
Package ‘redux’
January 12, 2022

Title R Bindings to 'hiredis'

Version 1.1.3

Description A 'hiredis' wrapper that includes support for
transactions, pipelining, blocking subscription, serialisation of
all keys and values, 'Redis' error handling with R errors.
Includes an automatically generated 'R6' interface to the full
'hiredis' API. Generated functions are faithful to the
'hiredis' documentation while attempting to match R's argument
semantics. Serialisation must be explicitly done by the user, but
both binary and text-mode serialisation is supported.

SystemRequirements hiredis

License GPL-2

URL https://github.com/richfitz/redux

BugReports https://github.com/richfitz/redux/issues

Depends R (>= 3.2.0)

Imports R6, storr (>= 1.1.1)

Suggests knitr, rmarkdown, sys, testthat

VignetteBuilder knitr

RoxygenNote 7.1.2

Encoding UTF-8

NeedsCompilation yes

Author Rich FitzJohn [aut, cre]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

Repository CRAN

Date/Publication 2022-01-12 11:22:42 UTC

1

https://github.com/richfitz/redux
https://github.com/richfitz/redux/issues

2 from_redis_hash

R topics documented:
from_redis_hash . 2
hiredis . 3
object_to_string . 4
parse_redis_url . 5
redis . 6
redis_api . 6
redis_config . 7
redis_connection . 8
redis_info . 9
redis_multi . 10
redis_scripts . 10
redis_time . 11
scan_apply . 11
storr_redis_api . 12

Index 14

from_redis_hash Convert Redis hash

Description

Convert a Redis hash to a character vector or list. This tries to bridge the gap between the way Redis
returns hashes and the way that they are nice to work with in R, but keeping all conversions very
explicit.

Usage

from_redis_hash(
con,
key,
fields = NULL,
f = as.character,
missing = NA_character_

)

Arguments

con A Redis connection object

key key of the hash

fields Optional vector of fields (if absent, all fields are retrieved via HGETALL.

f Function to apply to the list of values retrieved as a single set. To apply
element-wise, this will need to be run via something like Vectorize.

missing What to substitute into the returned vector for missing elements. By default an
NA will be added. A stop expression is OK and will only be evaluated if values
are missing.

hiredis 3

Examples

if (redux::redis_available()) {
Using a random key so we don't overwrite anything in your database:
key <- paste0("redux::", paste(sample(letters, 15), collapse = ""))
r <- redux::hiredis()
r$HSET(key, "a", "apple")
r$HSET(key, "b", "banana")
r$HSET(key, "c", "carrot")

Now we have a hash with three elements:
r$HGETALL(key)

Ew, that's not very nice. This is nicer:
redux::from_redis_hash(r, key)

If one of the elements was not a string, then that would not
have worked, but you can always leave as a list:
redux::from_redis_hash(r, key, f = identity)

To get just some elements:
redux::from_redis_hash(r, key, c("a", "c"))

And if some are not present:
redux::from_redis_hash(r, key, c("a", "x"))
redux::from_redis_hash(r, key, c("a", "z"), missing = "zebra")

r$DEL(key)
}

hiredis Interface to Redis

Description

Create an interface to Redis, with a generated interface to all Redis commands.

Usage

hiredis(..., version = NULL)

redis_available(...)

Arguments

... Named configuration options passed to redis_config, used to create the envi-
ronment (notable keys include host, port, and the environment variable REDIS_URL).
For redis_available, arguments are passed through to hiredis.

4 object_to_string

version Version of the interface to generate. If given as a string to numeric version, then
only commands that exist up to that version will be included. If given as TRUE,
then we will query the Redis server (with INFO) and extract the version number
that way.

Details

There is no need to explicitly close the redis connection. It will be closed automatically when the
connection goes out of scope and is garbage collected.

Warning

Some commands will block. This includes BRPOP (and other list commands beginning with B). Once
these commands have been started, they cannot be interrupted by Ctrl-C from an R session. This
is because the redux package hands over control to a blocking function in the hiredis (C) library,
and this cannot use R’s normal interrupt machinery. If you want to block but retain the ability to
interrupt then you will need to wrap this in another call that blocks for a shorter period of time:

found <- NULL
con <- redux::hiredis()
found <- NULL
while (is.null(found)) {
found <- con$BLPOP("key", 1)
Sys.sleep(0.01) # needed for R to notice that interrupt has happened

}

Examples

Only run if a Redis server is running
if (redux::redis_available()) {

r <- redux::hiredis()
r$PING()
r$SET("foo", "bar")
r$GET("foo")

There are lots of methods here:
r

}

object_to_string Convert R objects to/from strings

Description

Serialise/deserialise an R object into a string. This is a very thin wrapper around the existing R
functions serialize and rawToChar. This is useful to encode arbitrary R objects as string to then
save in Redis (which expects a string).

parse_redis_url 5

Usage

object_to_string(obj)

string_to_object(str)

object_to_bin(obj, xdr = FALSE)

bin_to_object(bin)

Arguments

obj An R object to convert into a string

str A string to convert into an R object

xdr Use the big-endian representation? Unlike, serialize this is disabled here by
default as it is a bit faster (~ 20 microsecond roundtrip for a serialization of 100
doubles)

bin A binary vector to convert back to an R object

Examples

s <- object_to_string(1:10)
s
string_to_object(s)
identical(string_to_object(s), 1:10)

parse_redis_url Parse Redis URL

Description

Parse a Redis URL

Usage

parse_redis_url(url)

Arguments

url A URL to parse

6 redis_api

redis Redis commands object

Description

Primarily used for pipelining, the redis object produces commands the same way that the main
redis_api objects do. If passed in as arguments to the pipeline method (where supported) these
commands will then be pipelined. See the redux package for an example.

Usage

redis

Format

An object of class redis_commands of length 199.

Examples

This object creates commands in the format expected by the
lower-level redis connection object:
redis$PING()

For example to send two PING commands in a single transmission:
if (redux::redis_available()) {

r <- redux::hiredis()
r$pipeline(
redux::redis$PING(),
redux::redis$PING())

}

redis_api Create a Redis API object

Description

Create a Redis API object. This function is designed to be used from other packages, and not
designed to be used directly by users.

Usage

redis_api(x, version = NULL)

redis_config 7

Arguments

x An object that defines at least the function command capable of processing com-
mands in the appropriate form.

version Version of the Redis API to generate. If given as a numeric version (or some-
thing that can be coerced into one. If given as TRUE, then we query the Redis
server for its version and generate only commands supported by the server.

redis_config Redis configuration

Description

Create a set of valid Redis configuration options.

Usage

redis_config(..., config = list(...))

Arguments

... See Details

config A list of options, to use in place of ...

Details

Valid arguments here are:

url The URL for the Redis server. See examples. (default: Look up environment variable REDIS_URL
or NULL).

host The hostname of the Redis server. (default: 127.0.0.1).

port The port of the Redis server. (default: 6379).

path The path for a Unix socket if connecting that way.

password The Redis password (for use with AUTH). This will be stored in plain text as part of the
Redis object. (default: NULL).

db The Redis database number to use (for use with SELECT. Do not use in a redis clustering context.
(default: NULL; i.e., don’t switch).

timeout The maximum number of milliseconds to wait for the connection to be established. (de-
fault: NULL; i.e. wait forever).

The way that configuration options are resolved follows the design for redis-rb very closely.

1. First, look up (and parse if found) the REDIS_URL environment variable and override defaults
with that.

2. Any arguments given (host, port, password, db) override values inferred from the url or
defaults.

3. If path is given, that overrides the host/port settings and a socket connection will be used.

8 redis_connection

Examples

default config:
redis_config()

set values
redis_config(host = "myhost")

url settings:
redis_config(url = "redis://:p4ssw0rd@myhost:32000/2")

override url settings:
redis_config(url = "redis://myhost:32000", port = 31000)
redis_config(url = "redis://myhost:32000", path = "/tmp/redis.conf")

redis_connection Create a Redis connection

Description

Create a Redis connection. This function is designed to be used in other packages, and not directly
by end-users. However, it is possible and safe to use. See the hiredis package for the user friendly
interface.

Usage

redis_connection(config = redis_config())

Arguments

config Configuration parameters as generated by redis_config

Details

This function creates a list of functions, appropriately bound to a pointer to a Redis connection.
This is designed for package authors to use so without having to ever deal with the actual pointer
itself (which cannot be directly manipulated from R anyway).

The returned list has elements, all of which are functions:

config() The configuration information
reconnect() Attempt reconnection of a connection that has been closed, through serialisation/deserialisation

or through loss of internet connection.
command(cmd) Run a Redis command. The format of this command will be documented else-

where.
pipeline(cmds) Run a pipeline of Redis commands.
subscribe(channel, pattern, callback, envir) Subscribe to a channel or pattern specifying chan-

nels. Here, channel must be a character vector, pattern a logical indicating if channel
should be interpreted as a pattern, callback is a function to apply to each received message,
returning TRUE when subscription should stop, and envir is the environment in which to eval-
uate callback. See below.

redis_info 9

Subscriptions

The callback function must take a single argument; this will be the received message with named
elements type (which will be message), channel (the name of the channel) and value (the message
contents). If pattern was TRUE, then an additional element pattern will be present (see the Redis
docs). The callback must return TRUE or FALSE; this indicates if the client should continue quit (i.e.,
TRUE means return control to R, FALSE means keep going).

Because the subscribe function is blocking and returns nothing, so all data collection needs to
happen as a side-effect of the callback function.

There is currently no way of interrupting the client while it is waiting for a message.

redis_info Parse Redis INFO

Description

Parse and return Redis INFO data.

Usage

redis_info(con)

parse_info(x)

redis_version(con)

Arguments

con A Redis connection

x character string

Examples

if (redux::redis_available()) {
r <- redux::hiredis()

Redis server version:
redux::redis_version(r)
This is a 'numeric_version' object so you can compute with it
if you need to check for minimum versions
redux::redis_version(r) >= numeric_version("2.1.1")

Extensive information is given back by the server:
redux::redis_info(r)

Which is just:
redux::parse_info(r$INFO())

}

10 redis_scripts

redis_multi Helper for Redis MULTI

Description

Helper to evaluate a Redis MULTI statement. If an error occurs then, DISCARD is called and the
transaction is cancelled. Otherwise EXEC is called and the transaction is processed.

Usage

redis_multi(con, expr)

Arguments

con A Redis connection object

expr An expression to evaluate

redis_scripts Load Lua scripts into Redis

Description

Load Lua scripts into Redis, providing a convenience function to call them with. Using this function
means that scripts will be available to use via EVALSHA, and will be preloaded on the Redis server.
Scripts are then accessed by name rather than by content or SHA. See the vignette for details and
an example.

Usage

redis_scripts(con, ..., scripts = list(...))

Arguments

con A Redis connection

... A number of scripts

scripts Alternatively, a list of scripts

redis_time 11

redis_time Get time from Redis

Description

Get time from Redis and format as a string.

Usage

redis_time(con)

format_redis_time(x)

redis_time_to_r(x)

Arguments

con A Redis connection object

x a list as returned by TIME

Examples

if (redux::redis_available()) {
r <- redux::hiredis()

The output of Redis' TIME command is not the *most* useful
thing in the world:
r$TIME()

We can get a slightly nicer representation like so:
redux::redis_time(r)

And from that convert to an actual R time:
redux::redis_time_to_r(redux::redis_time(r))

}

scan_apply Iterate over keys using SCAN

Description

Support for iterating with SCAN. Note that this will generalise soon to support collecting output,
SSCAN and other variants, etc.

12 storr_redis_api

Usage

scan_apply(
con,
callback,
pattern = NULL,
...,
count = NULL,
type = "SCAN",
key = NULL

)

scan_del(con, pattern, count = NULL, type = "SCAN", key = NULL)

scan_find(con, pattern, count = NULL, type = "SCAN", key = NULL)

Arguments

con A redis_api object

callback Function that takes a character vector of keys and does something useful to it.
con$DEL is one option here to delete keys that match a pattern. Unlike R’s
*apply functions, callback is called for its side effects and its return values will
be ignored.

pattern Optional pattern to use.

... additional arguments passed through to callback. Note that if used, pattern
must be provided (at least as NULL).

count Optional step size (default is Redis’ default which is 10)

type Type of SCAN to run. Options are "SCAN" (the default), "HSCAN" (scan through
keys of a hash), "SSCAN" (scan through elements of a set) and "ZSCAN" (scan
though elements of a sorted set). If type is not "SCAN", then key must be pro-
vided. HSCAN and ZSCAN currently do not work usefully.

key Key to use when running a hash, set or sorted set scan.

Details

The functions scan_del and scan_find are example functions that delete and find all keys corre-
sponding to a given pattern.

storr_redis_api Redis object cache driver

Description

Redis object cache driver

storr_redis_api 13

Usage

storr_redis_api(
prefix,
con,
hash_algorithm = NULL,
default_namespace = "objects"

)

driver_redis_api(prefix, con, hash_algorithm = NULL)

Arguments

prefix Prefix for keys. We’ll generate a number of keys that start with this string.
Probably terminating the string with a punctuation character (e.g., ":") will make
created strings nicer to deal with.

con A redis_api connection object, as created by redux. Alternatively if passing in
a redis_config object, a list, or NULL this will be passed through to hiredis
to create a new connection.

hash_algorithm Name of the hash algorithm to use. Possible values are "md5", "sha1", and
others supported by digest. If not given, then we will default to "md5".

default_namespace

Default namespace (see storr).

Author(s)

Rich FitzJohn

Index

∗ datasets
redis, 6

bin_to_object (object_to_string), 4

driver_redis_api (storr_redis_api), 12

format_redis_time (redis_time), 11
from_redis_hash, 2

hiredis, 3, 8

object_to_bin (object_to_string), 4
object_to_string, 4

parse_info (redis_info), 9
parse_redis_url, 5

rawToChar, 4
redis, 6
redis_api, 6, 6
redis_available (hiredis), 3
redis_config, 3, 7, 8
redis_connection, 8
redis_info, 9
redis_multi, 10
redis_scripts, 10
redis_time, 11
redis_time_to_r (redis_time), 11
redis_version (redis_info), 9

scan_apply, 11
scan_del (scan_apply), 11
scan_find (scan_apply), 11
serialize, 4, 5
storr, 13
storr_redis_api, 12
string_to_object (object_to_string), 4

14

	from_redis_hash
	hiredis
	object_to_string
	parse_redis_url
	redis
	redis_api
	redis_config
	redis_connection
	redis_info
	redis_multi
	redis_scripts
	redis_time
	scan_apply
	storr_redis_api
	Index

