Package ‘remoter’

January 5, 2018

Type Package

Title Remote R: Control a Remote R Session from a Local One
Version 0.4-0

Description A set of utilities for client/server computing with R, controlling
a remote R session (the server) from a local one (the client). Simply set
up a server (see package vignette for more details) and connect to it from
your local R session ('/RStudio’, terminal, etc). The client/server
framework is a custom 'REPL' and runs entirely in your R session without the
need for installing a custom environment on your system. Network
communication is handled by the ZeroMQ' library by way of the 'pbdZMQ'
package.

License BSD 2-clause License + file LICENSE
Depends R (>=3.2.0)

Imports pbdZMQ (>= 0.3-0), getPass (>= 0.1-0), argon2 (>= 0.2-0),
stats, utils, tools, grDevices, graphics, png (>=0.1-7)

Suggests sodium (>= 0.2), pbdRPC (>=0.1-0)
NeedsCompilation no

ByteCompile yes
URL https://github.com/RBigData/remoter

BugReports https://github.com/RBigData/remoter/issues
Maintainer Drew Schmidt <wrathematics@gmail.com>
RoxygenNote 6.0.1

Author Drew Schmidt [aut, cre],
Wei-Chen Chen [aut],
R Core team [ctb] (some functions are modified from the R source code)

Repository CRAN
Date/Publication 2018-01-05 05:04:32 UTC

https://github.com/RBigData/remoter
https://github.com/RBigData/remoter/issues

2 remoter-package

R topics documented:

remoter-package L. L 2
batch e 3
C2S o e e e e 4
cliento e e e e e 5
evalC e e e e 6
EXIt . L e e e e e 6
has.sodium e e e e e e 7
ISSSECUIC . v & v v v e e e e e e e e e e e e e e e e e 8
ISC . . e e e e e e 8
rDevices L e 9
relay e 10
thelp e e e e 11
101 12
TPNE . o o e e e e e e e e e e e e e e e e e e e 13
S2C & i e e e e e 14
SEIVET . v v v v e 16
ShOWIOg e e e e e 17
Index 18
remoter-package remoter
Description

A set of utilities for client/server computing with R, controlling a remote R session (the server) from
a local one (the client). Simply set up a server (see package vignette for more details) and connect
to it from your local R session ("RStudio’, terminal, etc). The client/server framework is a custom
’REPL’ and runs entirely in your R session without the need for installing a custom environment on
your system. Network communication is handled by the *ZeroMQ’ library by way of the ’pbdZMQ’
package.

Author(s)

Drew Schmidt and Wei-Chen Chen

References

Project URL: https://github.com/RBigData/remoter

https://github.com/RBigData/remoter

batch

batch

Batch Execution

Description

Run a local script on a remote server in batch. Similar to R’s own source () function.

Usage

batch(addr = "localhost”, port = 55555, password = NULL, file, script,
timer = FALSE)

Arguments

addr
port

password

file

script

timer

Details

The remote host/address/endpoint.

The port (number) that will be used for communication between the client and
server. The port value for the client and server must agree.

An initial password to pass to the server. If the server is not accepting pass-
words, then this argument is ignored. If the initial pasword is incorrect, then
assuming the server’s maxretry>1, then you will be interactively asked to enter
the password.

A character string pointing to the file you wish to execute/source. Either this or
script (but not both) should be procided.

A character string containing the commands you wish to execute/source. Either
this or script (but not both) should be procided.

Logical; should the "performance prompt", which shows timing statistics after
every command, be used?

Note that batch() can not be run from inside an active connection. Its purpose is to bypass the
need to start a connection via client ()

Value

Returns TRUE invisibly on successful exit.

Examples

Not run:
library(remoter)

NOTE first run a server via remoter::server())in a separate R session.
For simplicity, assume they are on the same machine.

Run a script in an R file on the local/client machine
file <- "/path/to/an/R/script.r”

batch(file=file)

4 c2s

Run a script stored in a character vector
script <- "1+1"
batch(script="1+1")

End(Not run)

c2s Client-to-Server Object Transfer

Description

This function allows you to pass an object from the local R session (the client) to server.

Usage
c2s(object, newname, env = .GlobalEnv)
Arguments
object A local R object.
newname The name the object should take when it is stored on the remote server. If left
blank, the remote name will be the same as the original (local) object’s name.
env The environment into which the assignment will take place. The default is the
remoter "working environment".
Details

Localize R objects.

Value

Returns TRUE invisibly on successful exit.

Examples

Not run:

Prompts are listed to clarify when something is eval'd locally vs remotely
> library(remoter)

> x <- "some data”

> remoter::connect("my.remote.server")

remoter> x

Error: object 'x' not found

remoter> c2s(x)

remoter> x

[1] "some data”

End(Not run)

client

client

Client Launcher

Description

Connect to a remote server (launch the client).

Usage

client(addr = "localhost"”, port = 55555, password = NULL,
prompt = "remoter”, timer = FALSE)

Arguments

addr

port

password

prompt

timer

Details

The remote host/address/endpoint.

The port (number) that will be used for communication between the client and
server. The port value for the client and server must agree.

An initial password to pass to the server. If the server is not accepting pass-
words, then this argument is ignored. If the initial pasword is incorrect, then
assuming the server’s maxretry>1, then you will be interactively asked to enter
the password.

The prompt to use to delineate the client from the normal R REPL.

Logical; should the "performance prompt", which shows timing statistics after
every command, be used?

The port values between the client and server must agree. If they do not, this can cause the client
to hang. The client is a specialized REPL that intercepts commands sent through the R interpreter.
These commands are then sent from the client to and evaluated on the server. The client commu-
nicates over ZeroMQ with the server using a REQ/REP pattern. Both commands (from client to
server) and returns (from server to client) are handled in this way.

To shut down the server and the client, see exit().

Value

Returns TRUE invisibly on successful exit.

6 exit

evalc evale

Description

A function to evaluate expressions on the client’s R session. To eval expressions on the server,
just use eval (). Instead of using this function, you could also just kill the client, do your local
operations, then re-run your client() command.

Usage

evalc(expr)

Arguments

expr Expression to be evaluated on the client.

Details

Evaluate expressions on the client.

Value

Returns TRUE invisibly on successful exit.

exit exit

Description

This function cleanly shuts down the remoter server the client is currently connected to, as well as
shutting down the client. One can also use q() (while the client is running), and this will not close
the active R session on the client.

Usage

exit(client.only = TRUE, q.server = TRUE)
shutdown ()

kill(addr = "localhost”, port = 55555)

has.sodium

Arguments

client.only

g.server

addr, port

Details

Logical; if TRUE, then the client disconnects from the server. Otherwise, the
server is shut down together with the client.

Logical; if TRUE, then the server calls q("no") after shuting down with the
client. This is useful for cases where the server is running in an interactive
R session, and you wish to shut the entire thing down.

The server address and port, as in server ().

Exit the remoter client/server.

The shutdown () function is shorthand for exit (FALSE, TRUE). The kill() function is shorthand
for running batch() with script="shutdown()".

Value

Returns TRUE invisibly on successful exit.

See Also

server and batch

has.sodium

has.sodium

Description

Report if the sodium package is availabe for use.

Usage

has.sodium()

Value

Returns TRUE if the sodium package is available, and FALSE otherwise.

8 Isc

is.secure is.secure

Description

Report if communications with the connected server are encrypted.

Usage

is.secure()

Value

Returns TRUE if messages between client and server are currently encrypted, and FALSE if not. If the
client is not currently running (i.e., if executed from just a regular R prompt), then NA is returned.

1sc Is on Client

Description

A function to view environments on the client’s R session. To view objects on the server, just use
1s(). Instead of using this function, you could also just kill the client, do your local operations,
then re-run your client () command.

Usage

lsc(envir, all.names = FALSE, pattern)

Arguments
envir Environment (as in 1s()).
all.names Logical that determines if all names are returned or those beginning with a ’.
are omitted (as in 1s()).
pattern Optional regular expression (as in 1s()).
Details

View objects on the client.

Value

Returns TRUE invisibly on successful exit.

rDevices 9

rDevices Local Graphic Devices

Description
Functions for controlling graphic device locally when the client of remote R is on. All these func-
tions are evaluated in local R from within the remote R prompt.
dev.curc() locally evals grDevices: :dev.cur().
dev.listc() locally evals grDevices: :dev.list().
dev.nextc() locally evals grDevices: :dev.next().
dev.prevc() locally evals grDevices: :dev.prev().
dev.offc() locally evals grDevices: :dev.off ().
dev.setc() locally evals grDevices: :dev.set().
dev.newc() locally eval grDevices: :dev.new().

dev.sizec() locally evals grDevices: :dev.size().

Usage

dev.curc()
dev.listc()
dev.nextc(which = grDevices::dev.cur())
dev.prevc(which = grDevices::dev.cur())

dev.offc(which = grDevices::dev.cur())

dev.setc(which = grDevices::dev.cur())

dev.newc(..., noRstudioGD = FALSE)
dev.sizec(units = c("in", "cm", "px"))
Arguments
which An integer specifying a device number as in grDevices: :dev.off ()

arguments to be passed to the device selected as in grDevices: :dev.new()

noRstudioGD as in grDevices: :dev.new()
units as in grDevices: :dev.size()
Details

Local Graphic Device Controlling Functions

10

See Also

rpng()

Examples

Not run:

Prompts are listed to clarify when something is eval'd locally vs
remotely

> library(remoter, quietly = TRUE)

> client()

remoter>
remoter>
remoter>
remoter>

remoter>
remoter>
remoter>

remoter>
>

rpng.new(plot(1:5))

dev.newc(width = 6, height = 4)

a <- function() plot(iris$Sepal.Length, iris$Petal.Length)
rpng.new(a, width = 6 * 72, height = 4 x 72)

dev.curc()
dev.listc()
dev.offc()

()

End(Not run)

relay

relay

Relay Launcher

Description

Launcher for the remoter relay.

Usage

relay(addr, recvport = 55556, sendport = 55555, verbose = FALSE)

Arguments

addr
recvport
sendport

verbose

Details

The address of the server.
The port for receiving commands from the client.
The port for sending commands to the server.

Show verbose messaging.

The relay is an intermediary or "middleman" between the client and server meant for machines with
split login/compute nodes.

rhelp

Value

Returns TRUE invisibly on successful exit.

rhelp rhelp

Description

Provide the primary interface to the help systems as utils: :help()

Usage

rhelp(topic, package = NULL, lib.loc = NULL,
verbose = getOption("verbose”),
try.all.packages = getOption("help.try.all.packages"))

help(topic, package = NULL, lib.loc = NULL,
verbose = getOption("”verbose"),
try.all.packages = getOption("help.try.all.packages"”))
"?"(el, e2)
Arguments

topic, el, e2 Atopicasinutils::help()

package A package as in utils: :help()
lib.loc A lib location as in utils: :help()
verbose if verbose on/off as in utils: :help()

try.all.packages
if try all packages as in utils: :help()

Details

Remote R Help System

Examples

Not run:

Prompts are listed to clarify when something is eval'd locally vs
remotely

> # suppressMessages(library(remoter, quietly = TRUE))

> # client()

> remoter::client(”192.168.56.101")

remoter> rhelp("plot”)
remoter> rhelp(package = "remoter”)
remoter> rhelp("plot”, package = "remoter")

12 rmc

remoter> rhelp("dev.off")
remoter> rhelp("dev.off", package = "remoter")
remoter> rhelp("dev.off"”, package = "grDevices")

remoter> help("par”)

remoter> ?%+*

remoter> 2?7

remoter> ?"??"

remoter> package?base
remoter> ‘?"(package, remoter)

remoter> q()
>

End(Not run)

rmc rmc

Description

A function to remove objects from the client’s R session. To remove objects on the server, just use
rm(). Instead of using this function, you could also just kill the client, do your local operations,
then re-run your client () command.

Usage
rmc(..., list = character(), envir)
Arguments
Objects to be removed from the client’s R session.
list Character vector naming objects to be removed (as in rm()).
envir Environment (as in rm()).
Details

Remove objects on the client.

Value

Returns TRUE invisibly on successful exit.

png 13

rpng rpng

Description

Provide a graphic device locally for plots generated on server of Remote R
rpng() generates locally a device/window.

rpng.new() generates locally a device/window.

rpng.off () turns off locally a device/window.

dev.off () is an alias of rpng. of f () in order to consisten with th original device function grDevices: :dev.off ().

Usage

rpng.new(expr, filename = NULL, width = 587, height = 586, units = "px",
pointsize = 12, bg = "white"”, res = 96, ...)

rpng.off(which = grDevices::dev.cur())

dev.off(which = grDevices::dev.cur())

Arguments
expr An expression or a function generating a plot. This checks in the following
orders: expression or ggplot. The ggplot are eval’d within the rpng.new(),
while the expression is eval’d at parent. frame().
filename A temporary file to save the plot on server
width width of the plot as in grDevices: :png()
height height of the plot as in grDevices: :png()
units units of the width and height as in grDevices: :png()
pointsize pointsze of the plotted text as in grDevices: : png()
bg background colour as in grDevices: :png()
res resolution as in grDevices: :png()
additional arguments as in grDevices: :png()
which An integer specifying a device number as in grDevices: :dev.off ()
Details
Remote R PNG Device
See Also

rDevices

14

Examples

Not run:

Prompts are listed to clarify when something is eval'd locally vs

remotely

> # suppressMessages(library(remoter, quietly = TRUE))
> # client()

> remoter::client(”192.168.56.101")

remoter> plot(1:5)
remoter> rpng.off()

remoter> rpng()
remoter> plot(iris$Sepal.Length, iris$Petal.Length)

remoter> rpng.off()

remoter> library(ggplot2)

remoter> gl <- ggplot(iris, aes(x = Sepal.Length, y = Petal.Length,

remoter+ color = Species)) +
remoter+ geom_point(aes(shape = Species))
remoter> rpng()

remoter> print(gl)

remoter> rpng.off()

remoter> g1 + geom_smooth(method = "1m")
remoter> rpng.new(plot(1:5))

remoter> rpng.new(gl)

remoter> b <- function() plot(iris$Sepal.Length, iris$Petal.Length)

remoter> rpng.new(b)

remoter> da <- data.frame(x = rnorm(100), y = rnorm(100))

remoter> g2 <- ggplot(da, aes(x, y)) + geom_point()
remoter> g2

remoter> pdf()

remoter> g2

remoter> print(g2 + geom_line())
remoter> dev.off()

remoter> q()
>

End(Not run)

s2c

s2c Server-to-Client Object Transfer

s2c 15

Description

This function allows you to pass an object from the server to the local R session behind the client.

Usage
s2c(object, newname, env = .GlobalEnv)
Arguments
object A remote R object.
newname The name the object should take when it is stored on the local client’s R session.
Must be the form of a character string. If left blank, the local name will be the
same as the original (remote) object’s name.
env The environment into which the assignment will take place. The default is the
global environment.
Details

Localize R objects.

A newname, if specified, must be passed as a string (not a literal; i.e., "mynewname”, not mynewname).
The name must also be syntactically valid (see ?make . names).

Value

Returns TRUE invisibly on successful exit.

Examples

Not run:

Prompts are listed to clarify when something is eval'd locally vs remotely
> library(remoter)

>y

Error: object 'y' not found

> remoter: :connect("my.remote.server”)
remoter> x

Error: object 'x' not found
remoter> x <- "some data”

remoter> x

[1] "some data”

remoter> s2c(x, "y")

remoter> q()

>y

[1] "some data”

1

End(Not run)

16 server

server Server Launcher

Description

Launcher for the remoter server.

Usage

server(port = 55555, password = NULL, maxretry = 5,
secure = has.sodium(), log = TRUE, verbose = FALSE, showmsg = FALSE,
userpng = TRUE, sync = TRUE)

Arguments
port The port (number) that will be used for communication between the client and
server. The port value for the client and server must agree. If the value is 0, then
a random open port will be selected.
password A password the client must enter before the user can process commands on the
server. If the value is NULL, then no password checking takes place.
maxretry The maximum number of retries for passwords before shutting everything down.
secure Logical; enables encryption via public key cryptography of the *sodium’ pack-
age is available.
log Logical; enables some basic logging in the server.
verbose Logical; enables the verbose logger.
showmsg Logical; if TRUE, messages from the client are logged.
userpng Logical; if TRUE, rpng is set as the default device for displaying.
sync Logical; if TRUE, the client will have str()’d versions of server objects recre-
ated in the global environment. This is useful in IDE’s like RStudio, but it carries
a performance penalty. For terminal users, this is not recommended.
Details

By a ’secure’ server, we mean one that encrypts messages it sends and only accepts encrypted
messages. Encryption uses public key cryptography, using the ’sodium’ package.

If the ’sodium’ package is available to the server, then by default the server will be secure. If the
package is not available, then you will not be able to start a secure server. If the server is secure,
then a client can only connect if the client has the *sodium’ package available.

Value

Returns TRUE invisibly on successful exit.

showlog

17

showlog showlog

Description

Show the server log on the client.

Usage
showlog()

Index

+Topic package

remoter-package, 2

? (rhelp), 11

batch, 3,7

c2s,

4

client, 5

dev.
dev.
dev.
dev.
dev.
dev.

dev

curc (rDevices), 9
listc (rDevices), 9
newc (rDevices), 9
nextc (rDevices), 9
off (rpng), 13

offc (rDevices), 9

.prevc (rDevices), 9
dev.
dev.

setc (rDevices), 9
sizec (rDevices), 9

evalc, 6
exit, 6

has.

sodium, 7

help (rhelp), 11

is.secure, 8

kill (exit), 6

1sc,

8

rDevices, 9, 13
relay, 10
remoter-package, 2
rhelp, 11

rmc,

12

rpng, 10, 13

s2c,

14

server, 7, 16
showlog, 17
shutdown (exit), 6

18

	remoter-package
	batch
	c2s
	client
	evalc
	exit
	has.sodium
	is.secure
	lsc
	rDevices
	relay
	rhelp
	rmc
	rpng
	s2c
	server
	showlog
	Index

