Package

(uide to the remoter

Just the Basics

(FUIDE TO THE REMOTER PACKAGE

JANUARY 4, 2018

DREwW SCHMIDT
WRATHEMATICSQGMAIL.COM

%

VERSION 0.4-0

Acknowledgements and Disclaimer

Work for the remoter package is supported in part by the project *Harnessing Scalable Libraries for Sta-
tistical Computing on Modern Architectures and Bringing Statistics to Large Scale Computing® funded
by the National Science Foundation Division of Mathematical Sciences under Grant No. 1418195.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation. The findings and
conclusions in this article have not been formally disseminated by the U.S. Department of Health &
Human Services nor by the U.S. Department of Energy, and should not be construed to represent any
determination or policy of University, Agency, Administration and National Laboratory.

The remoter logo comes from the image “Tradtelefon-illustration”. Licensed under Public Domain via
Commons.

This manual may be incorrect or out-of-date. The author(s) assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

This publication was typeset using KTEX.

(© 2015-2017 Drew Schmidt.

Permission is granted to make and distribute verbatim copies of this vignette and its source provided the
copyright notice and this permission notice are preserved on all copies.

https://commons.wikimedia.org/wiki/File:Tr%C3%A5dtelefon-illustration.png#/media/File:Tr%C3%A5dtelefon-illustration.png

Contents

1 Introduction
1.1 Imstallation e e e e e e e e e
1.2 Package Functions

2 Clients and Servers: Just the Basics

2.1 The Server e

2.2 The Client e e e
3 Using remoter Interactively

3.1 Philosophy e e

3.2 Utility Functions L e

3.3 Shutting Things Down e

4 Using remoter in Batch
5 Security
6 Problems, Bugs, and Other Maladies

References

e

N DN

w w w W

1 INTRODUCTION 1of 6

1 Introduction

The remoter package [11] allows you to control a remote R session from a local one. The local R session
can be in a terminal, GUI, or IDE such as RStudio. The remote R session should be run in the background
as, well, a server.

The package uses ZeroMQ [4] by way of the R package pbdZMQ [3] to handle communication. Our
use of pbdZMQ is specialized to client/server communications, but the package is very general. For more
details about pbdZMQ see the pbdZMQ package vignette [2].

The work for remoter was born out of the pbdCS package [10], which is part of the Programming with
Big Data in R (pbdR) project[6]. pbdR is a series of R packages that enable the usage of the R language
on large distributed machines, like clusters and supercomputers. See r-pbd.org/) for details.

1.1 Installation

You can install the stable version from CRAN using the usual install.packages():

install.packages ("remoter")

In order to be able to create and connect to secure servers, you need to also install the sodium pack-
age. The use of sodium is optional because it is a non-trivial systems dependency, but it is highly
recommended. You can install it manually with a call to install.packages("sodium") or by installing
remoter via:

install.packages("remoter", dependencies=TRUE)

For more information about the security features of remoter, see Section 6 below.

The development version is maintained on GitHub, and can easily be installed by any of the packages
that offer installations from GitHub:

Pick your preference
devtools::install_github("RBigData/remoter")
ghit::install_github("RBigData/remoter")
remotes::install_github("RBigData/remoter")

To simplify installations on cloud systems, we also have a Docker container available.

1.2 Package Functions

The package contains numerous functions. Some should be called from regular R, and others only from
inside a running client.

The functions to call only from regular R (outside the client):

Function Description

server() Create a server

client() Interactively connect to a server

batch() Send batch commands to

relay() Launch an intermediary to relay commands between client /server

http://r-pbd.org
https://github.com/RBigData/pbdr-remoter

1

2 CLIENTS AND SERVERS: JUST THE BASICS 20f6

Several of the functions to call only from inside the running client are:

Function Description

c2s() Transport an object from the client to the server.
s2c () Transport an object from the server to the client.
exit () Disconnect the client from the server.

shutdown () Disconnect from and shut down the server.
showlog() View the server log.

evalc(), 1sc(), rmc() Client versions of eval(), 1s(), and rm()

We will discuss many of these functions throughout the remainder of this vignette.

2 Clients and Servers: Just the Basics

If you simply want to understand how remoter works, we do not need to involve remote computers right
out the gate. Instead, we will create a local server and connect to it from another local R session.

So the first thing to do is to start up 2 separate R sessions. One will be the server, receiving commands,
and the other will be the client, sending them.

2.1 The Server

In the R process designated to be the server, we will use the server () command to, well, start the server.
Running this with no additional arguments will create a server. Optionally, one can specify a password
via the password argument. Another useful feature is setting showmsg=TRUE, which will show in the
server R process what messages are coming in. For now, let’s run it with showmsg=TRUE:

remoter::server (showmsg=TRUE)

That’s it! That R session is now listening for commands. We can shut the server down in a few ways.
Probably the best (particularly when dealing with remote machines) is from the client itself. More on
this later. The other way is to kill the hosting R process. Finally, you can terminate the server with
ctrl+c, but the other methods are preferred.

2.2 The Client

Once the server is set up, we can connect to it with the client() command. Since we are connecting
to a local server, the address we want to connect to is "localhost" (the default) or "127.0.0.1". We
will have to make sure that the port argument matches the listening port of our server, or we’ll never
connect. Finally, we can set the way the R prompt looks while the client is running by the prompt
argument. You can set it to whatever you like, but disambiguating between your regular, local R session
and the remoter client is very useful. Things can get confusing in a hurry if you aren’t careful.

So to connect, in our R session designated to be the client (the only one left), we would enter:

remoter::client ()

4 USING REMOTER IN BATCH 30of6

And you should be good to go. You can now enter R commands in the client and have them executed on
the server. The following section will go into more detail about specifics on using the client/server setup.

3 Using remoter Interactively

Before proceeding, make sure you understand how to set up a client and a server. See the previous section
for details.

3.1 Philosophy

By default, all code entered to the client is executed on the remote server. There are several utility
functions to help execute code on the local R session (see section below). But you should assume that
anything entered into the client session, unless you explicitly specify to the contrary, is executed only on
the server.

3.2 Utility Functions

There are a few utility functions available that have to do with handling execution of things locally or
moving data between client and server.

By default, all commands entered inside of the client are executed on the server. If you need to do some
things in the local R session, you can kill the client and just reconnect when you're ready. Alternatively,
you can use the 1sc(), rmc(), and evalc() functions. These are client versions of 1s(), rm(), and
eval().

For moving data between client and server, there are the s2c() and c2s() commands which transfer
from server to client and from client to server, respectively. These functions transfer data that resides in
the memory of the client/server. To transfer a file in chunks (without reading all of it into memory), see
?pbdZMQ: :zmq.sendfile or ?pbdZMQ: :zmq.recvfile.

3.3 Shutting Things Down

To terminate the client, enter the command exit (). By default, this will terminate the local client only,
and leave the server running. If you wish to also shut down the server with the client, you can run
exit(client.only=FALSE). For hopefully obvious reasons, you can not terminate the server and leave
the client running.

From the client side, running exit () will not shut down the interactive R session that was hosting the
client. You can also disconnect the client from the server without shutting down the server by killing the
client R session or executing Ctrl-c in the client.

4 Using remoter in Batch

Not every workflow works best interactively. This is why we also offer the batch() function. This allows
you to pipe a script (either in a separate file, or typed out in the R session — examples below) to a
remoter server without having to interactively control things.

6 PROBLEMS, BUGS, AND OTHER MALADIES 4 0of 6

Perhaps the simplest example is using the script= argument of batch().

remoter::batch(script="1+1")
Then, assuming a remoter session is running on the local machine' the scintillating result of ”2” will be
returned.

You can also easily pipe off longer scripts stored in separate files. Say you have a script ”myscript.r” like
so:

myscript.r
x <- 1
y <- 2
X + vy

Then you can send it for evaluation to the remoter server by running:

remoter::batch(file="myscript.r")

We conclude with a note of caution. If you have a "master script” that calls source() (or similar) on
other scripts in different files, this will not work without modification. You should change your source ()
calls to the appropriate batch() call. In fact, you may think of batch() as source() for remote servers.

5 Security

Security in remoter comes in two forms currently:
1. password credentialing
2. public key encryption

The password is declared when the server is spawned as a launch option in remoter: : server (). Without
the use of encryption, it will be transmitted from client to server unsecurely.

Encryption is optional, and disabled by default. This is because encryption is handled by the sodium
package [5], which uses the libsodium [1] library, which can be difficult to build on some platforms.

If you have the sodium package installed on both the client and the server, start the server with the
option secure=TRUE, and your client will automatically connect securely. If the server was launched (by
necessity or optionally) with secure=FALSE, then the client can not connect securely, even if the client
machine has the sodium package installed.

If ever in any doubt, use the is.secure() command from the client to see if communications are en-
crypted.

6 Problems, Bugs, and Other Maladies

The package should basically be useable, but there are some issues you might want to be aware of.

for using batch() with remote servers, the same caveats and rules apply as for client () — see the Using remoter with
Remote Machines [9] guide for details

REFERENCES 50f6

Problem: I lost my internet connection and the client is no longer sending messages.

Solution: Just Ctrl+c the client and re-run the remoter::client() call and you should be good to
go. The server should still be running. You can therefore also have multiple clients connect to the same
server, and they will share the same data (though they will not see each other’s commands). I actually
consider this a feature, but I'm not married to it and I could probably be convinced to change it.

Problem: The up/down arrow keys don’t work right in the R terminal when using the client.

Explanation: That’s because the client is just some R code sitting on top of the R REPL. This shouldn’t
be a problem if you’re using an IDE like RStudio or the like, where you pass commands from an editor
window to the R session. But as far as I am aware, this can not be fixed.

Problem: There’s no security!

Explanation: Communications are optionally encrypted, if the sodium package is available. The reason
it is optional is that libsodium is actually a fairly weighty systems dependency. This is a big problem
for managed machines like clusters and supercomputers. You must have sodium installed on both the
client and server machine, and start the server with the option secure=TRUE to use this, however.

There is also a password system. Passwords are read in from the user/client (and optionally at server
creation) with the getPass package [12]. This will read with masking (i.e., without printing the password
as it is typed). See the getPass package vignette [8] for more details.

Passwords are always hashed, whether or not the sodium package is available, as the hashing is done
with the argon2 package [7]. This is a reasonably new algorithm, and is believed to be very secure.

All that said, I am not a security person, so it is entirely possible that I have messed something up. Just
know that I'm trying my best, and that if you believe something to be in error, I'd really like to know
about it.

Problem: Something else is wrong]!

Explanation: Please be so kind as to file an issue describing the problem. Be as descriptive as possible.

References

[1] libsodium, 2015.

[2] Wei-Chen Chen and Drew Schmidt. A Quick Guide for the pbdZM@Q Package (Ver. 0.1-0), 2015. R
Vignette, URL http://cran.r-project.org/package=pbdZMQ.

[3] Wei-Chen Chen and Drew Schmidt. pbdZMQ: Programming with Big Data — Interface to ZeroMQ,
2015. R Package, URL http://cran.r-project.org/package=pbdZMQ.

[4] P. Hintjens. The zeromq guide — for ¢ developers, 2013.

[5] Jeroen Ooms. sodium: A Modern and Easy-to-Use Crypto Library, 2015. R package version 0.2.
[6] G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with Big Data in R, 2012.
[7] Drew Schmidt. argon2: Secure password hashing, 2017. R package version 0.2-0.

[8] Drew Schmidt. Guide to the getPass Package, 2017. R Vignette.

[9] Drew Schmidt. Using remoter with Remote Machines, 2017. R Vignette.

https://github.com/wrathematics/remoter/issues

REFERENCES

6 of 6

[10] Drew Schmidt and Wei-Chen Chen
0.1-0.

[11] Drew Schmidt and Wei-Chen Chen.

. pbdCS: 'pbdR’ Client/Server Utilities, 2015. R package version

remoter: Remote R: Control a Remote R Session from a Local

One, 2015. R package version 0.1-1.

[12] Drew Schmidt and Wei-Chen Chen

. getPass: Masked user input, 2017. R package version 0.2-1.

	Introduction
	Installation
	Package Functions

	Clients and Servers: Just the Basics
	The Server
	The Client

	Using remoter Interactively
	Philosophy
	Utility Functions
	Shutting Things Down

	Using remoter in Batch
	Security
	Problems, Bugs, and Other Maladies
	References

