
Package ‘rcaiman’
January 21, 2022

Type Package

Title An R Package for CAnopy IMage ANalysis

Version 0.1.1

Date 2022-01-03

Description Its main strength is to classify hemispherical
photographs of the plant canopy with algorithms specially developed for
such a task and well documented in
Díaz and Lencinas (2015) <doi:10.1109/lgrs.2015.2425931> and
Díaz and Lencinas (2018) <doi:10.1139/cjfr-2018-0006>. It supports
non-circular hemispherical photography.

License GPL-3

BugReports https://github.com/GastonMauroDiaz/rcaiman/issues

Encoding UTF-8

RoxygenNote 7.1.2

Depends raster, magrittr

Imports methods, testthat, pracma, stats, utils, Rdpack, spatial, sp,
colorspace, rgdal

Suggests autothresholdr, conicfit

RdMacros Rdpack

NeedsCompilation no

Author Gastón Mauro Díaz [aut, cre] (<https://orcid.org/0000-0002-0362-8616>)

Maintainer Gastón Mauro Díaz <gastonmaurodiaz@gmail.com>

Repository CRAN

Date/Publication 2022-01-21 09:22:43 UTC

R topics documented:
apply_thr . 2
azimuth_image . 3
calc_diameter . 4

1

https://doi.org/10.1109/lgrs.2015.2425931
https://doi.org/10.1139/cjfr-2018-0006
https://github.com/GastonMauroDiaz/rcaiman/issues
https://orcid.org/0000-0002-0362-8616

2 apply_thr

calc_zenith_raster_coordinates . 5
calibrate_lens . 7
enhance_caim . 8
expand_noncircular . 10
extract_feature . 11
find_sky_pixels . 12
fit_coneshaped_model . 13
fit_trend_surface . 15
fix_predicted_sky . 17
gbc . 18
lens . 19
local_fuzzy_thresholding . 20
masking . 21
mask_hs . 22
membership_to_color . 23
normalize . 24
ootb_mblt . 25
read_bin . 27
read_caim . 27
regional_thresholding . 29
reproject_to_equidistant . 31
rings_segmentation . 32
sectors_segmentation . 32
sky_grid_segmentation . 33
test_lens_coef . 34
thr_image . 35
write_bin . 36
write_caim . 37
zenith_image . 38

Index 39

apply_thr Apply threshold

Description

Global or local thresholding of images.

Usage

apply_thr(r, thr)

Arguments

r RasterLayer

thr Numeric vector of length one or RasterLayer. Threshold.

azimuth_image 3

Details

It is a wrapper function around the operator > from the ‘raster’ package. If a single threshold value is
provided as thr argument, it is applied to every pixel of the raster object r. If instead a RasterLayer
is provided, then a particular threshold is applied to each particular pixel.

Value

An object of class RasterLayer with values 0 and 1.

See Also

Other Tools functions: extract_feature(), gbc(), masking(), normalize(), read_bin(), read_caim(),
regional_thresholding(), write_bin(), write_caim()

Examples

r <- read_caim()
apply_thr(r$Blue, 120)
Not run:
This function is useful in combination with the ‘autothresholdr’
package. For example:
require(autothresholdr)
thr <- auto_thresh(r$Blue[], "IsoData")[1]
bin <- apply_thr(r$Blue, thr)
plot(bin)

End(Not run)

azimuth_image Azimuth image

Description

Build a single layer image with azimuth angles as pixel values.

Usage

azimuth_image(z)

Arguments

z RasterLayer built with zenith_image.

4 calc_diameter

Value

An object of class RasterLayer of azimuth angles in degrees. North (0º) is pointing up as in maps,
but East (90º) and West (270º) are flipped respect to maps. To understand why is that, take two
flash-card size pieces of paper. Put one on a table in front of you and draw on it a compass rose.
Take the other and hold it with your arms extended over your head, and, following the directions
of the compass rose in front of you, draw another compass rose in the paper side that face down.
Then, put it down and compare both compass roses.

See Also

Other Lens functions: calc_diameter(), calc_zenith_raster_coordinates(), calibrate_lens(),
expand_noncircular(), lens(), reproject_to_equidistant(), test_lens_coef(), zenith_image()

Examples

z <- zenith_image(1490, lens("Nikon_FCE9"))
azimuth_image(z)
plot(z)

calc_diameter Calculate diameter

Description

Calculate the diameter in pixels of a 180º fisheye image.

Usage

calc_diameter(lens_coef, radius_px, angle)

Arguments

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

radius_px Numeric vector. Distance in pixels from the zenith.

angle Numeric vector. Zenith angle in degrees.

Details

This function is useful to handle devices with field of view different than 180 degrees. Given a lens
projection function and data points consisting of radii (pixels) and their correspondent zenith angle
(θ), it returns the radius of the horizon (i.e., the radius for θ equal to 90 degrees).

It is particularly useful when working with non-circular hemispherical photography. It will help
to find the diameter that a circular image would have if the equipment would depict the whole
hemisphere.

The required data (radius-angle data) can be obtained following the instructions given in the user
manual of Hemisfer software. They suggests using a corner to set up markers on the walls from 0º

https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm
https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm

calc_zenith_raster_coordinates 5

to 90º θ. A fast way of obtaining a photograph showing several targets with known θ is to find a
wall, draw a triangle of 5 × 4 × 3 meters on the floor, with the 4-meter side over the wall. Locate
the camera over the vertice that is 3 meters away from the wall. Place it at a given height above
the floor, 1.3 meters for instance. Point the camera to the wall. Make a mark on the wall at 1.3
meters over the vertice that is in front of the camera. Next, make four more marks with one meter
of distance between them and on a horizontal line. This will create marks for 0º, 18º, 34º, 45º, and
54º θ. Don’t forget to align the zenith coordinates with the 0º θ mark and check if the optical axis
is leveled.

For obtaining the lens projection of a new lens, refer to calibrate_lens.

Value

Numeric vector of length one. The diameter is expressed in whole numbers following the standard
practice.

See Also

Other Lens functions: azimuth_image(), calc_zenith_raster_coordinates(), calibrate_lens(),
expand_noncircular(), lens(), reproject_to_equidistant(), test_lens_coef(), zenith_image()

Examples

Nikon D50 and Fisheye Nikkor 10.5 mm lens
calc_diameter(lens("Nikkor_10.5_mm"), 1202, 54)

calc_zenith_raster_coordinates

Calculate zenith raster coordinates

Description

Calculate zenith raster coordinates from points digitized with the open-source software package
‘ImageJ’. The zenith is the point on the image that represents the zenith when upward-looking
photographs are taken with the optical axis parallel to the vertical line.

Usage

calc_zenith_raster_coordinates(path_to_csv)

Arguments

path_to_csv Character vector of length one. Path to a CSV file created with the point selec-
tion tool of ‘ImageJ’ software.

https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool

6 calc_zenith_raster_coordinates

Details

The technique described under the headline ‘Optical center characterization’ of the user manual of
the software Can-Eye can be used to acquire the data for determining the zenith coordinates. This
technique was used by Pekin and Macfarlane (2009), among others. Briefly, it consists in drilling
a small hole in the cap of the fisheye lens (it must be away from the center of the cap), and taking
about ten photographs without removing the cap. The cap must be rotated about 30º before taking
each photograph. The method implemented here do not support multiple holes.

The point selection tool of ‘ImageJ’ software should be used to manually digitize the white dots
and create a CSV file to feed this function.

Another method –only valid for circular hemispherical photographs– is taking a very bright picture
(for example, a picture of a room with walls painted in light colors) with the lens completely free
(do not use any mount). Then, digitize points over the perimeter of the circle. This was the method
used for producing the example (see below). It is worth noting that the perimeter of the circle
depicted in a circular hemispherical photograph is not necessarily the horizon.

Value

Numeric vector of length two. Raster coordinates of the zenith, assuming a lens facing up with its
optical axis parallel to the vertical line. It is important to note the difference between the raster
coordinates and the Cartesian coordinates. In the latter, the vertical axis value decreases down, but
the opposite is true for the raster coordinates, which works like a spreadsheet.

References

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digi-
tal cover photography and its application to remote sensing.” Remote Sensing, 1(4), 1298–1320.
doi: 10.3390/rs1041298.

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calibrate_lens(), expand_noncircular(),
lens(), reproject_to_equidistant(), test_lens_coef(), zenith_image()

Examples

Not run:
path <- system.file("external/points_over_perimeter.csv",

package = "rcaiman")
calc_zenith_raster_coordinates(path)

End(Not run)

https://www6.paca.inrae.fr/can-eye/content/download/3052/30819/version/4/file/CAN_EYE_User_Manual.pdf
https://www6.paca.inrae.fr/can-eye/content/download/3052/30819/version/4/file/CAN_EYE_User_Manual.pdf
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://doi.org/10.3390/rs1041298

calibrate_lens 7

calibrate_lens Calibrate lens

Description

Calibrate a fisheye lens. This type of lens has wide field of view and a consistent azimuthal distor-
tion, so a precise mathematical relation can be fit between the distance to the zenith on the image
space and the zenith angle on the hemispherical space.

Usage

calibrate_lens(path_to_csv, degree = 3)

Arguments

path_to_csv Character vector of length one. Path to a CSV file created with the point selec-
tion tool of ‘ImageJ’ software.

degree Numeric vector of length one. Polynomial model degree.

Details

If you cannot find the coefficient of your lens on the literature, you may want to try the solution
offered here. It requires, in addition to this package and the open-source ImageJ software package,
the following materials:

• camera and lens
• tripod
• standard yoga mat
• table of about 70 × larger than the yoga mat
• twenty two push pins of different colors
• scissors
• One print of this sheet (A1 size, almost like a poster).

Cut the sheet by the dashed line. Place the yoga mat extended on top of the table. Place the sheet on
top of the yoga mat. Align the dashed line with the yoga mat border closest to you, and place push
pins on each cross. If you are gentle, the yoga mat will allows you to do that without damaging the
table. Of course, other materials could be used to obtain the same result, such as cardboard, foam,
nails, etc.

Place the camera on the tripod, align its optical axis with the table while looking for getting an
image showing the overlapping of the three pairs of push pins as instructed in the print. Take a
photograph and check if it looks more or less like this one.

Transfer the photograph to the computer, open it with ImageJ, and use the point selection tool to
digitize the push pins, starting from the zenith push pin and not skipping any showed push pin. This
method was inspired by the calibration board from Clark and Follin (1988).

As a tip, use test_lens_coef to test if coefficient are OK. If not, try moving the last points a little
bit. Put the last one a few pixels farther from the zenith is usually enough.

https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.nih.gov/ij/download.html
https://osf.io/tudzc/download
https://osf.io/tudzc/download
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool

8 enhance_caim

Value

An object of class list with named elements. ‘lens_coef’ stands for lens coefficients, ‘max_theta’
for maximum zenith angle in degrees, and ‘max_theta_px’ for distance in pixels between the zenith
and the maximum zenith angle in pixels units.

References

Clark JA, Follin GM (1988). “A simple equal area calibration for fisheye photography.” Agricultural
and Forest Meteorology, 44(1), 19–25. doi: 10.1016/01681923(88)900305, https://doi.org/10.
1016/0168-1923(88)90030-5.

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coordinates(),
expand_noncircular(), lens(), reproject_to_equidistant(), test_lens_coef(), zenith_image()

Examples

path <- system.file("external/Results_calibration.csv", package = "rcaiman")
calibration <- calibrate_lens(path)
calibration$lens_coef
calibration$max_theta
calibration$max_thera_px
test_lens_coef(calibration$lens_coef)

enhance_caim Enhance canopy image

Description

This function is presented in Díaz and Lencinas (2015). It uses the color perceptual attributes to
enhance the contrast between the sky and plants through fuzzy classification. Color has three dif-
ferent perceptual attributes: hue, lightness, and chroma. The algorithm was developed following
this premise: the color of the sky is different from the color of plants. It performs the next classifi-
cation rules, here expressed in natural language: clear sky is blue and clouds decrease its chroma;
if clouds are highly dense, then the sky is achromatic, and, in such cases, it can be light or dark;
everything that does not match this description is not sky. These linguistic rules were translated to
math language by means of fuzzy logic.

Usage

enhance_caim(caim, m, sky_blue, w_red = 0, gamma = NULL)

https://doi.org/10.1016/0168-1923(88)90030-5
https://doi.org/10.1016/0168-1923(88)90030-5
https://doi.org/10.1016/0168-1923(88)90030-5

enhance_caim 9

Arguments

caim RasterBrick. The return of a call to read_caim.

m RasterLayer. A mask. Usually, the result of a call to mask_hs.

sky_blue color. Is the target_color argument to be passed to membership_to_color.

w_red Numeric vector of length one. Weight of the red channel. A single layer image
is calculated as a weighted average of the blue and red channels. This layer
is used as lightness information. The weight of the blue is the complement of
w_red.

gamma Numeric vector of length one. This is for applying a gamma back correction to
the lightness information (see argument w_red and gbc.

Details

This is a pixel-wise methodology that evaluates the possibility for a pixel to be member of the class
Gap. High score could mean either high membership to sky_blue or, in the case of achromatic pix-
els, a high membership to values above thr. The algorithm internally uses membership_to_color
and local_fuzzy_thresholding. The argument sky_blue is the target_color of the former
function, which output is the argument mem of the latter function.

gamma is applied to should use the sRGB color space since values passed to local_fuzzy_thresholding
are corrected with gbc using gamma equal to 2.2.

If you use this function in your research, please cite (Díaz and Lencinas 2015).

Value

An object of class RasterLayer, with same pixel dimensions than caim, that should show more
contrast between the sky and plant pixels than any of the individual bands from caim. Also

References

Díaz GM, Lencinas JD (2015). “Enhanced Gap Fraction Extraction From Hemispherical Photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi: 10.1109/lgrs.2015.2425931.

See Also

Other Fuzzy logic functions: local_fuzzy_thresholding(), membership_to_color()

Examples

Not run:
caim <- read_caim()
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
m <- !is.na(z)
sky_blue <- colorspace::sRGB(matrix(c(0.2, 0.3, 0.5), ncol = 3))
ecaim <- enhance_caim(caim, m, sky_blue, gamma = 2.2)
plot(ecaim)

End(Not run)

https://doi.org/10.1109/lgrs.2015.2425931

10 expand_noncircular

expand_noncircular Expand non-circular

Description

Expand a non-circular hemispherical photograph.

Usage

expand_noncircular(caim, z, zenith_colrow)

Arguments

caim RasterBrick. The return of a call to read_caim.

z RasterLayer built with zenith_image.

zenith_colrow Numeric vector of length two. Raster coordinates of the zenith. See calc_zenith_raster_coordinates.

Value

An object of class RasterBrick that is the result of copying the pixels from caim and adding margins
of NA pixel values. The zenith point depicted in the picture should be in the center of the image or
very close to it.

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coordinates(),
calibrate_lens(), lens(), reproject_to_equidistant(), test_lens_coef(), zenith_image()

Examples

Not run:
my_file <- file.path(tmpDir(), "DSC_2881.JPG")
download.file("https://osf.io/x8urg/download", my_file,

method = "auto", mode = "wb"
)

r <- read_caim(my_file)
diameter <- calc_diameter(lens("Nikkor_10.5_mm"), 1202, 53)
zenith_colrow <- c(1503, 998)
z <- zenith_image(diameter, lens("Nikkor_10.5_mm"))
r <- expand_noncircular(r, z, zenith_colrow)
plot(r)

End(Not run)

extract_feature 11

extract_feature Extract feature

Description

Extract features from raster images.

Usage

extract_feature(r, segmentation, fun = mean, return_raster = TRUE)

Arguments

r RasterLayer. Single layer raster.

segmentation RasterLayer. The segmentation of r.

fun function that takes a vector as input and returns a one-length numeric or logical
vector as output (e.g. mean).

return_raster Logical vector of length one.

Details

Given a single layer raster, a segmentation, and a function, extract_features will returns a nu-
meric vector or a RasterLayer depending on whether the parameter return_raster is TRUE or
FALSE. For the first case, each pixel of each segment will adopt the respective extracted feature
value. For the second case, the return will be the extracted feature as a vector of length equal to the
total number of segments. Each extracted feature value will be obtained by processing all pixels
that belong to a segment with the provided function.

Value

If return_raster is set to TRUE, then an object of class RasterLayer with the same pixel dimensions
than r will be returned. Otherwise, the return is a numeric vector of length equal to the number of
segments found in segmentation.

See Also

Other Tools functions: apply_thr(), gbc(), masking(), normalize(), read_bin(), read_caim(),
regional_thresholding(), write_bin(), write_caim()

Examples

Not run:
r <- read_caim()
z <- zenith_image(ncol(r),lens("Nikon_FCE9"))
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
print(extract_feature(r$Blue, g, return_raster = FALSE))

12 find_sky_pixels

plot(extract_feature(r$Blue, g, return_raster = TRUE))

End(Not run)

find_sky_pixels Find sky pixles

Description

Find sky pixels automatically

Usage

find_sky_pixels(r, z, a, no_of_samples = 30)

Arguments

r RasterLayer. A normalized greyscale image. Typically, the blue channel ex-
tracted from an hemispherical photograph. Please see read_caim and normalize.

z RasterLayer. The result of a call to zenith_image.

a RasterLayer. The result of a call to azimuth_image.

no_of_samples Numeric vector of length one. Minimum number of samples required.

Details

This function assumes that (1) there is at least one pure sky pixel at the level of cells of 30 × 30
degrees, and (2) sky pixels have a digital number (DN) greater than canopy pixels have.

For each cell, it compute a quantile value and use it as a threshold to select the pure sky pixels of the
cell, which produce binarized image as a result in a regional binarization fashion (regional_thresholding).
This process start with a quantile probability of 0.99. After producing the binarized image, this func-
tion use a search grid with cells of 5 × 5 degrees to count how many cells on the binarired image
have at least one sky pixel. If the count does not reach argument no_of_samples, it goes back to
the binarization step but decreasing the probability by 0.01 points.

Value

An object of class RasterLayer with values 0 and 1. This layer masks pixels that are very likely pure
sky pixels.

See Also

Other MBLT functions: fit_coneshaped_model(), fit_trend_surface(), ootb_mblt(), thr_image()

fit_coneshaped_model 13

Examples

Not run:
path <- system.file("external/4_D_2_DSCN4502.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
blue <- gbc(caim$Blue)
bin <- find_sky_pixels(blue, z, a)
plot(bin)

End(Not run)

fit_coneshaped_model Fit cone-shaped model

Description

Generate the digital numbers of the whole sky through statistical modelling.

Usage

fit_coneshaped_model(
r,
z,
a,
bin,
prob = 0.95,
filling_source = NULL,
use_azimuth_angle = TRUE,
parallel = TRUE,
free_cores = 0

)

Arguments

r RasterLayer. A normalized greyscale image. Typically, the blue channel ex-
tracted from an hemispherical photograph. Please see read_caim and normalize.

z RasterLayer. The result of a call to zenith_image.

a RasterLayer. The result of a call to azimuth_image.

bin RasterLayer. A working binarized image. This should be a preliminary bina-
rization of r. If the function returns NA, then the quality of this input should be
revised.

prob Logical vector of length one. Probability for quantile calculation. See refer-
ence Díaz and Lencinas (2018).

14 fit_coneshaped_model

filling_source RasterLayer. Default is NULL. Above-canopy photograph. This image should
contain pixels with sky DN values and NA in all the other pixels. A photograph
taken immediately after or before taking r under the open sky with the same
equipment and configuration is a very good option. The ideal option is one
taken at the same time and place but above the canopy. The orientation relative
to the North must be the same than for r.

use_azimuth_angle

Logical vector of length one. If TRUE, Equation 4 from Díaz and Lencinas (2018)
is used: sDN = a + b · θ + c · θ2 + d · sin(φ) + e · cos(φ), where sDN is
sky digital number, a, b, c, d and e are coefficients, θ is zenith angle, and φ is
azimuth angle. If FALSE, a simplified version based on Wagner (2001) is used:
sDN = a+ b · θ + c · θ2.

parallel Logical vector of length one. Allows parallel processing.

free_cores Numeric vector of length one. This number is subtracted to the number of cores
detected by detectCores.

Details

An explanation of this function can be found on Díaz and Lencinas (2018), under the heading
Estimation of the sky DN as a previous step for our method.

If you use this function in your research, please cite (Díaz and Lencinas 2018).

Value

A list with two objects, one of class RasterLayer and the other of class lm (see lm).

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

Wagner S (2001). “Relative radiance measurements and zenith angle dependent segmentation in
hemispherical photography.” Agricultural and Forest Meteorology, 107(2), 103–115. doi: 10.1016/
s01681923(00)00232x, https://doi.org/10.1016/s0168-1923(00)00232-x.

See Also

Other MBLT functions: find_sky_pixels(), fit_trend_surface(), ootb_mblt(), thr_image()

Examples

Not run:
path <- system.file("external/4_D_2_DSCN4502.JPG", package = "rcaiman")
r <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(r), lens("Nikon_FCE9"))
a <- azimuth_image(z)
blue <- gbc(r$Blue)
bin <- find_sky_pixels(blue, z, a)
sky <- fit_coneshaped_model(blue, z, a, bin, parallel = FALSE)

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/s0168-1923(00)00232-x
https://doi.org/10.1016/s0168-1923(00)00232-x
https://doi.org/10.1016/s0168-1923(00)00232-x

fit_trend_surface 15

plot(sky$image)
persp(sky$image, theta = 90, phi = 0) #a flipped rounded cone!

End(Not run)

fit_trend_surface Fit a trend surface to sky digital numbers

Description

Fit a trend surface using spatial::surf.ls as workhorse function.

Usage

fit_trend_surface(
r,
bin,
m = NULL,
filling_source = NULL,
prob = 0.95,
fact = 5,
np = 6

)

Arguments

r RasterLayer. A normalized greyscale image. Typically, the blue channel ex-
tracted from an hemispherical photograph. Please see read_caim and normalize.

bin RasterLayer. A working binarized image. This should be a preliminary bina-
rization of r. If the function returns NA, then the quality of this input should be
revised.

m RasterLayer. A mask. Usually, the result of a call to mask_hs.

filling_source RasterLayer. Default is NULL. Above-canopy photograph. This image should
contain pixels with sky DN values and NA in all the other pixels. A photograph
taken immediately after or before taking r under the open sky with the same
equipment and configuration is a very good option. The ideal option is one
taken at the same time and place but above the canopy. The orientation relative
to the North must be the same than for r.

prob Logical vector of length one. Probability for quantile calculation. See refer-
ence Díaz and Lencinas (2018).

fact postive integer. Aggregation factor expressed as number of cells in each di-
rection (horizontally and vertically). Or two integers (horizontal and vertical
aggregation factor) or three integers (when also aggregating over layers). See
Details

np degree of polynomial surface

16 fit_trend_surface

Details

This function is meant to be used after fit_coneshaped_model.

A short explanation of this function can be found on Díaz and Lencinas (2018), under the head-
ing Estimation of the sky DN as a previous step for our method, after the explanation of the
fit_coneshaped_model.

The argument fact is passed to aggregate. That argument allows to control the scale at which the
fitting is performed. In general, a coarse scale lead to best generalization. The function used for
aggregation is quantile, to which the argument prob is passed. Essentially, the aggregation step
works as the one from fit_coneshaped_model, but it is made on the raster space rather than on
the hemispherical space.

If you use this function in your research, please cite (Díaz and Lencinas 2018).

Value

A list with an object of class RasterLayer and of class trls (see surf.ls).

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

See Also

Other MBLT functions: find_sky_pixels(), fit_coneshaped_model(), ootb_mblt(), thr_image()

Examples

Not run:
path <- system.file("external/4_D_2_DSCN4502.JPG", package = "rcaiman")
r <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(r), lens("Nikon_FCE9"))
a <- azimuth_image(z)
blue <- gbc(r$Blue)
bin <- find_sky_pixels(blue, z, a)
sky <- fit_coneshaped_model(blue, z, a, bin, parallel = FALSE)
m <- mask_hs(z, 0, 80)
sky <- fit_trend_surface(blue, bin, m, filling_source = sky$image)
plot(sky$image)

End(Not run)

https://doi.org/10.1139/cjfr-2018-0006

fix_predicted_sky 17

fix_predicted_sky Fix predicted sky

Description

Automatically edit a raster image of sky digital numbers (DNs) predicted with functions such as
fit_coneshaped_model and fit_trend_surface.

Usage

fix_predicted_sky(sky, z, r, bin)

Arguments

sky RasterLayer. Sky DNs predicted with functions such as fit_coneshaped_model
and fit_trend_surface.

z RasterLayer. The result of a call to zenith_image.
r RasterLayer. The source of the sky DNs used to build sky.
bin RasterLayer. The binarization of r used to select the sky DNs for building sky.

Details

The predicted sky DNs are usually erroneous near the horizon because they are a misleading ex-
trapolation or are based on corrupted data (non-pure sky DNs).

This automatic edition consists of (1) flattening values below the minimum input data (2) and forc-
ing the values toward the horizon to gradually become the median input data. The latter is achieved
by calculating the weighted average of the median value and the predicted sky DNs –z / 90 is used
to determine the weights.

Value

An object of class RasterLayer that is an edited version of sky. Pixel dimensions should remain
unchanged.

Examples

Not run:
path <- system.file("external/4_D_2_DSCN4502.JPG", package = "rcaiman")
r <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(r), lens("Nikon_FCE9"))
a <- azimuth_image(z)
blue <- gbc(r$Blue)
bin <- find_sky_pixels(blue, z, a)
sky <- fit_coneshaped_model(blue, z, a, bin, parallel = FALSE)
sky <- fix_predicted_sky(sky$image, z, blue, bin)
persp(sky, theta = 90, phi = 0)

End(Not run)

18 gbc

gbc Gamma back correction

Description

Gamma back correction of JPEG images.

Usage

gbc(DN_from_JPEG, gamma = 2.2)

Arguments

DN_from_JPEG Numeric vector or object from the Raster class. Digital numbers from a JPEG
file (0 to 255, the standard 8-bit encoded).

gamma Numeric vector of length one. Gamma value. Please see Díaz and Lencinas
(2018) for details.

Value

The same class than DN_from_JPEG, with dimension unchanged but values rescaled between 0 and
1 in a non linear fashion.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

See Also

normalize

Other Tools functions: apply_thr(), extract_feature(), masking(), normalize(), read_bin(),
read_caim(), regional_thresholding(), write_bin(), write_caim()

Examples

r <- read_caim()
r
gbc(r)

https://doi.org/10.1139/cjfr-2018-0006

lens 19

lens Lens database

Description

Database of lens projection functions and field of views.

Usage

lens(type = "equidistant", max_fov = FALSE)

Arguments

type Character vector of length one. The name of the lens, see details.

max_fov Logical. Use TRUE to return the maximum field of view in degrees.

Details

Eventually, this will be a large database, but only the following lenses are available at the moment:

• equidistant: standard equidistant projection (Schneider et al. 2009).

• Nikon_FCE9: Nikon FC-E9 auxiliary lens (Díaz and Lencinas 2018)

• Nikkor_10.5_mm: AF DX Fisheye-Nikkor 10.5mm f/2.8G ED (Pekin and Macfarlane 2009)

Value

If max_fov is set to TRUE, it returns a numeric vector of length one, which is the lens FOV in degrees.
Otherwise, it returns a numeric vector with the coefficient of the lens function.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digi-
tal cover photography and its application to remote sensing.” Remote Sensing, 1(4), 1298–1320.
doi: 10.3390/rs1041298.

Schneider D, Schwalbe E, Maas H (2009). “Validation of geometric models for fisheye lenses.” IS-
PRS Journal of Photogrammetry and Remote Sensing, 64(3), 259–266. doi: 10.1016/j.isprsjprs.2009.01.001.

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coordinates(),
calibrate_lens(), expand_noncircular(), reproject_to_equidistant(), test_lens_coef(),
zenith_image()

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.3390/rs1041298
https://doi.org/10.1016/j.isprsjprs.2009.01.001

20 local_fuzzy_thresholding

Examples

lens("Nikon_FCE9")
lens("Nikon_FCE9", max_fov = TRUE)

local_fuzzy_thresholding

local fuzzy thresholding

Description

This function is presented in Díaz and Lencinas (2015). It uses a threshold value as the location
parameter of a logistic membership function whose scale parameter depends on a variable, here
named mem. This dependence can be explained as follows: if the variable is equal to 1, then the
membership function is same as a threshold function because the scale parameter is 0; lowering the
variable increases the scale parameter, thus blurring the threshold because it decreases the steepness
of the curve. Since the variable is defined pixel by pixel, this should be considered as a local fuzzy
thresholding method.

Usage

local_fuzzy_thresholding(lightness, m, mem, thr = NULL, fuzziness = NULL)

Arguments

lightness RasterLayer. A normalized greyscale image, the lightness value. Values should
range between zero and one –please see normalize.

m RasterLayer. A mask. Usually, the result of a call to mask_hs.

mem RasterLayer. It is the scale parameter of the logistic membership function. Typ-
ically it is obtained with membership_to_color.

thr Numeric vector of length one. Location parameter of the logistic member-
ship function. Use NULL (default) to estimate it automatically with the function
auto_thresh, method "IsoData".

fuzziness Numeric vector of length one. This number is a constant that scale mem. Use
NULL (default) to estimate it automatically as the midpoint between the maxi-
mum and minimum values of lightness.

Details

If you use this function in your research, please cite (Díaz and Lencinas 2015).

Argument m can be used to affect the estimation of thr and fuzziness.

Value

An object of class RasterLayer with same pixel dimensions than caim. Depending on mem, changes
could be subtle. However, they should be in the direction of showing more contrast between the sky
and plant pixels than any of the individual bands from caim.

masking 21

References

Díaz GM, Lencinas JD (2015). “Enhanced Gap Fraction Extraction From Hemispherical Photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi: 10.1109/lgrs.2015.2425931.

See Also

Other Fuzzy logic functions: enhance_caim(), membership_to_color()

Examples

Not run:
caim <- read_caim()
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
target_color <- colorspace::sRGB(matrix(c(0.529, 0.808, 0.921), ncol = 3))
mem <- membership_to_color(caim, target_color)
m <- !is.na(z)
mem_thr <- local_fuzzy_thresholding(mean(caim), m, mem$membership_to_grey)
plot(mem_thr)

End(Not run)

masking Image masking

Description

Image masking

Usage

masking(r, m, RGB = c(1, 0, 0))

S4 method for signature 'RasterLayer'
masking(r, m, RGB = c(1, 0, 0))

S4 method for signature 'RasterStackBrick'
masking(r, m, RGB = c(1, 0, 0))

Arguments

r Raster. The image. Values should be normalized, see normalize. Only methods
for images with one or three layers have been implemented.

m RasterLayer. The mask, see mask_hs.

RGB Numeric vector of length three. RGB color code. Red is the default color.

https://doi.org/10.1109/lgrs.2015.2425931

22 mask_hs

Value

An object of class RasterStack that essentially is r with the areas delimited by m –where its pixels
are equal to one– painted in a solid color. If r is a single layer image, then the layer is triplicated to
allow the use of colors.

See Also

mask_hs

Other Tools functions: apply_thr(), extract_feature(), gbc(), normalize(), read_bin(),
read_caim(), regional_thresholding(), write_bin(), write_caim()

Examples

Not run:
r <- read_caim()
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
m <- mask_hs(z, 20, 70) & mask_hs(a, 90, 180)

masked_caim <- masking(normalize(r, 0, 255), m)
plotRGB(masked_caim * 255)

masked_bin <- masking(apply_thr(r$Blue, 125), m)
plotRGB(masked_bin * 255)

End(Not run)

mask_hs Mask hemisphere

Description

Given a zenith or azimuth image and angle restrictions, it produces a mask.

Usage

mask_hs(r, from, to)

Arguments

r RasterLayer. The result of a call to zenith_image or azimuth_image.

from, to angle in degrees, inclusive limits.

Value

An object of class RasterLayer with values 0 and 1.

membership_to_color 23

See Also

masking

Other Segmentation functions: rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
z <- zenith_image(1000, lens())
a <- azimuth_image(z)
m1 <- mask_hs(z, 20, 70)
plot(m1)
m2 <- mask_hs(a, 330,360)
plot(m2)
plot(m1 & m2)
plot(m1 | m2)

if you want 15 degress at each side of 0
m1 <- mask_hs(a, 0, 15)
m2 <- mask_hs(a, 345, 360)
plot(m1 | m2)

better use this
plot(!is.na(z))
instead of this
plot(mask_hs(z, 0, 90))

End(Not run)

membership_to_color Compute membership to a color

Description

This function is presented in Díaz and Lencinas (2015). It Computes the degree of membership to
a color with two Gaussian membership functions and the dimensions A and B from the CIE L*a*b*
color space. The lightness dimension is not considered in the calculations.

Usage

membership_to_color(caim, target_color, sigma = NULL)

Arguments

caim RasterBrick. The return of a call to read_caim.

target_color color.

sigma Numeric vector of length one. Use NULL (default) to estimate it automatically
as the euclidean distance between target_color and grey in the CIE L*a*b*
color space.

24 normalize

Details

If you use this function in your research, please cite (Díaz and Lencinas 2015).

Value

It returns an object from the class RasterBrick or RasterStack –this will depend on the input. First
layer is the membership to the target color. Second layer is the membership to grey. Both member-
ships are calculated with same sigma.

References

Díaz GM, Lencinas JD (2015). “Enhanced Gap Fraction Extraction From Hemispherical Photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi: 10.1109/lgrs.2015.2425931.

See Also

Other Fuzzy logic functions: enhance_caim(), local_fuzzy_thresholding()

Examples

Not run:
caim <- read_caim()
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
target_color <- colorspace::sRGB(matrix(c(0.529, 0.808, 0.921), ncol = 3))
mem <- membership_to_color(caim, target_color)
plot(mem)

End(Not run)

normalize Normalize data

Description

Normalize data laying between mn and mx in the range 0 to 1. Data greater than mx get values greater
than 1 in a proportional fashion. Conversely, data less than mn get values less than 0.

Usage

normalize(r, mn = NULL, mx = NULL)

Arguments

r Raster or numeric vector.
mn Numeric vector of length one. Minimum expected value. Defaults is equivalent

to the minimum value from r.
mx Numeric vector of length one. Maximum expected value. Defaults is equivalent

to the maximum value from r.

https://doi.org/10.1109/lgrs.2015.2425931

ootb_mblt 25

Value

An object from the same class than r with values from r linearly rescaled to make mn equal to zero
and mx equal to one. Therefore, if mn and mx do not match with the actuals minimum and maximum
from r, the ourput will not cover the 0-to-1 range.

See Also

gbc

Other Tools functions: apply_thr(), extract_feature(), gbc(), masking(), read_bin(), read_caim(),
regional_thresholding(), write_bin(), write_caim()

Examples

normalize(read_caim(), 0, 255)

ootb_mblt Out-of-the-box model-based local thresholding

Description

Out-of-the-box version of the model-based local thresholding (MBLT) algorithm.

Usage

ootb_mblt(r, z, a, parallel = TRUE)

Arguments

r RasterLayer. A normalized greyscale image. Typically, the blue channel ex-
tracted from an hemispherical photograph. Please see read_caim and normalize.

z RasterLayer. The result of a call to zenith_image.

a RasterLayer. The result of a call to azimuth_image.

parallel Logical vector of length one. Allows parallel processing.

Details

This function is a hard-coded version of a MBLT pipeline that starts with a working binarized image
and ends with a refined binarized image. The pipeline combines find_sky_pixels, fit_coneshaped_model,
fit_trend_surface, and thr_image. The code can be easily inspected by calling ootb_mblt –no
parenthesis. Advanced users can use that code as a template.

The MBLT algorithm was first presented in Díaz and Lencinas (2018). The version presented here
differs from that in the following main aspects:

• intercept is set to 0, slope to 1, and w to 0.5

26 ootb_mblt

• This version implements a regional threholding approach as first step instead of a global one.
Please refer to find_sky_pixels. The minimum number of samples (sky DNs) required is
equals to the 30 percent of the population, considering that it is made of 5× 5 sky grid cells.

• It does not use asynchronous acquisition under the open sky. So, the cone-shaped model
(fit_coneshaped_model) run without a filling source, but the result of it is used as filling
source for trend surface fitting (fit_trend_surface).

• The cone-shaped sky is edited with fix_predicted_sky.

This function searches for black objects against a light background. When regular canopy hemi-
spherical images are provided as input, the algorithm will find dark canopy elements against a bright
sky almost everywhere in the picture, and the result will fit user expectations. However, if an hemi-
spherical photograph taken under the open sky is provided, this algorithm would be still searching
black objects against a light background, so the darker portions of the sky will be taken as objects,
i.e., canopy. As a consequence, this will not fit users expectations, since they require the classes
‘Gap’ and ‘No-gap’. This kind of error could be find in photographs of open forests for the same
reason.

If you use this function in your research, please cite (Díaz and Lencinas 2018).

Value

Object of class list with the binarized image (named ‘bin’) and the reconstructed skies (named
‘sky_cs’ and ‘sky_s’).

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

See Also

Other MBLT functions: find_sky_pixels(), fit_coneshaped_model(), fit_trend_surface(),
thr_image()

Examples

Not run:
path <- system.file("external/4_D_2_DSCN4502.JPG", package = "rcaiman")
r <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(r), lens("Nikon_FCE9"))
a <- azimuth_image(z)
blue <- gbc(r$Blue)
bin <- ootb_mblt(blue, z, a, parallel = FALSE)
plot(bin$bin)

End(Not run)

https://doi.org/10.1139/cjfr-2018-0006

read_bin 27

read_bin Read binarized images

Description

Wrapper functions for raster.

Usage

read_bin(path)

Arguments

path One-length character vector. Path to read or a binarized image.

Value

An object from class RasterLayer.

See Also

write_bin

Other Tools functions: apply_thr(), extract_feature(), gbc(), masking(), normalize(),
read_caim(), regional_thresholding(), write_bin(), write_caim()

Examples

Not run:
z <- zenith_image(1000, lens())
m <- !is.na(z)
my_file <- file.path(tmpDir(), "mask.tif")
write_bin(m, my_file)
m_from_disk <- read_bin(my_file)
plot(m - m_from_disk)

End(Not run)

read_caim Read a canopy image from a file

Description

Wrapper function for raster.

28 read_caim

Usage

read_caim(path_to_file, upper_left = NULL, width = NULL, height = NULL)

S4 method for signature 'character'
read_caim(path_to_file, upper_left = NULL, width = NULL, height = NULL)

S4 method for signature 'missing'
read_caim(path_to_file)

Arguments

path_to_file Character vector of length one. Path to a JPEG or TIFF file. The function will
return a data example (see details) if no arguments are provided.

upper_left An integer vector of length two (see details).

width, height An integer vector of length one (see details).

Details

Run read_caim() to obtain an example of a hemispherical photo taken in non-diffuse light condi-
tions in a Nothofagus pumilio forest from Argentina with a FC-E9 auxiliary lens attached to a Nikon
Coolpix 5700.

Since this function aims to read born-digital color photographs, RGB-JPEG and RGB-TIFF are ex-
pected as input. To read a region of the file use upper_left, width, and height. The upper_left
parameter indicates the pixels coordinates of the upper left corner of the region of interest (ROI).
These coordinates should be in the raster coordinates system, which works like a spreadsheet, i.e,
when you go down through the vertical axis, the row number increases (IMPORTANT: column
and row must be provided instead of row and column). The width, and height parameters
indicate the size of the boxy ROI. I recommend using ‘ImageJ’ to obtain this parameters, but any
image editor can be used, such as ‘GIMP’ and ‘Adobe Photoshop’.

Value

An object from class RasterBrick with its layers named Red, Green, and Blue.

Functions

• read_caim,character-method: Provide the path to a file. If The file is stored in the working
directory, just provide the file name. File extension should be included in the file name.

• read_caim,missing-method: It returns an example (see details).

See Also

write_caim

Other Tools functions: apply_thr(), extract_feature(), gbc(), masking(), normalize(),
read_bin(), regional_thresholding(), write_bin(), write_caim()

https://imagej.nih.gov/ij/

regional_thresholding 29

Examples

This is the example image
r <- read_caim()
plotRGB(r)

This is also the example
path <- system.file("external/b4_2_5724.jpg", package = "rcaiman")
the zenith raster coordinates can be easily transformed to the "upper_left"
argument by subtracting from it the radius expressed in pixels.
zenith_colrow <- c(1280, 960)
diameter_px <- 1490
r <- read_caim(path,

upper_left = zenith_colrow - diameter_px/2,
width = diameter_px,
height = diameter_px)

plotRGB(r)

regional_thresholding Regional thresholding

Description

Regional thresholding of greyscale images

Usage

regional_thresholding(
r,
segmentation,
method,
intercept = NULL,
slope = NULL,
prob = NULL

)

Arguments

r RasterLayer. Normalized greyscale image. See normalize and gbc

segmentation RasterLayer. The result of segmenting r. Probably, rings_segmentation will
be the most used for fisheye images.

method Character vector of length one. See details for current options.

intercept Numeric vector of length one. These are linear function coefficients. Please, see
the Details section of thr_image.

slope Numeric vector of length one. These are linear function coefficients. Please, see
the Details section of thr_image.

prob Logical vector of length one. Probability for quantile calculation. See refer-
ence Díaz and Lencinas (2018).

30 regional_thresholding

Details

Methods currently implemented are:

• Diaz2018: method presented in Díaz and Lencinas (2018) applied regionally. If this method
is selected, the arguments intercept, slope, and prob should be provided. It works segment-
wise extracting the digital numbers (dns) per segment and passing them to quantile(dns,prob),
which aggregated result (x) is in turn passed to thr_image(x,intercept,slope). Finally,
this threshold image is applied to obtain a binarized image.

• Methods from autothresholdr package: this function can call methods from auto_thresh.
Use "IsoData" to use the algorithm by Ridler and Calvard (1978), which is the one recom-
mended by Jonckheere et al. (2005).

Value

An object of class RasterLayer with values 0 and 1.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction
estimation of forests from digital hemispherical photography.” Agricultural and Forest Meteorol-
ogy, 132(1-2), 96–114. doi: 10.1016/j.agrformet.2005.06.003.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” IEEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630–632. doi: 10.1109/tsmc.1978.4310039.

See Also

thr_image

Other Tools functions: apply_thr(), extract_feature(), gbc(), masking(), normalize(),
read_bin(), read_caim(), write_bin(), write_caim()

Examples

r <- read_caim()
blue <- gbc(r$Blue)
z <- zenith_image(ncol(r), lens("Nikon_FCE9"))
rings <- rings_segmentation(z, 10)
bin <- regional_thresholding(blue, rings, "Diaz2018", -8, 0.5, 0.9)
plot(bin) # gross errors near the horizon, try ootb_mblt()

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1109/tsmc.1978.4310039

reproject_to_equidistant 31

reproject_to_equidistant

Reproject to equidistant

Description

Reproject to equidistant

Usage

reproject_to_equidistant(r, z, a, radius = 745)

S4 method for signature 'RasterLayer'
reproject_to_equidistant(r, z, a, radius = 745)

S4 method for signature 'RasterStackBrick'
reproject_to_equidistant(r, z, a, radius = 745)

Arguments

r Raster. Only methods for images with one or three layers have been imple-
mented.

z RasterLayer. The result of a call to zenith_image.

a RasterLayer. The result of a call to azimuth_image.

radius Numeric integer of length one. Radius of the reprojected hemispherical image.

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coordinates(),
calibrate_lens(), expand_noncircular(), lens(), test_lens_coef(), zenith_image()

Examples

Not run:
caim <- read_caim()
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
bin <- apply_thr(caim$Blue, 0.5)
bin_equi <- reproject_to_equidistant(bin, z, a, radius = 400)
bin_equi <- apply_thr(bin_equi, 0.5)
plot(bin_equi)
use write_bin(bin, "path\file_name") to have a file ready
for calculating LAI with CIMES, GLA, CAN-EYE, etc.

End(Not run)

32 sectors_segmentation

rings_segmentation Rings segmentation

Description

Segmenting an hemispherical view by slicing the zenith angle from 0 to 90º in equals intervals.

Usage

rings_segmentation(z, angle_width, return_angle = FALSE)

Arguments

z RasterLayer built with zenith_image.

angle_width Numeric vector of length one. Angle in degrees able to divide the angle range
into a whole number of segments.

return_angle Logical vector of length one. If it is FALSE, all the pixels that belong to a segment
are labeled with an ID number. Otherwise, the angle mean of the segment is
assigned to the pixels.

Value

An object from the class RasterLayer with segments shaped like concentric rings.

See Also

Other Segmentation functions: mask_hs(), sectors_segmentation(), sky_grid_segmentation()

Examples

z <- zenith_image(1490, lens())
rings <- rings_segmentation(z, 15)
plot(rings == 1)

sectors_segmentation Sectors segmentation

Description

Segmenting an hemispherical view by slicing the azimuth angle from 0 to 360º in equals intervals.

Usage

sectors_segmentation(a, angle_width, return_angle = FALSE)

sky_grid_segmentation 33

Arguments

a RasterLayer built with azimuth_image.

angle_width Numeric vector of length one. Angle in degrees able to divide the angle range
into a whole number of segments.

return_angle Logical vector of length one. If it is FALSE, all the pixels that belong to a segment
are labeled with an ID number. Otherwise, the angle mean of the segment is
assigned to the pixels.

Value

An object from the class RasterLayer with segments shaped like pizza slices.

See Also

Other Segmentation functions: mask_hs(), rings_segmentation(), sky_grid_segmentation()

Examples

z <- zenith_image(1490, lens())
a <- azimuth_image(z)
sectors <- sectors_segmentation(a, 15)
plot(sectors == 1)

sky_grid_segmentation Sky grid segmentation

Description

Segmenting the hemisphere view into segments of equal angular resolution for both zenith and
azimuth angles.

Usage

sky_grid_segmentation(z, a, angle_width, sequential = FALSE)

Arguments

z RasterLayer built with zenith_image.

a RasterLayer built with azimuth_image.

angle_width Numeric vector of length one. It should be 30,15,10,7.5,6,5,3.75,3,2.5,1.875,1
or 0.5 degrees. This constrain is rooted in the requirement of a value able to di-
vide both the 0 to 360 and 0 to 90 ranges into a whole number of segments.

sequential Logical vector of length one. If it is TRUE, the segments are labeled with se-
quential numbers. By default (FALSE), labeling numbers are not sequential (see
Details).

34 test_lens_coef

Details

Intersecting rings with sectors makes a grid in which each segment is a portion of the hemisphere.
Each pixel of the grid is labeled with an ID that codify both ring and sector IDs. For example, a
grid with a regular interval of one degree has segment from 1001 to 360090. This numbers are
calculated with: sectorID * 1000 + ringsID, where sectorID is the ID number of the sector and
ringsID is the ID number of the ring.

Value

An object from the class RasterLayer with segments shaped like windshields, although some of
them will look elongated in height. The pattern is two opposite and converging straight sides and
two opposite and parallel curvy sides.

See Also

Other Segmentation functions: mask_hs(), rings_segmentation(), sectors_segmentation()

Examples

z <- zenith_image(1490, lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 15)
plot(g == 24005)
Not run:
g <- sky_grid_segmentation(z, a, 15, sequential = TRUE)
plot(g, col = sample(rainbow(length(raster::unique(g)))))

End(Not run)

test_lens_coef Test lens projection functions

Description

Test that lens projection function works between the 0-to-1 range.

Usage

test_lens_coef(lens_coef)

Arguments

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

Value

Returns invisible(TRUE) if all tests pass, otherwise throws an error.

thr_image 35

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coordinates(),
calibrate_lens(), expand_noncircular(), lens(), reproject_to_equidistant(), zenith_image()

Examples

test_lens_coef(lens("Nikon_FCE9"))
test_lens_coef(2 / pi)

thr_image Threshold image

Description

Transform background digital number into threshold values.

Usage

thr_image(dn, intercept, slope)

Arguments

dn Numeric vector or RasterLayer. Digital number of the background. These val-
ues should be normalized and, if they are extracted from JPEG image, gamma
back corrected.

intercept, slope

Numeric vector of length one. These are linear function coefficients. Please, see
the Details section of thr_image.

Details

This function transforms background digital number into threshold values by means of the Equation
1 presented in Díaz and Lencinas (2018), which is a linear function with the slope modified by a
weighting parameter. This simple function was found by studying canopy models, also known
as targets, which are planes with holes made of a rigid and dark material. These models were
backlighted with homogeneous lighting, photographed with a Nikon Coolpix 5700 set to acquire
in JPEG format, and those images were gamma back corrected with a default gamma value equal
to 2.2 (see gbc). Results clearly shown that the optimal threshold value was linearly related with
the background digital number. Therefore, that shifts the aim from finding the optimal threshold to
obtaining the background DN as if the canopy was not there. Functions fit_coneshaped_model
and fit_trend_surface address that topic.

It is worth noting that Equation 1 was developed with 8-bit images, so calibration of new coefficient
should be done in the 0 to 255 domain since that is what thr_image expect, although the input dn
should be normalized. The latter –that might sound counter intuitive– was a design decision aiming
to harmonize the whole package.

To apply the weighting parameter (w) from Equation 1, just provide the argument slope as slope_value
* w.

Type thr_image –no parenthesis– in the console to inspect the code, which is very simple to follow.

36 write_bin

Value

An object of the same class and dimensions than dn.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi: 10.1139/cjfr20180006.

See Also

normalize, gbc, apply_thr and regional_thresholding.

Other MBLT functions: find_sky_pixels(), fit_coneshaped_model(), fit_trend_surface(),
ootb_mblt()

Examples

thr_image(gbc(125), -8, 1)

write_bin Write binarized images

Description

Wrapper functions for writeRaster.

Usage

write_bin(bin, path)

Arguments

bin RasterLayer.

path Character vector of length one. Path for writing the image.

Value

No return value. Called for side effects.

See Also

read_bin

Other Tools functions: apply_thr(), extract_feature(), gbc(), masking(), normalize(),
read_bin(), read_caim(), regional_thresholding(), write_caim()

https://doi.org/10.1139/cjfr-2018-0006

write_caim 37

Examples

Not run:
z <- zenith_image(1000, lens())
m <- !is.na(z)
my_file <- file.path(tmpDir(), "mask")
write_bin(m, my_file)
extension(my_file) <- "tif"
m_from_disk <- read_bin(my_file)
plot(m - m_from_disk)

End(Not run)

write_caim Write canopy image

Description

Wrapper function for writeRaster.

Usage

write_caim(caim, path, bit_depth)

Arguments

caim Raster.

path Character vector of length one. Path for writing the image.

bit_depth Numeric vector of length one.

Value

No return value. Called for side effects.

See Also

write_bin

Other Tools functions: apply_thr(), extract_feature(), gbc(), masking(), normalize(),
read_bin(), read_caim(), regional_thresholding(), write_bin()

Examples

Not run:
caim <- read_caim() %>% normalize(., 0, 255)
write_caim(caim * 2^8, file.path(tmpDir(), "test_8bit"), 8)
write_caim(caim * 2^16, file.path(tmpDir(), "test_16bit"), 16)

End(Not run)

38 zenith_image

zenith_image Zenith image

Description

Built a single layer image with zenith angles values.

Usage

zenith_image(diameter, lens_coef)

Arguments

diameter Numeric vector of length one. Diameter in pixels.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

Value

An object of class RasterLayer of zenith angles in degrees, showing a complete hemispherical view,
with the zenith on the center.

See Also

Other Lens functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coordinates(),
calibrate_lens(), expand_noncircular(), lens(), reproject_to_equidistant(), test_lens_coef()

Examples

z <- zenith_image(1490, lens("Nikon_FCE9"))
plot(z)

Index

∗ Fuzzy logic functions
enhance_caim, 8
local_fuzzy_thresholding, 20
membership_to_color, 23

∗ Lens functions
azimuth_image, 3
calc_diameter, 4
calc_zenith_raster_coordinates, 5
calibrate_lens, 7
expand_noncircular, 10
lens, 19
reproject_to_equidistant, 31
test_lens_coef, 34
zenith_image, 38

∗ MBLT functions
find_sky_pixels, 12
fit_coneshaped_model, 13
fit_trend_surface, 15
ootb_mblt, 25
thr_image, 35

∗ Segmentation functions
mask_hs, 22
rings_segmentation, 32
sectors_segmentation, 32
sky_grid_segmentation, 33

∗ Tools functions
apply_thr, 2
extract_feature, 11
gbc, 18
masking, 21
normalize, 24
read_bin, 27
read_caim, 27
regional_thresholding, 29
write_bin, 36
write_caim, 37

aggregate, 16
apply_thr, 2, 11, 18, 22, 25, 27, 28, 30, 36, 37
auto_thresh, 20, 30

azimuth_image, 3, 5, 6, 8, 10, 12, 13, 19, 22,
25, 31, 33, 35, 38

calc_diameter, 4, 4, 6, 8, 10, 19, 31, 35, 38
calc_zenith_raster_coordinates, 4, 5, 5,

8, 10, 19, 31, 35, 38
calibrate_lens, 4–6, 7, 10, 19, 31, 35, 38
color, 9, 23

detectCores, 14

enhance_caim, 8, 21, 24
expand_noncircular, 4–6, 8, 10, 19, 31, 35,

38
extract_feature, 3, 11, 18, 22, 25, 27, 28,

30, 36, 37

find_sky_pixels, 12, 14, 16, 25, 26, 36
fit_coneshaped_model, 12, 13, 16, 17, 25,

26, 35, 36
fit_trend_surface, 12, 14, 15, 17, 25, 26,

35, 36
fix_predicted_sky, 17, 26

gbc, 3, 9, 11, 18, 22, 25, 27–30, 35–37

lens, 4–6, 8, 10, 19, 31, 35, 38
lm, 14
local_fuzzy_thresholding, 9, 20, 24

mask_hs, 9, 15, 20–22, 22, 32–34
masking, 3, 11, 18, 21, 23, 25, 27, 28, 30, 36,

37
masking,RasterLayer-method (masking), 21
masking,RasterStackBrick-method

(masking), 21
membership_to_color, 9, 20, 21, 23

normalize, 3, 11–13, 15, 18, 20–22, 24, 25,
27–30, 36, 37

ootb_mblt, 12, 14, 16, 25, 36

39

40 INDEX

quantile, 13, 15, 16, 29

Raster, 18, 21, 24, 31, 37
raster, 27
RasterBrick, 9, 10, 23, 24, 28
RasterLayer, 2–4, 9–17, 20–22, 25, 27,

29–36, 38
RasterStack, 22, 24
read_bin, 3, 11, 18, 22, 25, 27, 28, 30, 36, 37
read_caim, 3, 9–13, 15, 18, 22, 23, 25, 27, 27,

30, 36, 37
read_caim,character-method (read_caim),

27
read_caim,missing-method (read_caim), 27
regional_thresholding, 3, 11, 12, 18, 22,

25, 27, 28, 29, 36, 37
reproject_to_equidistant, 4–6, 8, 10, 19,

31, 35, 38
reproject_to_equidistant,RasterLayer-method

(reproject_to_equidistant), 31
reproject_to_equidistant,RasterStackBrick-method

(reproject_to_equidistant), 31
rings_segmentation, 23, 29, 32, 33, 34

sectors_segmentation, 23, 32, 32, 34
sky_grid_segmentation, 23, 32, 33, 33
surf.ls, 16

test_lens_coef, 4–8, 10, 19, 31, 34, 38
thr_image, 12, 14, 16, 25, 26, 29, 30, 35, 35

write_bin, 3, 11, 18, 22, 25, 27, 28, 30, 36, 37
write_caim, 3, 11, 18, 22, 25, 27, 28, 30, 36,

37
writeRaster, 36, 37

zenith_image, 3–6, 8, 10, 12, 13, 17, 19, 22,
25, 31–33, 35, 38

	apply_thr
	azimuth_image
	calc_diameter
	calc_zenith_raster_coordinates
	calibrate_lens
	enhance_caim
	expand_noncircular
	extract_feature
	find_sky_pixels
	fit_coneshaped_model
	fit_trend_surface
	fix_predicted_sky
	gbc
	lens
	local_fuzzy_thresholding
	masking
	mask_hs
	membership_to_color
	normalize
	ootb_mblt
	read_bin
	read_caim
	regional_thresholding
	reproject_to_equidistant
	rings_segmentation
	sectors_segmentation
	sky_grid_segmentation
	test_lens_coef
	thr_image
	write_bin
	write_caim
	zenith_image
	Index

