUE displays a graphical progress bar. TRUE as default.

Value

It returns a data.table with nine columns: 1-5 columns with the counts for the code of intersection
(see line_AABB), and 6-9 columns with sum the path length of intersection. The number of rows
match with nrow(AABBs).

Author(s)

J. Antonio Guzmán Q.

See Also

line_AABB, voxels

Examples

#Create points with paths
n <- 20
orig <- data.table(X = runif(n, min = -5, max = 5),

Y = runif(n, min = -5, max = 5),
Z = runif(n, min = -5, max = 5))

end <- data.table(X = runif(n, min = -5, max = 5),
Y = runif(n, min = -5, max = 5),
Z = runif(n, min = -5, max = 5))

#Create a potential AABB
AABBs <- data.table(X = 0, Y = 0, Z = 0)
edge_length <- c(2, 2, 2)

#Plot

cube <- rgl::cube3d()
cube <- rgl::scale3d(cube,

edge_length[1]/2,
edge_length[2]/2,
edge_length[3]/2)

box <- rgl::translate3d(cube, AABBs[[1]], AABBs[[2]], AABBs[[3]])
rgl::shade3d(box, col= "green", alpha = 0.6)
rgl::points3d(orig, size = 5, col = "black")
rgl::points3d(end, size = 5, col = "red")

for(i in 1:nrow(orig)) {
rgl::lines3d(c(orig[[1]][i], end[[1]][i]),

c(orig[[2]][i], end[[2]][i]),
c(orig[[3]][i], end[[3]][i]), col = "grey")

}

line_AABB 19

#Estimation
lines_interception(orig, end, AABBs, edge_length, progress = FALSE)

line_AABB Line-AABB

Description

Intersection of a line by an Axis-Aligned Bounding Box.

Usage

line_AABB(orig, end, AABB_min, AABB_max)

Arguments

orig A data.table with the describing *XYZ* coordinates of the the start path of a
line.

end A data.table with the describing *XYZ* coordinates of the the end path of a
line.

AABB_min A numeric vector with the minimum *XYZ* coordinates of the AABB

AABB_max A numeric vector with the maximum *XYZ* coordinates of the AABB.

Details

The interaction of a line with a AABB may result in five scenarios: i) the line is not intercepted by
a AAABB (0), ii) the origin and end of the line falls within the AABB (1), iii) the origin point of
the line falls within the AABB both not the end point (2), iv) the end point of the line falls within
the AABB both not the origin point (3), and v) the line is intercepted by the AABB (4).

Value

An numeric vector of length two, describing if the line was intercepted or not, and the length of
the intercepted line within in the AABB. See details.

Author(s)

J. Antonio Guzmán Q.

See Also

lines_interception, voxels,

20 line_AABB

Examples

#Create origins and end paths
orig <- data.table(X = c(0, 0, 0, 0, 0),

Y = c(-0.45, -0.25, 0, 0.25, 0.45),
Z = c(-1, -0.25, 0, -1, -1))

end <- data.table(X = c(0, 0, 0, 0, 0),
Y = c(-0.45, -0.25, 0, 0.25, 0.45),
Z = c(-0.75, 0.25, 1, 0, 1))

#Create the AABB
AABB <- matrix(c(0, 0, 0), ncol = 3)
edge_length <- c(1, 1, 1)

AABB_min <- c(AABB[1, 1] - edge_length[1]/2,
AABB[1, 2] - edge_length[2]/2,
AABB[1, 3] - edge_length[3]/2)

AABB_max <- c(AABB[1, 1] + edge_length[1]/2,
AABB[1, 2] + edge_length[2]/2,
AABB[1, 3] + edge_length[3]/2)

#Plot
cube <- rgl::cube3d()
cube <- rgl::scale3d(cube, edge_length[1]/2,

edge_length[2]/2,
edge_length[3]/2)

box <- rgl::translate3d(cube, AABB[1, 1], AABB[1, 2], AABB[1, 3])
rgl::shade3d(box, col= "green", alpha = 0.6)
rgl::points3d(orig, size = 4, col = "black")
rgl::points3d(end, size = 4, col = "red")

#Line no intercepted
rgl::lines3d(c(orig[1, 1], end[1, 1]),

c(orig[1, 2], end[1, 2]),
c(orig[1, 3], end[1, 3]), col = "grey")

line_AABB(orig[1,], end[1,], AABB_min, AABB_max)

#Both ends falls inside
rgl::lines3d(c(orig[2, 1], end[2, 1]),

c(orig[2, 2], end[2, 2]),
c(orig[2, 3], end[2, 3]), col = "red")

line_AABB(orig[2,], end[2,], AABB_min, AABB_max)

#Oring falls inside, but not the end.
rgl::lines3d(c(orig[3, 1], end[3, 1]),

c(orig[3, 2], end[3, 2]),
c(orig[3, 3], end[3, 3]), col = "blue")

min_distance 21

line_AABB(orig[3,], end[3,], AABB_min, AABB_max)

#End falls inside, but not the orig
rgl::lines3d(c(orig[4, 1], end[4, 1]),

c(orig[4, 2], end[4, 2]),
c(orig[4, 3], end[4, 3]), col = "green")

line_AABB(orig[4,], end[4,], AABB_min, AABB_max)

#Some segments of the line are intercepted
rgl::lines3d(c(orig[5, 1], end[5, 1]),

c(orig[5, 2], end[5, 2]),
c(orig[5, 3], end[5, 3]), col = "black")

line_AABB(orig[5,], end[5,], AABB_min, AABB_max)

min_distance Minimum Distance Between Points

Description

Estimate the minimum distance between points in a point cloud.

Usage

min_distance(
cloud,
distance = "euclidean",
threads = 1L,
verbose = FALSE,
progress = FALSE,
...

)

Arguments

cloud A data.table with *XYZ* coordinates in the first three columns representing
a point cloud.

distance Type of distance to calculate. "euclidean" as default. Look hnsw_knn for more
options.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

verbose If TRUE, log messages to the console.

progress If TRUE, log a progress bar when verbose = TRUE. Tracking progress could
cause a small overhead.

... Arguments passed to hnsw_build and hnsw_search.

22 pc_tree

Value

A numeric vector describing the minimum distance between points.

Author(s)

J. Antonio Guzmán Q.

Examples

data("pc_tree")

#Estimate the minimum distance of a sample o 100 points
min_distance(pc_tree)

pc_tree A Tree Point Cloud

Description

A data.table from a point cloud of a tree with a spatial point resolution of 0.05 mm.

Usage

data(pc_tree)

Format

A data.table with three columns, which are:

X the "X" coordinate

Y the "Y coordinate

Z the "Z" coordinate

A data.table where the rows represent the points and the three columns represent the *XYZ*
coordinates.

References

Guzman, Sharp, Alencastro, Sanchez-Azofeifa. 2018. To be published.

Examples

data(pc_tree)
head(pc_tree)

plot_voxels 23

plot_voxels Plot Method for Voxels

Description

The plot method for objects of class "voxels" created using the voxels function.

Usage

plot_voxels(
voxels,
add.points = TRUE,
add.voxels = TRUE,
border = TRUE,
points.size = 1,
points.col = "black",
fill.col = "forestgreen",
line.lwd = 0.5,
line.col = "black",
alpha = 0.1,
...

)

Arguments

voxels Object of class "voxels" from voxels.

add.points Logical, if TRUE it adds the original points used to perform the voxelization.
TRUE as default.

add.voxels Logical, if TRUE it adds the voxels created. TRUE as default.

border Logical, if TRUE it adds a line on the borders of each voxel. TRUE as default.

points.size The points size, a positive number to use if plot add.points = TRUE.

points.col A character defining the color of the points to use.

fill.col A character vector defining the color to fill the voxels, it could be a range of
colors or a solid color.

line.lwd The line width, a positive number, defaulting to 0.5.

line.col A character defining the color of the border lines to use.

alpha A positive numeric vector describing the transparency of the voxels to fill. This
value most be between 0.0 (fully transparent) .. 1.0 (opaque).

... General arguments passed to rgl.

Value

A 3D plot of a point cloud and voxels.

24 polar_to_cartesian

Author(s)

J. Antonio Guzmán Q.

See Also

voxels, voxels_counting, summary_voxels

Examples

data("pc_tree")

###Create cubes of a size of 7x7x3.5.
vox <- voxels(pc_tree, edge_length = c(7, 7, 3.5))
plot_voxels(vox)

polar_to_cartesian Polar to Cartesian Coordinates

Description

Convert from polar to cartesian coordinates.

Usage

polar_to_cartesian(polar, threads = 1, digits = NULL)

Arguments

polar A data.table with three columns describing the zenith, azimuth, and distance
of a point to the center.

threads An integer vector describing the number of threads for parallel processing.
Default 1.

digits A numeric vector of length 1 describing the decimal numbers to round the
cartesian coordinates. If NULL, round does not apply. NULL as default.

Value

A data.table with three columns describing the *XYZ* of the cartesian coordinates.

Author(s)

J. Antonio Guzmán Q.

See Also

cartesian_to_polar

radius_search 25

Examples

#Creates a hemisphere of points each 2 degrees

zenith <- seq(0, 90, 2)
azimuth <- seq(0, 360, 2)
hemi <- CJ(zenith, azimuth)
hemi$distance <- 1
hemicloud <- polar_to_cartesian(hemi)
rgl::plot3d(hemicloud)

radius_search Radius Search of Points

Description

Adapted radius searching of points based on RcppHNSW

Usage

radius_search(
query,
ref,
radius,
max_neighbour,
distance = "euclidean",
same = FALSE,
threads = 1L,
verbose = FALSE,
progress = FALSE,
...

)

Arguments

query A data.table containing the set of query points where each row represent a
point and each column a given coordinate.

ref A numeric containing the set of reference points where each row represent a
point and each column a given coordinate.

radius A numeric describing maximum euclidean distance form the each query points
in which a point can be consider a neighbor.

max_neighbour An integer specifying the maximum number of ref points to look around to
consider for a given radius.

distance Type of distance to calculate. "euclidean" as default. Look hnsw_knn for more
options.

26 radius_search

same Logic. If TRUE, it delete neighbors with distance of 0, useful when the k search
is based on the same query.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

verbose If TRUE, log messages to the console.

progress If TRUE, log a progress bar when verbose = TRUE. Tracking progress could
cause a small overhead.

... Arguments passed to hnsw_build and hnsw_search.

Details

This function is based on hnswlib C++ library (Malkov & Yashunin 2016) and its bindings for R
(RcppHNSW; Melville 2020) for a fast estimation of neighbors points. It is adapted to simplify the
workflow within rTLS. If you use this function, please consider cite the C++ library and RcppHNSW
package.

Value

A data.table with three columns describing the indices of the query and ref points and the dis-
tances.

Author(s)

J. Antonio Guzmán Q.

References

Malkov, Y. A., & Yashunin, D. A. (2016). Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs. arXiv preprint arXiv:1603.09320.

See Also

radius_search

Examples

#Point cloud
data("pc_tree")

#Radius search of 1
radius_search(pc_tree, pc_tree, radius = 1, max_neighbour = 100)

rotate2D 27

rotate2D Rotate a plane of coordinates

Description

Rotate a plane of coordinates to a given angle.

Usage

rotate2D(plane, angle, threads = 1)

Arguments

plane A data.table with two columns describing the plane of coordinates.

angle A numeric vector describing the degrees of rotation.

threads An integer specifying the number of threads to use. Experiment to see what
works best for your data on your hardware.

Value

A data.table with the rotation applied to plane.

Author(s)

J. Antonio Guzmán Q.

Examples

data(pc_tree)

plot(pc_tree[,1:2])

#Rotate in 45 degrees using Z axis of the cloud
plot(rotate2D(pc_tree[,1:2], angle = 45))

28 rotate3D

rotate3D Rotate a Point Cloud

Description

Rotate point cloud based on the roll, pitch, and yaw angles.

Usage

rotate3D(cloud, roll = 0, pitch = 0, yaw = 0, threads = 1)

Arguments

cloud A data.table with three columns describing the *XYZ* coordinates of a point
cloud.

roll A numeric vector describing the degrees of rotation angles for roll (*X*).

pitch A numeric vector describing the degrees of rotation angles for pitch (*Y*).

yaw A numeric vector describing the degrees of rotation angles for yaw (*Z*). for
the roll, pitch, and yaw.

threads An integer specifying the number of threads to use. Experiment to see what
works best for your data on your hardware.

Details

The *XYZ* coordinates are transformed to E-N-U coordinates (ENU system, East-North-Up).

Value

A data.table with the rotation applied to cloud.

Author(s)

J. Antonio Guzmán Q.

Examples

data(pc_tree)
rgl::plot3d(pc_tree)
rgl::plot3d(rotate3D(pc_tree, roll = 45, pitch = 45, yaw = 0))

stand_counting 29

stand_counting Stand Counting

Description

Applies the voxels_counting function on a grid base point cloud.

Usage

stand_counting(
cloud,
xy.res,
z.res = NULL,
points.min = NULL,
min_size,
edge_sizes = NULL,
length_out = 10,
bootstrap = FALSE,
R = NULL,
progress = TRUE,
parallel = FALSE,
threads = NULL

)

Arguments

cloud A data.table of a point cloud with xyz coordinates in the first three columns.

xy.res A positive numeric vector describing the grid resolution of the xy coordinates
to perform.

z.res A positive numeric vector of length 1 describing the vertical resolution. If
z.res = NULL vertical profiles are not used.

points.min A positive numeric vector of length 1 minimum number of points to retain a
sub-grid.

min_size A positive numeric vector of length 1 describing the minimum cube edge length
to perform. This is required if edge_sizes = NULL.

edge_sizes A positive numeric vector describing the edge length of the different cubes to
perform within each subgrid when z.res = NULL. If edge_sizes = NULL, it uses
the maximum range of values for the xyz coordinates.

length_out A positive interger of length 1 indicating the number of different edge lengths
to use for each subgrid. This is required if edge_sizes = NULL.

bootstrap Logical. If TRUE, it computes a bootstrap on the H index calculations. FALSE as
default.

R A positive integer of length 1 indicating the number of bootstrap replicates.
This need to be used if bootstrap = TRUE.

30 summary_voxels

progress Logical, if TRUE displays a graphical progress bar. TRUE as default.

parallel Logical, if TRUE it uses a parallel processing for the voxelization. FALSE as
default.

threads An integer >= 0 describing the number of threads to use. This need to be used
if parallel = TRUE.

Value

A data.table with the summary of the voxels per grid created with their features.

Author(s)

J. Antonio Guzmán Q.

See Also

voxels_counting, voxels, summary_voxels

Examples

data(pc_tree)

#Applying stand_counting.

stand_counting(pc_tree, xy.res = c(4, 4), min_size = 3)

#Applying stand_counting using bootstrap in the H index.

stand_counting(pc_tree,
xy.res = c(4, 4),
min_size = 3,
bootstrap = TRUE,
R = 10)

summary_voxels Voxels Summary

Description

Create a summary objects of class "voxels" created using the voxels.

Usage

summary_voxels(voxels, edge_length = NULL, bootstrap = FALSE, R = NULL)

summary_voxels 31

Arguments

voxels An object of class voxels created using the voxels() function or a data.table
describing the voxels coordinates and their number of points produced using
voxels().

edge_length A positive numeric vector with the voxel-edge length for the x, y, and z coor-
dinates. This need to be used if class(voxels) != "voxels". It use the same
dimensional scale of the point cloud.

bootstrap Logical, if TRUE it computes a bootstrap on the H index calculations. FALSE as
default.

R A positive integer of length 1 indicating the number of bootstrap replicates.
This need to be used if bootstrap = TRUE.

Details

The function provides 12 main statistics of the voxels. Specifically, the first three columns repre-
sent the edge length of the voxels, the following three columns (ei. N_voxels, Volume, Surface)
describe the number of voxels created, the total volume that they represent, and the surface area
that they cover. Following columns represent the mean (Density_mean) and sd (Density_sd) of
the density of points per voxel (e.g. points/m2). Columns 9:12 provide metrics calculated using the
Shannon Index. Specifically, H describe the entropy, H_max the maximum entropy, Equitavility
the ratio between H and Hmax, and Negentropy describe the product of Hmax - H. If bootstrap =
TRUE four more columns are created (13:16). These represent the mean and sd of the H index es-
timated using bootstrap (H_boot_mean and H_boot_sd), the Equtavility_boot as the ratio of the
ratio between H_boot_sd and Hmax, and Negentropy_boot as the product Hmax - H_boot_mean.

Value

A data.table with with the summary of voxels.

Author(s)

J. Antonio Guzmán Q.

See Also

voxels, voxels_counting, plot_voxels

Examples

data("pc_tree")

#Apply a summary on a object of class "voxels" using bootstrap with 1000 replicates.
vox <- voxels(pc_tree, edge_length = c(0.5, 0.5, 0.5))
summary_voxels(vox, bootstrap = TRUE, R = 1000)

#Apply a summary on a product from 'voxels' using bootstrap with 1000 replicates.
vox <- voxels(pc_tree, edge_length = c(0.5, 0.5, 0.5), obj.voxels = FALSE)
summary_voxels(vox, edge_length = c(0.5, 0.5, 0.5), bootstrap = TRUE, R = 1000)

32 TLS_scan

TLS_scan A TLS scan

Description

A data.table from a TLS scan.

Usage

data(TLS_scan)

Format

A data.table with five columns, which are:

X the "X" coordinate

Y the "Y coordinate

Z the "Z" coordinate

Target_count The number of received by the same laser shot

Target_index The rank of the returned pulse in the target count of received by the same laser shot

A data.table where the rows represent the pulse returns and the three columns represent the
XYZ coordinates, and the target count and index.

Details

A TLS scan conducted using a Reigel VZ400i with a vertical and horizontal resolution of 0.048 and
0.622 degrees (2082 and 580 lines, respectively). The scanner has frame of scanning between 30
and 130.024 degrees zenith and 0 and 359.90 degrees azimuth. At the moment of the scan the roll,
pitch, and yaw of the scanner were 1.026, 0.746, -110.019, respectively. The scanner coordinates in
this scan are x = 0,y = 0,z = 0.

Examples

data(TLS_scan)
head(TLS_scan)

tree_metrics 33

tree_metrics Tree Metrics

Description

Estimate the tree height, crown area, and the diameter at breast height of a tree point cloud

Usage

tree_metrics(cloud, region.diameter = NULL, relocateZ = TRUE)

Arguments

cloud A data.table of the target point with three columns of the *XYZ* coordinates.
region.diameter

A numeric vector of length 2 indicating the lower and higher region to sub-
set the point cloud and get the diameter. If region.diameter = NULL, it use
c(1.25,1.35). NULL as default.

relocateZ Logical, if TRUE it relocates the *Z* coordinates to a minimum coordinate of
zero based on the current min(cloud[,3]). Useful if the base value (*Z*) of a
tree point cloud is not topography corrected.

Details

The tree height is estimated based on the maximum value of *Z*, the crown area is calculated
applying a convex hull on the point cloud, while the DBH is calculated extracting the area of the
convex hull on the subset of points between region.diameter, and then estimating the diameter of
a circle. For another estimation of DBH try circleRANSAC or for irregular trucks try trunk_volume.

Value

A data.table with the tree height, crown area, and diameter

Author(s)

J. Antonio Guzman Q. and Ronny Hernandez

See Also

circleRANSAC, trunk_volume

Examples

data("pc_tree")
tree_metrics(pc_tree)

34 trunk_volume

trunk_volume Tree Trunk Volume

Description

Estimates the tree trunk volume of a point cloud using the ashape3d package.

Usage

trunk_volume(cloud, max.height = NULL, alpha = 0.2, plot = TRUE, ...)

Arguments

cloud A data.table with three columns representing the *XYZ* coordinates of a
point cloud.

max.height A numeric vector to contemplate points in the cloud lower than a specific height.
If NULL, it performs the alpha-shape on the entire point cloud.

alpha A numeric vector of length one passed to ashape3d to describes alpha. alpha =
0.20 as default since it seems to provide better estimations of the trunk volume.
However, the alpha value may depends on the resolution of the point cloud.

plot Logical. If TRUE, it uses plot.ashape3d to represent the alpha-shape.

... General arguments passed to ashape3d.

Details

This is an adaptation of the code develop by Lafarge & Pateiro-Lopez (2017) based on Edelsbrunner
& Mucke (1994) for the quick extraction of the tree trunk volume. Therefore, if you use this code
we kindly suggest to cite these documents in your research.

Value

A numeric vector with the estimated trunk volume.

Author(s)

J. Antonio Guzmán Q.

References

Lafarge, T., Pateiro-Lopez, B. (2017). Implementation of the 3D Alpha-Shape for the Recon-
struction of 3D Sets from a Point Cloud. Available at https://CRAN.R-project.org/package=
alphashape3d.

Edelsbrunner, H., Mucke, E. P. (1994). Three-Dimensional Alpha Shapes. ACM Transactions on
Graphics, 13(1), pp.43-72.

https://CRAN.R-project.org/package=alphashape3d
https://CRAN.R-project.org/package=alphashape3d

voxels 35

See Also

tree_metrics, circleRANSAC

Examples

data("pc_tree")

#Estimates the trunk volume of a height lower than 1.75.
trunk_volume(pc_tree, max.height = 1.75)

voxels Voxelization of a Point Cloud

Description

Create cubes of a given distance in a point cloud though their voxelization. It use a modify version
of the code used in Greaves et al. 2015.

Usage

voxels(cloud, edge_length, threads = 1L, obj.voxels = TRUE)

Arguments

cloud A data.table with *XYZ* coordinates in the first three columns.

edge_length A positive numeric vector with the voxel-edge length for the x, y, and z coordi-
nates. It use the same dimensional scale of the point cloud.

threads An integer specifying the number of threads to use for parallel processing.
Experiment to see what works best for your data on your hardware.

obj.voxels Logical. If obj.voxel = TRUE, it returns an object of class "voxels", If obj.voxel
= FALSE, it returns a data.table with the coordinates of the voxels created and
the number of points in each voxel. TRUE as default.

Details

Voxels are created from the negative to the positive *XYZ* coordinates.

Value

If obj.voxels == TRUE, it return an object of class "voxels" which contain a list with the points
used to create the voxels, the parameter edge_length, and the voxels created. If FALSE, it returns
a data.table with the coordinates of the voxels created and the number of points in each voxel.

Author(s)

J. Antonio Guzmán Q.

36 voxels_counting

References

Greaves, H. E., Vierling, L. A., Eitel, J. U., Boelman, N. T., Magney, T. S., Prager, C. M., & Griffin,
K. L. (2015). Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with
terrestrial LiDAR. Remote Sensing of Environment, 164, 26-35.

See Also

voxels_counting, plot_voxels, summary_voxels

Examples

data("pc_tree")

###Create cube of a size of 0.5.
voxels(pc_tree, edge_length = c(0.5, 0.5, 0.5))

voxels_counting Voxels Counting

Description

Creates cube like voxels of different size on a point cloud using the voxels function, and then return
a summary_voxels of their features.

Usage

voxels_counting(
cloud,
edge_sizes = NULL,
min_size,
length_out = 10,
bootstrap = FALSE,
R = NULL,
progress = TRUE,
parallel = FALSE,
threads = NULL

)

Arguments

cloud A data.table with xyz coordinates of the point clouds in the first three columns.

edge_sizes A positive numeric vector describing the edge length of the different cubes to
perform. If NULL, it use edge sizes by default based on the largest range of XYZ
and min_size.

voxels_counting 37

min_size A positive numeric vector of length 1 describing the minimum cube edge length
to perform. This is required if edge_sizes = NULL.

length_out A positive interger of length 1 indicating the number of different edge lengths
to use. This is required if edge_sizes = NULL.

bootstrap Logical. If TRUE, it computes a bootstrap on the H index calculations. FALSE as
default.

R A positive integer of length 1 indicating the number of bootstrap replicates.
This need to be used if bootstrap = TRUE.

progress Logical, if TRUE displays a graphical progress bar. TRUE as default.

parallel Logical, if TRUE it uses a parallel processing for the voxelization. FALSE as
default.

threads An integer >= 0 describing the number of threads to use. This need to be used
if parallel = TRUE.

Value

A data.table with the summary of the voxels created with their features.

Author(s)

J. Antonio Guzmán Q.

See Also

voxels, summary_voxels, plot_voxels

Examples

data(pc_tree)

#Applying voxels counting.
voxels_counting(pc_tree, min_size = 2)

#Voxels counting using bootstrap on the H indexes with 1000 repetitions.
voxels_counting(pc_tree, min_size = 2, bootstrap = TRUE, R = 1000)

Index

∗ datasets
pc_tree, 22
TLS_scan, 32

artificial_stand, 3
ashape3d, 34

canopy_structure, 6
cartesian_to_polar, 9, 24
circleRANSAC, 10, 33, 35

euclidean_distance, 11

filter, 12
fread, 5

geometry_features, 14

knn, 16

line_AABB, 18, 19
lines_interception, 17, 19

min_distance, 21

pc_tree, 22
plot_voxels, 23, 31, 36, 37
polar_to_cartesian, 10, 24

radius_search, 17, 25, 26
rgl, 23
rotate2D, 27
rotate3D, 7, 28
round, 9, 24
rTLS (rTLS-package), 3
rTLS-package, 3

stand_counting, 29
summary_voxels, 24, 30, 30, 36, 37

TLS_scan, 32
tree_metrics, 11, 33, 35

trunk_volume, 11, 33, 34

voxels, 18, 19, 23, 24, 30, 31, 35, 36, 37
voxels_counting, 5, 24, 29–31, 36, 36

38

	rTLS-package
	artificial_stand
	canopy_structure
	cartesian_to_polar
	circleRANSAC
	euclidean_distance
	filter
	geometry_features
	knn
	lines_interception
	line_AABB
	min_distance
	pc_tree
	plot_voxels
	polar_to_cartesian
	radius_search
	rotate2D
	rotate3D
	stand_counting
	summary_voxels
	TLS_scan
	tree_metrics
	trunk_volume
	voxels
	voxels_counting
	Index

