Introduction to reclin2

Jan van der Laan

Introduction

reclin2 implements methodology for linking records based on inexact keys. It allows for maximum flexibility by giving users full control over each step of the linking procedure. The package is built with performance and scalability in mind: the core algorithms have been implemented in C++.

> library(reclin2)

We will work with a pair of data sets with artificial data. They are tiny, but that allows us to see what happens. In this example we will perform ‘classic’ probabilistic record linkage. When some known true links are known it is also possible to use machine learning methods. This is illustrated in another vignette.

> data("linkexample1", "linkexample2")

> print(linkexample1)
  id lastname firstname    address sex postcode
1  1    Smith      Anna 12 Mainstr   F  1234 AB
2  2    Smith    George 12 Mainstr   M  1234 AB
3  3  Johnson      Anna 61 Mainstr   F  1234 AB
4  4  Johnson   Charles 61 Mainstr   M  1234 AB
5  5  Johnson    Charly 61 Mainstr   M  1234 AB
6  6 Schwartz       Ben  1 Eaststr   M  6789 XY

> print(linkexample2)
  id lastname firstname       address  sex postcode
1  2    Smith    Gearge 12 Mainstreet <NA>  1234 AB
2  3   Jonson        A. 61 Mainstreet    F  1234 AB
3  4  Johnson   Charles    61 Mainstr    F  1234 AB
4  6 Schwartz       Ben        1 Main    M  6789 XY
5  7 Schwartz      Anna     1 Eaststr    F  6789 XY

We have two data sets with personal information. The second data set contains a lot of errors, but we will try to link the second data set to the first.

Step 1: generate pairs

In principle linkage consists of comparing each combination of records from the two data sets and determine which of those combinations (or pairs as we will call them below) belong to the same entity. In case of a perfect linkage key, it is of course, not necessary to compare all combinations of records, but when the linkage keys are imperfect and contain errors, it is in principle necessary to compare all pairs.

However, comparing all pairs can result in an intractable number of pairs: when linking two data sets with a million records there are 1012 possible pairs. Therefore, some sort of reduction of the possible pairs is usually applied. In the example below, we apply blocking, which means that pairs are only generated when they agree on the blocking variable (in this case the postcode). This means that pairs of records that disagree on the blocking variable are not considered. Therefore, one will only use variables that can be considered without errors as blocking variable, or link multiple times with different blocking variables and combine both data sets.

The first step in (probabilistic) linkage is, therefore, generating all pairs:

> pairs <- pair_blocking(linkexample1, linkexample2, 
+     "postcode")

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y
 1:  1  1
 2:  1  2
 3:  1  3
 4:  2  1
 5:  2  2
 6:  2  3
 7:  3  1
 8:  3  2
 9:  3  3
10:  4  1
11:  4  2
12:  4  3
13:  5  1
14:  5  2
15:  5  3
16:  6  4
17:  6  5

As you can see, record 1 from x (the first data set) is compared to records 1, 2 and 3 from y. Also note that reclin2 uses the data.table package to efficiently perform some of the computations. Therefore, the pairs object is a data.table.

Other functions to generate pairs are:

Step 2: compare pairs

We can now compare the records on their linkage keys:

> pairs <- compare_pairs(pairs, on = c("lastname", "firstname", 
+     "address", "sex"))

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y lastname firstname address   sex
 1:  1  1     TRUE     FALSE   FALSE    NA
 2:  1  2    FALSE     FALSE   FALSE  TRUE
 3:  1  3    FALSE     FALSE   FALSE  TRUE
 4:  2  1     TRUE     FALSE   FALSE    NA
 5:  2  2    FALSE     FALSE   FALSE FALSE
 6:  2  3    FALSE     FALSE   FALSE FALSE
 7:  3  1    FALSE     FALSE   FALSE    NA
 8:  3  2    FALSE     FALSE   FALSE  TRUE
 9:  3  3     TRUE     FALSE    TRUE  TRUE
10:  4  1    FALSE     FALSE   FALSE    NA
11:  4  2    FALSE     FALSE   FALSE FALSE
12:  4  3     TRUE      TRUE    TRUE FALSE
13:  5  1    FALSE     FALSE   FALSE    NA
14:  5  2    FALSE     FALSE   FALSE FALSE
15:  5  3     TRUE     FALSE    TRUE FALSE
16:  6  4     TRUE      TRUE   FALSE  TRUE
17:  6  5     TRUE     FALSE    TRUE FALSE

As you can see, we don’t need to pass the original data sets although the variables lastname etc. are from those original data sets. This is because a copy of the original data sets are stored with the pairs object pairs (and should you be worrying about memory: as long as the original data sets are not modified the data sets are not actually copied).

In the example above the result of compare_pairs was assigned back to pairs. When working with large datasets it can be more efficient to modify pairs in place preventing unnecessary copies. This behaviour can be switched on using the inplace argument which is accepted by most functions.

> compare_pairs(pairs, on = c("lastname", "firstname", 
+     "address", "sex"), inplace = TRUE)

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y lastname firstname address   sex
 1:  1  1     TRUE     FALSE   FALSE    NA
 2:  1  2    FALSE     FALSE   FALSE  TRUE
 3:  1  3    FALSE     FALSE   FALSE  TRUE
 4:  2  1     TRUE     FALSE   FALSE    NA
 5:  2  2    FALSE     FALSE   FALSE FALSE
 6:  2  3    FALSE     FALSE   FALSE FALSE
 7:  3  1    FALSE     FALSE   FALSE    NA
 8:  3  2    FALSE     FALSE   FALSE  TRUE
 9:  3  3     TRUE     FALSE    TRUE  TRUE
10:  4  1    FALSE     FALSE   FALSE    NA
11:  4  2    FALSE     FALSE   FALSE FALSE
12:  4  3     TRUE      TRUE    TRUE FALSE
13:  5  1    FALSE     FALSE   FALSE    NA
14:  5  2    FALSE     FALSE   FALSE FALSE
15:  5  3     TRUE     FALSE    TRUE FALSE
16:  6  4     TRUE      TRUE   FALSE  TRUE
17:  6  5     TRUE     FALSE    TRUE FALSE

The default comparison function returns TRUE when the linkage keys agree and false when they don’t. However, when looking at the original data sets, we can see that most of our linkage keys are string variables that contain typing errors. The quality of our linkage could be improved if we could use a similarity score to compare the two strings: a high score means that the two strings are very similar a value close to zero means that the strings are very different.

Below we use the jaro_winkler similarity score to compare all fields:

> compare_pairs(pairs, on = c("lastname", "firstname", 
+     "address", "sex"), default_comparator = jaro_winkler(0.9), 
+     inplace = TRUE)

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y lastname firstname   address sex
 1:  1  1 1.000000 0.4722222 0.9230769  NA
 2:  1  2 0.000000 0.5833333 0.8641026   1
 3:  1  3 0.447619 0.4642857 0.9333333   1
 4:  2  1 1.000000 0.8888889 0.9230769  NA
 5:  2  2 0.000000 0.0000000 0.8641026   0
 6:  2  3 0.447619 0.5396825 0.9333333   0
 7:  3  1 0.447619 0.4722222 0.8641026  NA
 8:  3  2 0.952381 0.5833333 0.9230769   1
 9:  3  3 1.000000 0.4642857 1.0000000   1
10:  4  1 0.447619 0.6428571 0.8641026  NA
11:  4  2 0.952381 0.0000000 0.9230769   0
12:  4  3 1.000000 1.0000000 1.0000000   0
13:  5  1 0.447619 0.5555556 0.8641026  NA
14:  5  2 0.952381 0.0000000 0.9230769   0
15:  5  3 1.000000 0.8492063 1.0000000   0
16:  6  4 1.000000 1.0000000 0.6111111   1
17:  6  5 1.000000 0.5277778 1.0000000   0

The function compare_vars offers more flexibility than compare_pairs. It can for example compare multiple variables at the same time (e.g. compare birth day and month allowing for swaps) or generate multiple results from comparing on one variable.

Step 3: score pairs

The next step in the process, is to determine which pairs of records belong to the same entity and which do not. There are numerous ways to do this. One possibility is to label some of the pairs as match or no match, and use some machine learning algorithm to predict the match status using the comparison vectors. Traditionally, the probabilistic linkage framework initially formalised by Fellegi and Sunter tries is used. The function problink_em uses an EM-algorithm to estimate the so called m- and u-probabilities for each of the linkage variables. The m-probability is the probability that two records concerning the same entity agree on the linkage variable; this means that the m-probability corresponds to the probability that there is an error in the linkage variables. The u-probability is the probability that two records belonging to different entities agree on a variable. For a variable with few categories (such as sex) this probability will be large, while for a variable with a large number of categories (such as last name) this probability will be small.

> m <- problink_em(~lastname + firstname + address + 
+     sex, data = pairs)

> print(m)
M- and u-probabilities estimated by the EM-algorithm:
  Variable M-probability U-probability
  lastname     0.9990000   0.001152679
 firstname     0.1999999   0.000100000
   address     0.8999206   0.285831118
       sex     0.3002011   0.285427112

Matching probability: 0.5885595.

These m- and u-probabilities can be used to score the pairs:

> pairs <- predict(m, pairs = pairs, add = TRUE)

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y lastname firstname   address sex    weights
 1:  1  1 1.000000 0.4722222 0.9230769  NA  7.7103862
 2:  1  2 0.000000 0.5833333 0.8641026   1 -5.9463949
 3:  1  3 0.447619 0.4642857 0.9333333   1  0.8042090
 4:  2  1 1.000000 0.8888889 0.9230769  NA  8.6064218
 5:  2  2 0.000000 0.0000000 0.8641026   0 -6.3177171
 6:  2  3 0.447619 0.5396825 0.9333333   0  0.7937508
 7:  3  1 0.447619 0.4722222 0.8641026  NA  0.6017106
 8:  3  2 0.952381 0.5833333 0.9230769   1  4.0674910
 9:  3  3 1.000000 0.4642857 1.0000000   1  7.9350221
10:  4  1 0.447619 0.6428571 0.8641026  NA  0.7713174
11:  4  2 0.952381 0.0000000 0.9230769   0  3.6961688
12:  4  3 1.000000 1.0000000 1.0000000   0 15.4915816
13:  5  1 0.447619 0.5555556 0.8641026  NA  0.6717426
14:  5  2 0.952381 0.0000000 0.9230769   0  3.6961688
15:  5  3 1.000000 0.8492063 1.0000000   0  8.5458257
16:  6  4 1.000000 1.0000000 0.6111111   1 14.6796595
17:  6  5 1.000000 0.5277778 1.0000000   0  7.9139248

With add = TRUE the predictions are added to the pairs object. The higher the weight the more likely the two pairs belong to the same entity/are a match.

The prediction function can also return the m- and u-probabilities and the posterior m- and u-probabilities.

Step 4: select pairs

The final step is to select the pairs that are considered to belong to the same entities. The simplest method is to select all pairs above a certain threshold

> pairs <- select_threshold(pairs, "threshold", score = "weights", 
+     threshold = 8)

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y lastname firstname   address sex    weights threshold
 1:  1  1 1.000000 0.4722222 0.9230769  NA  7.7103862     FALSE
 2:  1  2 0.000000 0.5833333 0.8641026   1 -5.9463949     FALSE
 3:  1  3 0.447619 0.4642857 0.9333333   1  0.8042090     FALSE
 4:  2  1 1.000000 0.8888889 0.9230769  NA  8.6064218      TRUE
 5:  2  2 0.000000 0.0000000 0.8641026   0 -6.3177171     FALSE
 6:  2  3 0.447619 0.5396825 0.9333333   0  0.7937508     FALSE
 7:  3  1 0.447619 0.4722222 0.8641026  NA  0.6017106     FALSE
 8:  3  2 0.952381 0.5833333 0.9230769   1  4.0674910     FALSE
 9:  3  3 1.000000 0.4642857 1.0000000   1  7.9350221     FALSE
10:  4  1 0.447619 0.6428571 0.8641026  NA  0.7713174     FALSE
11:  4  2 0.952381 0.0000000 0.9230769   0  3.6961688     FALSE
12:  4  3 1.000000 1.0000000 1.0000000   0 15.4915816      TRUE
13:  5  1 0.447619 0.5555556 0.8641026  NA  0.6717426     FALSE
14:  5  2 0.952381 0.0000000 0.9230769   0  3.6961688     FALSE
15:  5  3 1.000000 0.8492063 1.0000000   0  8.5458257      TRUE
16:  6  4 1.000000 1.0000000 0.6111111   1 14.6796595      TRUE
17:  6  5 1.000000 0.5277778 1.0000000   0  7.9139248     FALSE

The select functions add a (logical) variable to the data set indicating whether a pairs is selected or not.

In this case we know which records truly belong to each other. We can use that to evaluate the linkage:

> pairs <- compare_vars(pairs, "truth", on_x = "id", 
+     on_y = "id")

> print(pairs)
  First data set:  6 records
  Second data set: 5 records
  Total number of pairs: 17 pairs
  Blocking on: 'postcode'

    .x .y lastname firstname   address sex    weights threshold truth
 1:  1  1 1.000000 0.4722222 0.9230769  NA  7.7103862     FALSE FALSE
 2:  1  2 0.000000 0.5833333 0.8641026   1 -5.9463949     FALSE FALSE
 3:  1  3 0.447619 0.4642857 0.9333333   1  0.8042090     FALSE FALSE
 4:  2  1 1.000000 0.8888889 0.9230769  NA  8.6064218      TRUE  TRUE
 5:  2  2 0.000000 0.0000000 0.8641026   0 -6.3177171     FALSE FALSE
 6:  2  3 0.447619 0.5396825 0.9333333   0  0.7937508     FALSE FALSE
 7:  3  1 0.447619 0.4722222 0.8641026  NA  0.6017106     FALSE FALSE
 8:  3  2 0.952381 0.5833333 0.9230769   1  4.0674910     FALSE  TRUE
 9:  3  3 1.000000 0.4642857 1.0000000   1  7.9350221     FALSE FALSE
10:  4  1 0.447619 0.6428571 0.8641026  NA  0.7713174     FALSE FALSE
11:  4  2 0.952381 0.0000000 0.9230769   0  3.6961688     FALSE FALSE
12:  4  3 1.000000 1.0000000 1.0000000   0 15.4915816      TRUE  TRUE
13:  5  1 0.447619 0.5555556 0.8641026  NA  0.6717426     FALSE FALSE
14:  5  2 0.952381 0.0000000 0.9230769   0  3.6961688     FALSE FALSE
15:  5  3 1.000000 0.8492063 1.0000000   0  8.5458257      TRUE FALSE
16:  6  4 1.000000 1.0000000 0.6111111   1 14.6796595      TRUE  TRUE
17:  6  5 1.000000 0.5277778 1.0000000   0  7.9139248     FALSE FALSE
> table(pairs$truth, pairs$threshold)
       
        FALSE TRUE
  FALSE    12    1
  TRUE      1    3

We see that three of the four matches that should have been found have indeed been found (the recall is 3/4) and we have one false link (sensitivity is 1/4).

Using a threshold, does not take into account the fact that often we know that one record from the first data set can be linked to at most one record from the second data set and vice versa. If we make the threshold low enough we have more links than records in either data set. reclin contains two functions that force one-to-one linkage: select_greedy and select_n_to_m. The first is fast (it selects pairs starting from the highest score; pairs are only selected when each of the records in a pair have not been selected previously); the second is slower, but can lead to better results (it tries to optimise to total score of the selected records under the restriction that each record can be selected only once):

> pairs <- select_greedy(pairs, "weights", variable = "greedy", 
+     threshold = 0)

> table(pairs$truth, pairs$greedy)
       
        FALSE TRUE
  FALSE    13    0
  TRUE      0    4
> pairs <- select_n_to_m(pairs, "weights", variable = "ntom", 
+     threshold = 0)

> table(pairs$truth, pairs$ntom)
       
        FALSE TRUE
  FALSE    13    0
  TRUE      0    4

Perfection!

The final, last step

The real final step is to create the linked data set. We now know which pairs are to be linked, but we still have to actually link them. link does that (the optional arguments all_x and all_y control the type of linkage):

> linked_data_set <- link(pairs, selection = "ntom")

> print(linked_data_set)
  Total number of pairs: 4 pairs

   .y .x id.x lastname.x firstname.x  address.x sex.x postcode.x id.y
1:  1  2    2      Smith      George 12 Mainstr     M    1234 AB    2
2:  2  3    3    Johnson        Anna 61 Mainstr     F    1234 AB    3
3:  3  4    4    Johnson     Charles 61 Mainstr     M    1234 AB    4
4:  4  6    6   Schwartz         Ben  1 Eaststr     M    6789 XY    6
   lastname.y firstname.y     address.y sex.y postcode.y
1:      Smith      Gearge 12 Mainstreet  <NA>    1234 AB
2:     Jonson          A. 61 Mainstreet     F    1234 AB
3:    Johnson     Charles    61 Mainstr     F    1234 AB
4:   Schwartz         Ben        1 Main     M    6789 XY