Package ‘renv’

May 27, 2022
Type Package

Title Project Environments
Version 0.15.5

Description A dependency management toolkit for R. Using 'renv', you can create
and manage project-local R libraries, save the state of these libraries to
a 'lockfile', and later restore your library as required. Together, these
tools can help make your projects more isolated, portable, and reproducible.

License MIT + file LICENSE
URL https://rstudio.github.io/renv/

BugReports https://github.com/rstudio/renv/issues
Imports utils

Suggests BiocManager, cli, covr, devtools, knitr, miniUI, packrat,
pak, R6, remotes, reticulate, rmarkdown, rstudioapi, shiny,
testthat, uuid, yaml

Encoding UTF-8
RoxygenNote 7.2.0
VignetteBuilder knitr
NeedsCompilation no

Author Kevin Ushey [aut, cre],
RStudio, PBC [cph]

Maintainer Kevin Ushey <kevin@rstudio.com>
Repository CRAN
Date/Publication 2022-05-26 23:10:03 UTC

R topics documented:

renv-package L. L e e e e e
ACHIVALE o e e e e e e e
autoload L e
checkout e

https://rstudio.github.io/renv/
https://github.com/rstudio/renv/issues

Index

R topics documented:

clean L e e e e e 6
configo 7
COMSENE . . . o v v e e e e e e e e e e e e 12
deactivate L e e e e e e e e 13
dependencies e 14
diagnostics e 16
embed L e e e e 17
BQUIP .+« . e 17
graph . ..o e 18
hiStOTy e e 19
hydrate e 20
mbue e e e 22
NIt . . e e e e e e e 22
install e 25
1s0late L e e e e 28
load e 29
lockfile e 30
lockfiles e e e 31
MIZIate o o e e e e e e e e e e e e e e e 33
modify e 34
paths e 35
PIOJECE . o v vt e e e e e e e e e 38
PUIEE . o o o o e e e e e e e 38
rebuild e 39
record L e e 41
refresh e 42
rehash e 43
TEMOLE . . v v o v o e e e e e e e e e e e e e e 43
TEMOVE . o v v v v v e e e e e e e e e e e e e e e e e e 44
renv_lockfile_from_manifest 45
TEPAT . o v v v o e 46
] (o) ¢ 46
TEVETE . . . o o e e e e e e e e e e e e e e e e e e e 48
TUN . . v e e e e e e e e e e e e e e e e e 49
scaffold L 50
SELHINGS e e 51
snapshot L e 53
SEALUS . . . o . e 55
update e e 57
upgrade e e e 58
USC & v v o e e e e e e e e e e e e e e e e e e 59
use_python e 60

64

renv-package 3

renv-package Project-local Environments for R

Description

Project-local environments for R.

Details

You can use renv to construct isolated, project-local R libraries. Each project using renv will
share package installations from a global cache of packages, helping to avoid wasting disk space on
multiple installations of a package that might otherwise be shared across projects.

Author(s)

Maintainer: Kevin Ushey <kevin@rstudio.com>

Other contributors:

* RStudio, PBC [copyright holder]

See Also
Useful links:

e https://rstudio.github.io/renv/
* Report bugs at https://github.com/rstudio/renv/issues

activate Activate a Project

Description
Activate a project, thereby loading it in the current session and also writing the infrastructure nec-
essary to ensure the project is auto-loaded for newly-launched R sessions.

Usage

activate(project = NULL, profile = NULL)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
profile The profile to be activated. When NULL, the default profile is activated instead.

See vignette("profiles”, package = "renv") for more information.

https://rstudio.github.io/renv/
https://github.com/rstudio/renv/issues

4 autoload

Details

Using activate() will:

1. Load the requested project via load(),

2. Add source("renv/init.R") to the project .Rprofile, thereby instructing newly-launched
R sessions to automatically load the current project.

Normally, activate() is called as part of init() when a project is first initialized. However,
activate() can be used to activate (or re-activate) an renv project — for example, if the project
was shared without the auto-loader included in the project .Rprofile, or because that project was
previously deactivated (via deactivate()).

Value

The project directory, invisibly. Note that this function is normally called for its side effects.

See Also

Other renv: deactivate()

Examples

Not run:

activate the current project
renv::activate()

activate a separate project
renv::activate("~/projects/analysis”)

End(Not run)

autoload Auto-load the Active Project

Description
Automatically load the renv project associated with a particular directory. renv will search parent
directories for the renv project root; if found, that project will be loaded via load().

Usage

autoload()

checkout 5

Details

To enable the renv auto-loader, you can place:
renv::autoload()

into your site-wide or user .Rprofile to ensure that renv projects are automatically loaded for any
newly-launched R sessions, even if those R sessions are launched within the sub-directory of an
renv project.

If you’d like to launch R within the sub-directory of an renv project without auto-loading renv,
you can set the environment variable:

RENV_AUTOLOAD_ENABLED = FALSE

before starting R.

Note that renv: :autoload() is only compatible with projects using renv @.15.3 or newer, as it
relies on features within the renv/activate.R script that are only generated with newer versions
of renv.

checkout Checkout a Repository

Description

renv: :checkout () can be used to install the latest packages available from the requested reposi-
tories.

Usage

checkout(
repos = getOption("repos”),
packages = NULL,
clean = FALSE,
project = NULL

)
Arguments
repos The R package repositories to check out. When NULL (the default), renv will at-
tempt to determine the packages used in the project via a call to dependencies().
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
packages The packages to be installed. When NULL (the default), all packages currently

used in the project will be installed.

6 clean

clean Boolean; remove packages not recorded in the lockfile from the target library?
Use clean = TRUE if you’d like the library state to exactly reflect the lockfile
contents after restore().

project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.

clean Clean a Project

Description

Clean up a project and its associated R libraries.

Usage
clean(project = NULL, ..., actions = NULL, prompt = interactive())
Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
actions The set of clean actions to take. See the documentation in Actions for a list of
available actions, and the default actions taken when no actions are supplied.
prompt Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirmis accepted as an alias for prompt.
Value

The project directory, invisibly. Note that this function is normally called for its side effects.

Actions

The following clean actions are available:

package.locks During package installation, R will create package locks in the library path, typi-
cally named 00LOCK-<package>. On occasion, if package installation fails or R is terminated
while installing a package, these locks can be left behind and will inhibit future attempts to
reinstall that package. Use this action to remove such left-over package locks.

library.tempdirs During package installation, R may create temporary directories with names
of the form file\w{12}, and on occasion those files can be left behind even after they are no
longer in use. Use this action to remove such left-over directories.

config 7

system.library In general, it is recommended that only packages distributed with R are installed
into the system library (the library path referred to by .Library). Use this action to remove
any user-installed packages that have been installed to the system library.

Because this action is destructive, it is by default never run — it must be explicitly requested
by the user.

unused.packages Remove packages that are installed in the project library, but no longer appear
to be used in the project sources.

Because this action is destructive, it is by default only run in interactive sessions when prompt-
ing is enabled.

Examples

Not run:

clean the current project
renv::clean()

End(Not run)

config User-Level Configuration of renv

Description

Configure different behaviors of renv.

Usage

config

Format

An object of class 1ist of length 36.

Details
For a given configuration option:
1. If an R option of the form renv.config.<name> is available, then that option’s value will be
used;

2. If an environment variable of the form RENV_CONFIG_<NAME> is available, then that option’s
value will be used;

3. Otherwise, the default for that particular configuration value is used.
Any periods (.)s in the option name are transformed into underscores (_) in the environment vari-

able name, and vice versa. For example, the configuration option auto. snapshot could be config-
ured as:

8 config

e options(renv.config.auto.snapshot = <...>)
* Sys.setenv(RENV_CONFIG_AUTO_SNAPSHOT = <...>)

Note that if both the R option and the environment variable are defined, the R option will be used
instead. Environment variables can be more useful when you want a particular configuration to be
automatically inherited by child processes; if that behavior is not desired, then the R option may be
preferred.

If you want to set and persist these options across multiple projects, it is recommended that you
set them in a a startup .Renviron file; e.g. in your own ~/.Renviron, or in the R installation’s
etc/Rprofile.site file. See Startup for more details.

Configuration

The following renv configuration options are available:

renv.config.activate.prompt: Automatically prompt the user to activate the current project, if
it does not appear to already be activated? This is mainly useful to help ensure that calls to
renv::snapshot() and renv::restore() use the project library. See ?renv::activate for
more details. Defaults to TRUE.

renv.config.autoloader.enabled: Enable the renv auto-loader? When FALSE, renv will not not
automatically load a project containing an renv autoloader within its .Rprofile. In addition,
renv will not write out the project auto-loader in calls to renv: : init (). Defaults to TRUE.

renv.config.auto.snapshot: Automatically snapshot changes to the project library after a new
package is installed? Defaults to FALSE.

renv.config.bitbucket.host: The default Bitbucket host to be used during package retrieval.
Defaults to "api.bitbucket.org/2.0".

renv.config.copy.method: The method to use when attempting to copy directories. See Copy
Methods for more information. Defaults to "auto”.

renv.config.connect.timeout: The amount of time to spend (in seconds) when attempting to
download a file. Only applicable when the curl downloader is used. Defaults to 20L.

renv.config.connect.retry: The number of times to attempt re-downloading a file, when transient
download errors occur. Only applicable when the curl downloader is used. Defaults to 3L.

renv.config.cache.enabled: Enable the global renv package cache? When active, renv will
install packages into a global cache, and link or copy packages from the cache into your R library
as appropriate. This can greatly save on disk space and install time when R packages are shared
across multiple projects in the same environment. Defaults to TRUE.

renv.config.cache.symlinks: Symlink packages from the global renv package cache into your
project library? When TRUE, renv will use symlinks (or, on Windows, junction points) to reference
packages installed in the cache. Set this to FALSE if you’d prefer to copy packages from the
cache into your project library. Enabled by default, except on Windows where this feature is only
enabled if the project library and global package cache are on the same volume. Defaults to NULL.

config 9

renv.config.dependency.errors: Many renv APIs require the enumeration of your project’s R
package dependencies. This option controls how errors that occur during this enumeration are
handled. By default, errors are reported but are non-fatal. Set this to "fatal” to force errors to be
fatal, and "ignored" to ignore errors altogether. See dependencies() for more details. Defaults
to "reported”.

renv.config.exported.functions: When library(renv) is called, should its exports be placed on
the search path? Set this to FALSE to avoid issues that can arise with, for example, renv: :load()
masking base: :1oad(). In general, we recommend referencing renv functions from its names-
pace explicitly; e.g. prefer renv: :snapshot() over snapshot(). By default, all exported renv
functions are attached and placed on the search path, for backwards compatibility with existing
scripts using renv. Defaults to "*".

renv.config.external.libraries: A character vector of external libraries, to be used in tandem with
your projects. Be careful when using external libraries: it’s possible that things can break within
a project if the version(s) of packages used in your project library happen to be incompatible with
packages in your external libraries; for example, if your project required xyz 1.0 but xyz 1.1
was present and loaded from an external library. Can also be an R function that provides the
paths to external libraries. Library paths will be expanded via .expand_R_libs_env_var() as
necessary. Defaults to NULL.

renv.config.filebacked.cache: Enable the renv file-backed cache? When enabled, renv will
cache the contents of files that are read (e.g. DESCRIPTION files) in memory, thereby avoiding
re-reading the file contents from the filesystem if the file has not changed. renv uses the file mtime
to determine if the file has changed; consider disabling this if mtime is unreliable on your system.
Defaults to TRUE.

renv.config.github.host: The default GitHub host to be used during package retrieval. Defaults
to "api.github.com”.

renv.config.gitlab.host: The default GitLab host to be used during package retrieval. Defaults to
"gitlab.com”.

renv.config.hydrate.libpaths: A character vector of library paths, to be used by hydrate()
when attempting to hydrate projects. When empty, the default set of library paths (as documented
in ?hydrate) are used instead. See hydrate() for more details. Defaults to NULL.

renv.config.install.build: Should downloaded package archives be built (via R CMD build)
before installation? When TRUE, package vignettes will also be built as part of package installa-
tion. Because building packages before installation may require packages within Suggests’ to be
available, this option is not enabled by default. Defaults to FALSE.

renv.config.install.shortcuts: Allow for a set of "shortcuts’ when installing packages with renv?
When enabled, if renv discovers that a package to be installed is already available within the user
or site libraries, then it will install a local copy of that package. Defaults to TRUE.

renv.config.install.staged: DEPRECATED: Please use renv.config.install.transactional
instead. Defaults to TRUE.

10

config

renv.config.install.transactional: Perform a transactional install of packages during install and
restore? When enabled, renv will first install packages into a temporary library, and later copy or
move those packages back into the project library only if all packages were successfully down-
loaded and installed. This can be useful if you’d like to avoid mutating your project library if
installation of one or more packages fails. Defaults to TRUE.

renv.config.install.verbose: Be verbose when installing R packages from sources? When TRUE,
renv will stream any output generated during package build + installation to the console. Defaults
to FALSE.

renv.config.locking.enabled: Use interprocess locks when invoking methods which might mu-
tate the project library? Enable this to allow multiple processes to use the same renv project,
while minimizing risks relating to concurrent access to the project library. Disable this if you
encounter locking issues. Locks are stored as files within the project at renv/lock; if you need
to manually remove a stale lock you can do so via unlink("renv/lock”, recursive = TRUE).
Defaults to FALSE.

renv.config.mran.enabled: Attempt to download binaries from MRAN during restore? See
vignette("mran"”, package = "renv") for more details. Defaults to TRUE.

renv.config.pak.enabled: Use the pak package to install packages? Defaults to FALSE.

renv.config.repos.override: Override the R package repositories used during restore()? Pri-
marily useful for deployment / continuous integration, where you might want to enforce the usage
of some set of repositories over what is defined in renv.lock or otherwise set by the R session.
Defaults to NULL.

renv.config.rspm.enabled: Boolean; enable RSPM integration for renv projects? When TRUE,
renv will attempt to transform the repository URLs used by RSPM into binary URLSs as appropri-
ate for the current platform. Set this to FALSE if you’d like to continue using source-only RSPM
URLSs, or if you find that renv is improperly transforming your repository URLs. Defaults to
TRUE.

renv.config.sandbox.enabled: Enable sandboxing for renv projects? When active, renv will
attempt to sandbox the system library, preventing non-system packages installed in the system
library from becoming available in renv projects. (That is, only packages with priority "base”
or "recommended”, as reported by installed.packages(), are made available.) Sandboxing is
done by linking or copying system packages into a separate library path, and then instructing R to
use that library path as the system library path. In some environments, this action can take a large
amount of time — in such a case, you may want to disable the renv sandbox. Defaults to FALSE.

renv.config.shims.enabled: Should renv shims be installed on package load? When enabled,
renv will install its own shims over the functions install.packages(), update.packages()
and remove.packages(), delegating these functions to install(), update() and remove() as
appropriate. Defaults to TRUE.

renv.config.snapshot.validate: Validate R package dependencies when calling snapshot? When
TRUE, renv will attempt to diagnose potential issues in the project library before creating renv. lock
— for example, if a package installed in the project library depends on a package which is not cur-
rently installed. Defaults to TRUE.

https://mran.microsoft.com/
https://pak.r-lib.org/

config 11

renv.config.startup.quiet: Be quiet during startup? When set, renv will not display the typical
Project <path> loaded. [renv <version>] banner on startup. Defaults to NULL.

renv.config.synchronized.check: Check that the project library is synchronized with the lockfile
on load? Defaults to TRUE.

renv.config.updates.check: Check for package updates when the session is initialized? This can
be useful if you’d like to ensure that your project lockfile remains up-to-date with packages as
they are released on CRAN. Defaults to FALSE.

renv.config.updates.parallel: Check for package updates in parallel? This can be useful when a
large number of packages installed from non-CRAN remotes are installed, as these packages can
then be checked for updates in parallel. Defaults to 2L.

renv.config.user.environ: Load the user R environ (typically located at ~/.Renviron) when
renv is loaded? Defaults to TRUE.

renv.config.user.library: Include the user library on the library paths for your projects? Note that

this risks breaking project encapsulation and is not recommended for projects which you intend to

share or collaborate on with other users. See also the caveats for the renv.config.external.libraries
option. Defaults to FALSE.

renv.config.user.profile: Load the user R profile (typically located at ~/.Rprofile) when renv
is loaded? This is disabled by default, as running arbitrary code from the the user ~/.Rprofile
could risk breaking project encapsulation. If your goal is to set environment variables that are vis-
ible within all renv projects, then placing those in ~/.Renviron is often a better choice. Defaults
to FALSE.

Copy Methods

If you find that renv is unable to copy some directories in your environment, you may want to try
setting the copy.method option. By default, renv will try to choose a system tool that is likely to
succeed in copying files on your system — robocopy on Windows, and cp on Unix. renv will also
instruct these tools to preserve timestamps and attributes when copying files. However, you can
select a different method as appropriate.

The following methods are supported:

auto Use robocopy on Windows, and cp on Unix-alikes.

R Use R’s built-in file. copy() function.

cp Use cp to copy files.

robocopy Use robocopy to copy files. (Only available on Windows.)
rsync Use rsync to copy files.

You can also provide a custom copy method if required; e.g.

options(renv.config.copy.method = function(src, dst) {
copy a file from 'src' to 'dst'

D

12 consent

Note that renv will always first attempt to copy a directory first to a temporary path within the target
folder, and then rename that temporary path to the final target destination. This helps avoid issues
where a failed attempt to copy a directory could leave a half-copied directory behind in the final
location.

Project-Local Settings

For settings that should persist alongside a particular project, the various settings available in set-
tings can be used.

Examples

disable automatic snapshots
options(renv.config.auto.snapshot = FALSE)

disable with environment variable
Sys.setenv(RENV_CONFIG_AUTO_SNAPSHOT = FALSE)

consent Consent to usage of renv

Description

Provide consent to renv, allowing it to write and update certain files on your filesystem.

Usage
consent(provided = FALSE)

Arguments
provided The default provided response. If you need to provide consent from a non-
interactive R session, you can invoke renv::consent(provided = TRUE) ex-
plicitly.
Details

As part of its normal operation, renv will write and update some files in your project directory, as
well as an application-specific cache directory. These paths are documented within paths.

In accordance with the CRAN Repository Policy, renv must first obtain consent from you, the user,
before these actions can be taken. Please call renv: :consent () first to provide this consent.

You can also set the R option:
options(renv.consent = TRUE)

to implicitly provide consent for e.g. non-interactive R sessions.

https://cran.r-project.org/web/packages/policies.html

deactivate 13

Value

TRUE if consent is provided, or an R error otherwise.

deactivate Deactivate a Project

Description

Use deactivate() to remove the infrastructure used by renv to activate projects for newly-launched
R sessions. In particular, this implies removing the requisite code from the project .Rprofile that
automatically activates the project when new R sessions are launched in the project directory.

Usage

deactivate(project = NULL)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Value

The project directory, invisibly. Note that this function is normally called for its side effects.

See Also

Other renv: activate()

Examples

Not run:

deactivate the currently-activated project
renv::deactivate()

End(Not run)

14 dependencies

dependencies Find R Package Dependencies in a Project

Description

Find R packages used within a project.

Usage
dependencies(
path = getwd(),
root = NULL,

L

progress = TRUE,

errors = c("reported”, "fatal”, "ignored”),
dev = FALSE
)
Arguments
path The path to a (possibly multi-mode) R file, or a directory containing such files.
By default, all files within the current working directory are checked, recur-
sively.
root The root directory to be used for dependency discovery. Defaults to the active
project directory. You may need to set this explicitly to ensure that your project’s
.renvignores (if any) are properly handled.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
progress Boolean; report progress output while enumerating dependencies?
errors How should errors that occur during dependency enumeration be handled? See
Errors for more details.
dev Boolean; include *development’ dependencies as well? That is, packages which
may be required during development but are unlikely to be required during run-
time for your project. By default, only runtime dependencies are returned.
Details

dependencies() will crawl files within your project, looking for R files and the packages used
within those R files. This is done primarily by parsing the code and looking for calls of the form:

e library(package)

* require(package)

* requireNamespace("package")

e package: :method()

For R package projects, dependencies expressed in the DESCRIPTION file will also be discovered.
Note that the rmarkdown package is required in order to crawl dependencies in R Markdown files.

dependencies 15

Value

An R data.frame of discovered dependencies, mapping inferred package names to the files in
which they were discovered.

Suppressing Errors

Depending on how you’ve structured your code, renv may emit errors when attempting to enumer-
ate dependencies within .Rmd / .Rnw documents. For code chunks that you’d explicitly like renv to
ignore, you can include renv.ignore=TRUE in the chunk header. For example:

***{r chunk-label, renv.ignore=TRUE}
code in this chunk will be ignored by renv

ASENRN

Similarly, if you’d like renv to parse a chunk that is otherwise ignored (e.g. because it has
eval=FALSE as a chunk header), you can set:

***{r chunk-label, eval=FALSE, renv.ignore=FALSE}
code in this chunk will _not be ignored

ANENEN

Ignoring Files

By default, renv will read your project’s .gitignores (if any) to determine whether certain files
or folders should be included when traversing directories. If preferred, you can also create a
.renvignore file (with entries of the same format as a standard .gitignore file) to tell renv
which files to ignore within a directory. If both . renvignore and .gitignore exist within a folder,
the . renvignore will be used in lieu of the .gitignore.

See https://git-scm.com/docs/gitignore for documentation on the . gitignore format. Some
simple examples here:

ignore all R Markdown files
*.Rmd

ignore all data folders
data/

ignore only data folders from the root of the project
/data/

Errors

renv’s attempts to enumerate package dependencies in your project can fail — most commonly,
because of parse errors in your R code. The errors parameter can be used to control how renv
responds to errors that occur.

Name Action
"reported” Errors are reported to the user, but are otherwise ignored.

https://git-scm.com/docs/gitignore

16 diagnostics

"fatal” Errors are fatal and stop execution.
"ignored” Errors are ignored and not reported to the user.

Depending on the structure of your project, you may want renv to ignore errors that occur when
attempting to enumerate dependencies. However, a more robust solution would be to use an
.renvignore file to tell renv not to scan such files for dependencies, or to configure the project to
require explicit dependency management (renv: :settings$snapshot.type("explicit”)) and
enumerate your dependencies in a project DESCRIPTION file.

Development Dependencies

renv attempts to distinguish between ’development’ dependencies and 'runtime’ dependencies. For
example, you might rely on e.g. devtools and roxygen2 during development for a project, but may
not actually require these packages at runtime.

Examples
Not run:
find R package dependencies in the current directory

renv: :dependencies()

End(Not run)

diagnostics Print a Diagnostics Report

Description
Print a diagnostics report, summarizing the state of a project using renv. This report can occasion-
ally be useful when diagnosing issues with renv.

Usage

diagnostics(project = NULL)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Value

This function is normally called for its side effects.

https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=roxygen2

embed 17

embed Embed a Lockfile

Description

Use embed() to embed a compact representation of an renv lockfile directly within a file, using
use () to automatically provision an R library when that script is run.

Usage
embed(path = NULL, ..., lockfile = NULL, project = NULL)
Arguments
path The path to an R or R Markdown script.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
lockfile The path to an renv lockfile. When NULL (the default), the project lockfile will
be read (if any); otherwise, a new lockfile will be generated from the current
library paths.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Details

Using embed() is useful if you’d like to be able to share "reproducible” R scripts — when these
scripts are sourced, the generated call to renv: :use() will ensure that an R library with the re-
quested packages is automatically provisioned.

equip Install Required System Libraries

Description
Equip your system with libraries commonly-used during compilation of R packages. Currently only
supported on Windows.

Usage

equip()

Value

This function is normally called for its side effects.

18 graph

Examples
Not run:
download useful build tools

renv::equip()

End(Not run)

graph Generate a Package Dependency Graph

Description

Generate a package dependency graph.

Usage
graph(

root = NULL,

leaf = NULL,

suggests = FALSE,

enhances = FALSE,

resolver = NULL,

renderer = c("DiagrammeR"”, "visNetwork"),

attributes = list(),
project = NULL

)
Arguments

root The top-most package dependencies of interest in the dependency graph.

leaf The bottom-most package dependencies of interest in the dependency graph.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

suggests Should suggested packages be included within the dependency graph?

enhances Should enhanced packages be included within the dependency graph?

resolver An R function accepting a package name, and returning the contents of its
DESCRIPTION file (as an R data.frame or list). When NULL (the default),
an internal resolver is used.

renderer Which package should be used to render the resulting graph?

attributes An R list of graphViz attributes, mapping node names to attribute key-value

pairs. For example, to ask graphViz to prefer orienting the graph from left to
right, you canuse list(graph = c(rankdir = "LR")). See https://graphviz.
org/doc/info/attrs.html for a full list of the attributes supported by graphViz.

https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/attrs.html

history 19

project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.

Examples

Not run:
graph the relationship between devtools and rlang
graph(root = "devtools”, leaf = "rlang")

figure out why a project depends on 'askpass'
graph(leaf = "askpass")

End(Not run)

history View Lockfile History

Description
Use your version control system to find prior versions of the renv. lock file that have been used in
your project.

Usage

history(project = NULL)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Details

The history() function is currently only implemented for projects using git for version control.

Value

An R data. frame, summarizing the commits in which renv.lock has been mutated.

Examples

Not run:

get history of previous versions of renv.lock in VCS
db <- renv::history()

20 hydrate

choose an older commit
commit <- db$commit[5]

revert to that version of the lockfile
renv::revert(commit = commit)

End(Not run)

hydrate Hydrate a Project

Description

Discover the R packages used within a project, and then install those packages into the active
library. This effectively allows you to fork the state of your default R libraries for use within a
project library.

Usage

hydrate(
packages = NULL,

library = NULL,
update = FALSE,
sources = NULL,

project = NULL
)
Arguments

packages The set of R packages to install. When NULL, the set of packages as reported by
dependencies() is used.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

library The R library to be hydrated. When NULL, the active library as reported by
.libPaths() is used.

update Boolean; should hydrate() attempt to update already-installed packages if the
requested package is already installed in the project library? Set this to "all" if
you’d like all packages to be refreshed from the source library if possible.

sources A set of library paths from which renv should attempt to draw packages. See
Sources for more details.

project The project directory. If NULL, then the active project will be used. If no project

is currently active, then the current working directory is used instead.

hydrate 21

Details

It may occasionally be useful to use renv: :hydrate() to update the packages used within a project
that has already been initialized. However, be warned that it’s possible that the packages pulled in
may not actually be compatible with the packages installed in the project library, so you should
exercise caution when doing so.

Value

A named R list, giving the packages that were used for hydration as well as the set of packages
which were not found.

Sources

hydrate() attempts to re-use packages already installed on your system, to avoid unnecessary at-
tempts to download and install packages from remote sources. When NULL (the default), hydrate()
will attempt to discover R packages from the following sources (in order):

* The user library,
* The site library,
e The system library,

¢ The renv cache.

If package is discovered in one of these locations, renv will attempt to copy or link that package
into the requested library as appropriate.

Missing Packages

If renv discovers that your project depends on R packages not currently installed in your user
library, then it will attempt to install those packages from the active R repositories.

Examples
Not run:

hydrate the active library
renv::hydrate()

End(Not run)

22 init

imbue Imbue an renv Installation

Description
Imbue an renv installation into a project, thereby making the requested version of renv available
within.

Usage

imbue(project = NULL, version = NULL, quiet = FALSE)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
version The version of renv to install. If NULL, the version of renv currently installed
will be used. The requested version of renv will be retrieved from the renv
public GitHub repository, at https://github.com/rstudio/renv.
quiet Boolean; avoid printing output during install of renv?
Details

Normally, this function does not need to be called directly by the user; it will be invoked as required
by init() and activate().

Value

The project directory, invisibly. Note that this function is normally called for its side effects.

init Initialize a Project

Description

Discover packages used within the current project, and then initialize a project-local private R
library with those packages. The currently-installed versions of any packages in use (as detected
within the default R libraries) are then installed to the project’s private library.

https://github.com/rstudio/renv

init 23

Usage
init(
project = NULL,
profile = NULL,
settings = NULL,

bare = FALSE,
force = FALSE,
repos = NULL,

bioconductor = NULL,
restart = interactive()

)
Arguments

project The project directory. The R working directory will be changed to match the
requested project directory.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

profile The profile to be activated. When NULL, the default profile is activated instead.
See vignette("profiles”, package = "renv") for more information.

settings A list of settings to be used with the newly-initialized project.

bare Boolean; initialize the project without attempting to discover and install R pack-
age dependencies?

force Boolean; force initialization? By default, renv will refuse to initialize the home
directory as a project, to defend against accidental mis-usages of init().

repos The R repositories to be used in this project. By default, the active repositories

(as determined by getOption("repos")) are used.

bioconductor The version of Bioconductor to be used with this project. Setting this may be
appropriate if renv is unable to determine that your project depends on a pack-
age normally available from Bioconductor. Set this to TRUE to use the default
version of Bioconductor recommended by the BiocManager package.

restart Boolean; attempt to restart the R session after initializing the project? A ses-
sion restart will be attempted if the "restart” R option is set by the frontend
embedding R.

Details

The primary steps taken when initializing a new project are:

1. R package dependencies are discovered within the R files used within the project with dependencies();

2. Discovered packages are copied into the renv global package cache, so these packages can be
re-used across future projects as necessary;

3. Any missing R package dependencies discovered are then installed into the project’s private
library;

24 init

4. A lockfile capturing the state of the project’s library is created with snapshot();

5. The project is activated with activate().
If renv sees that the associated project has already been initialized and has a lockfile, then it will
attempt to infer the appropriate action to take based on the presence of a private library. If no library
is available, renv will restore the private library from the lockfile; if one is available, renv will ask

if you want to perform a ’standard’ init, restore from the lockfile, or activate the project without
taking any further action.

Value

The project directory, invisibly. Note that this function is normally called for its side effects.

Infrastructure
renv will write or amend the following files in the project:
e .Rprofile: An auto-loader will be installed, so that new R sessions launched within the
project are automatically loaded.

* renv/activate.R: This script is run by the previously-mentioned .Rprofile to load the
project.

* renv/.gitignore: This is used to instruct Git to ignore the project’s private library, as it
should normally not be committed to a version control repository.

e .Rbuildignore: to ensure that the renv directory is ignored during package development;
e.g. when attempting to build or install a package using renv.

Examples

Not run:
disable automatic snapshots
auto.snapshot <- getOption("renv.config.auto.snapshot”)

options(renv.config.auto.snapshot = FALSE)

initialize a new project (with an empty R library)
renv::init(bare = TRUE)

install digest 0.6.19
renv::install("digest@0.6.19")

save library state to lockfile
renv: :snapshot ()

remove digest from library
renv::remove("digest"”)

check library status
renv::status()

restore lockfile, thereby reinstalling digest 0.6.19

install

renv::restore()

25

restore automatic snapshots
options(renv.config.auto.snapshot = auto.snapshot)

End(Not run)

install

Install Packages

Description

Install one or more R packages, from a variety of remote sources.

Usage

install(

packages

NULL,

library = NULL,

type = NULL,

rebuild = FALSE,

repos = NULL,

prompt = interactive(),
project = NULL

Arguments

packages

library

type

rebuild

repos

A character vector of R packages to install. Required package dependencies
(Depends, Imports, LinkingTo) will be installed as required.

Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

The R library to be used. When NULL, the active project library will be used
instead.

The type of package to install ("source" or "binary"). Defaults to the value of
getOption("pkgType").

Force packages to be rebuilt, thereby bypassing any installed versions of the
package available in the cache? This can either be a boolean (indicating that all
installed packages should be rebuilt), or a vector of package names indicating
which packages should be rebuilt.

The repositories to use during restore, for packages installed from CRAN or an-
other similar R package repository. When set, this will override any repositories
declared in the lockfile. See also the repos.override option in config for an
alternate way to provide a repository override.

26

install

prompt Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirmis accepted as an alias for prompt.

project The project directory. If NULL, then the active project will be used. If no project

is currently active, then the current working directory is used instead.

Details

install() uses the same machinery as restore() when installing packages. In particular, this
means that the local cache of package installations is used when possible. This helps to avoid re-
downloading packages that have already been downloaded before, and re-compiling packages from
source when a binary copy of that package is already available.

Value

A named list of package records which were installed by renv.

Project DESCRIPTION Files

If your project contains a DESCRIPTION file, then calling install() without any arguments will
instruct renv to install the latest versions of all packages as declared within that DESCRIPTION
file’s Depends, Imports and LinkingTo fields; similar to how an R package might declare its
dependencies.

If you have one or more packages that you’d like to install from a separate remote source, this can be
accomplished by adding a Remotes: field to the DESCRIPTION file. See vignette("dependencies”,
package = "devtools"”) for more details. Alternatively, view the vignette online at https://
devtools.r-lib.org/articles/dependencies.html.

Note that install() does not use the project’s renv.lock when determining sources for packages
to be installed. If you want to install packages using the sources declared in the lockfile, consider
using restore() instead. Otherwise, you can declare the package sources in your DESCRIPTION’s
Remotes: field.

Remotes Syntax

renv supports a subset of the remotes syntax used for package installation, as described in https:
//remotes.r-1lib.org/articles/dependencies.html. See the examples below for more de-
tails.

Bioconductor

Packages from Bioconductor can be installed by using the bioc: : prefix. For example,
renv::install("bioc::Biobase")

will install the latest-available version of Biobase from Bioconductor.

renv depends on BiocManager (or, for older versions of R, BiocInstaller) for the installation of
packages from Bioconductor. If these packages are not available, renv will attempt to automatically
install them before fulfilling the installation request.

https://devtools.r-lib.org/articles/dependencies.html
https://devtools.r-lib.org/articles/dependencies.html
https://remotes.r-lib.org/articles/dependencies.html
https://remotes.r-lib.org/articles/dependencies.html

install 27

Package Configuration

Many R packages have a configure script that needs to be run to prepare the package for instal-
lation. Arguments and environment variables can be passed through to those scripts in a manner
similar to install.packages. In particular, the R options configure.args and configure.vars can
be used to map package names to their appropriate configuration. For example:

installation of RNetCDF may require us to set include paths for netcdf
configure.args = c(RNetCDF = "--with-netcdf-include=/usr/include/udunits2"”))
options(configure.args = configure.args)

renv::install(”"RNetCDF")

This could also be specified as, for example,

options(
configure.args.RNetCDF = "--with-netcdf-include=/usr/include/udunits2”

)
renv::install(”"RNetCDF")

Similarly, additional flags that should be passed to R CMD INSTALL can be set via the install.opts
R option:

installation of R packages using the Windows Subsystem for Linux
may require the ‘--no-lock' flag to be set during install
options(install.opts = "--no-lock")

renv::install(”"xml2")

Examples

Not run:

install the latest version of 'digest'
renv::install("digest"”)

install an old version of 'digest' (using archives)
renv::install("digest@@.6.18")

install 'digest' from GitHub (latest dev. version)
renv::install("eddelbuettel/digest")

install a package from GitHub, using specific commit
renv::install("eddelbuettel/digest@df55b00bff33e945246eff2586717452e635032f")

install a package from Bioconductor
(note: requires the BiocManager package)
renv::install("bioc: :Biobase")

install a package, specifying path explicitly
renv::install("~/path/to/package”)

28 isolate

install packages as declared in the project DESCRIPTION file
renv::install()

End(Not run)

isolate Isolate a Project

Description
Copy packages from the renv cache directly into the project library, so that the project can continue
to function independently of the renv cache.

Usage

isolate(project = NULL)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Details

After calling isolate(), renv will still be able to use the cache on future install()sand restore()s.
If you’d prefer that renv copy packages from the cache, rather than use symlinks, you can set the
renv configuration option:

options(renv.config.cache.symlinks = FALSE)

to force renv to copy packages from the cache, as opposed to symlinking them. If you’d like to
disable the cache altogether for a project, you can use:

settings$use.cache(FALSE)

to explicitly disable the cache for the project.

Value

The project directory, invisibly. Note that this function is normally called for its side effects.

Examples

Not run:

isolate a project
renv::isolate()

End(Not run)

load 29

load Load a Project

Description

Load an renv project.

Usage

load(project = NULL, quiet = FALSE)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
quiet Boolean; be quiet during load?
Details

Calling renv: : 1load() will set the session’s library paths to use a project-local library, and perform
some other work to ensure the project is properly isolated from other packages on the system.

Normally, renv: :1load() is called automatically by the project auto-loader written to the project
.Rprofile by init(). This allows R sessions launched from the root of an renv project directory
to automatically load that project, without requiring explicit action from the user. However, if
preferred or necessary, one can call renv: :load("<project>") to explicitly load an renv project
located at a particular path.

Use activate() to activate (or re-activate) an renv project, so that newly-launched R sessions can
automatically load the associated project.
Value

The project directory, invisibly. Note that this function is normally called for its side effects.

Examples

Not run:

load a project -- note that this is normally done automatically
by the project's auto-loader, but calling this explicitly to

load a particular project may be useful in some circumstances
renv::load()

End(Not run)

30 lockfile

lockfile Programmatically Create and Modify a Lockfile

Description

This function provides an API for creating and modifying renv lockfiles. This can be useful when
you’d like to programmatically generate or modify a lockfile — for example, because you want to
update or change a package record in an existing lockfile.

Usage

lockfile(file = NULL, project = NULL)

Arguments
file The path to an existing lockfile. When no lockfile is provided, a new one will
be created based on the current project context. If you want to create a blank
lockfile, use file = NA instead.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
See Also

lockfiles, for a description of the structure of an renv lockfile.

Examples

Not run:
lock <- lockfile("renv.lock")

set the repositories for a lockfile
lock$repos(CRAN = "https://cran.r-project.org")

depend on digest 0.6.22
lock$add(digest = "digest@@.6.22")

write to file
lock$write("renv.lock")

End(Not run)

lockfiles 31

lockfiles Lockfiles

Description

A lockfile records the state of a project at some point in time.

Details
A lockfile captures the state of a project’s library at some point in time. In particular, the package
names, their versions, and their sources (when known) are recorded in the lockfile.

Projects can be restored from a lockfile using the restore() function. This implies reinstalling
packages into the project’s private library, as encoded within the lockfile.

While lockfiles are normally generated and used with snapshot() / restore(), they can also be
edited by hand if so desired. Lockfiles are written as . json, to allow for easy consumption by other
tools.

An example lockfile follows:

{
"R": {
"Version": "3.6.1",
"Repositories”: [
{
"Name": "CRAN",
"URL": "https://cloud.r-project.org”
3
]
3,
"Packages"”: {
"markdown”: {
"Package": "markdown",
"Version”: "1.0",
"Source”: "Repository”,
"Repository”: "CRAN",
"Hash": "4584a57f565dd7987d59dda3a02cfb41"”
3
"mime”: {
"Package”: "mime”,
"Version": "0.7",
"Source"”: "Repository”,
"Repository”: "CRAN",
"Hash": "908d95cchfd1dd274073ef@7a7¢c93934"
3
3
}

The sections used within a lockfile are described next.

32 lockfiles

[renv]

Information about the version of renv used to manage this project.

Version The version of the renv package used with this project.

[R]

Properties related to the version of R associated with this project.

Version The version of R used.
Repositories The R repositories used in this project.

[Packages]

R package records, capturing the packages used or required by a project at the time when the lockfile
was generated.

Package The package name.

Version The package version.

Source The location from which this package was retrieved.

Repository The name of the repository (if any) from which this package was retrieved.
Hash (Optional) A unique hash for this package, used for package caching.

Additional remote fields, further describing how the package can be retrieved from its corresponding
source, will also be included as appropriate (e.g. for packages installed from GitHub).

[Python]
Metadata related to the version of Python used with this project (if any).
Version The version of Python being used.

Type The type of Python environment being used ("virtualenv", "conda", "system")
Name The (optional) name of the environment being used.

Note that the Name field may be empty. In that case, a project-local Python environment will be
used instead (when not directly using a system copy of Python).

See Also

Other reproducibility: restore(), snapshot()

migrate 33

migrate Migrate a Project from Packrat to renv

Description

Migrate a project’s infrastructure from Packrat to renv.

Usage
migrate(
project = NULL,
packrat = c("lockfile”, "sources”, "library”, "options”, "cache")
)
Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
packrat Components of the Packrat project to migrate. See the default argument list for
components of the Packrat project that can be migrated. Select a subset of those
components for migration as appropriate.
Value

The project directory, invisibly. Note that this function is normally called for its side effects.

Migration

When migrating Packrat projects to renv, the set of components migrated can be customized using
the packrat argument. The set of components that can be migrated are as follows:

Name Description

lockfile Migrate the Packrat lockfile (packrat/packrat.lock) to the renv lockfile (renv.lock).

sources Migrate package sources from the packrat/src folder to the renv sources folder. Currently, only CRAN packag
library Migrate installed packages from the Packrat library to the renv project library.

options Migrate compatible Packrat options to the renv project.

cache Migrate packages from the Packrat cache to the renv cache.
Examples
Not run:

migrate Packrat project infrastructure to renv
renv::migrate()

End(Not run)

34 modify

modify Modify a Lockfile

Description

Modify a project’s lockfile, either interactively or non-interactively.

Usage

modify(project = NULL, changes = NULL)

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
changes A list of changes to be merged into the lockfile. When NULL (the default), the
lockfile is instead opened for interactive editing.
Details

After edit, if the lockfile edited is associated with the active project, any state-related changes (e.g.
to R repositories) will be updated in the current session.

Value

The project directory, invisibly. Note that this function is normally called for its side effects.

Examples
Not run:
modify an existing lockfile

if (interactive())
renv: :modify()

End(Not run)

paths 35

paths Path Customization

Description

Access the paths that renv uses for global state storage.

Usage

paths

Format

An object of class 1ist of length 5.

Details

By default, renv collects state into these folders:

Platform Location

Linux ~/.local/share/renv

macOS ~/Library/Application Support/renv
Windows %LOCALAPPDATA%/renv

For new installations of renv using R (>= 4.0.0), renv will use tools: :R_user_dir() to resolve
the root directory. If an renv root directory has already been created in one of the old locations,
that will still be used. This change was made to comply with the CRAN policy requirements of R
packages. By default, these paths resolve as:

Platform Location

Linux ~/.cache/R/renv

macOS ~/Library/Caches/org.R-project.R/R/renv
Windows %LOCALAPPDATA%/R/cache/R/renv

If desired, this path can be customized by setting the RENV_PATHS_ROOT environment variable. This
can be useful if you’d like, for example, multiple users to be able to share a single global cache.

The various state sub-directories can also be individually adjusted, if so desired (e.g. you’d prefer to
keep the cache of package installations on a separate volume). The various environment variables
that can be set are enumerated below:

Environment Variable Description

RENV_PATHS_ROOT The root path used for global state storage.
RENV_PATHS_LIBRARY The path to the project library.
RENV_PATHS_LIBRARY_ROOT The parent path for project libraries.

RENV_PATHS_LIBRARY_STAGING The parent path used for staged package installs.

36 paths

RENV_PATHS_LOCKFILE The path to the lockfile.

RENV_PATHS_CELLAR The path to the cellar, containing local package binaries and sources.

RENV_PATHS_SOURCE The path containing downloaded package sources.

RENV_PATHS_BINARY The path containing downloaded package binaries.

RENV_PATHS_CACHE The path containing cached package installations.

RENV_PATHS_PREFIX An optional prefix to prepend to the constructed library / cache paths.
RENV_PATHS_RTOOLS (Windows only) The path to Rtools.

RENV_PATHS_EXTSOFT (Windows only) The path containing external software needed for compilation of Windows
RENV_PATHS_MRAN The path containing MRAN-related metadata. See vignette("mran”, package = "renv"”

Note that renv will append platform-specific and version-specific entries to the set paths as appro-
priate. For example, if you have set:

Sys.setenv(RENV_PATHS_CACHE = "/mnt/shared/renv/cache")

then the directory used for the cache will still depend on the renv cache version (e.g. v2), the R
version (e.g. 3.5) and the platform (e.g. x86_64-pc-1linux-gnu). For example:

/mnt/shared/renv/cache/v2/R-3.5/x86_64-pc-linux-gnu

This ensures that you can set a single RENV_PATHS_CACHE environment variable globally without
worry that it may cause collisions or errors if multiple versions of R needed to interact with the
same cache.

If you need to share the same cache with multiple different Linux operating systems, you may want
to set the RENV_PATHS_PREFIX environment variable to help disambiguate the paths used on Linux.
For example, setting RENV_PATHS_PREFIX = "ubuntu-bionic"” would instruct renv to construct a
cache path like:

/mnt/shared/renv/cache/v2/ubuntu-bionic/R-3.5/x86_64-pc-linux-gnu

If this is required, it’s strongly recommended that this environment variable is set in your R installa-
tion’s Renviron.site file, typically located at file.path(R.home("etc"), "Renviron.site"),
so that it can be active for any R sessions launched on that machine.

Starting from renv @.13.0, you can also instruct renv to auto-generate an OS-specific component
to include as part of library and cache paths, by setting the environment variable:

RENV_PATHS_PREFIX_AUTO = TRUE

The prefix will be constructed based on fields within the system’s /etc/os-release file.

If reproducibility of a project is desired on a particular machine, it is highly recommended that the
renv cache of installed packages + binary packages is backed up and persisted, so that packages
can be easily restored in the future — installation of packages from source can often be arduous.

If you want these settings to persist in your project, it is recommended that you add these to an
appropriate R startup file. For example, these could be set in:

https://cran.r-project.org/bin/windows/Rtools/

paths 37

* A project-local .Renviron;
¢ The user-level .Renviron;

e Afile at file.path(R.home("etc"), "Renviron.site"”).

Please see ?Startup for more details.

Package Cellar

If your project depends on one or R packages that are not available in any remote location, you
can still provide a locally-available tarball for renv to use during restore. By default, these pack-
ages should be made available in the folder as specified by the RENV_PATHS_CELLAR environment
variable. The package sources should be placed in a file at one of these locations:

e ${RENV_PATHS_CELLAR}/<package>_<version>.<ext>
* ${RENV_PATHS_CELLAR}/<package>/<package>_<version>.<ext>
e <project>/renv/cellar/<package>_<version>.<ext>

e <project>/renv/cellar/<package>/<package>_<version>.<ext>

where .<ext>is . tar.gz for source packages, or . tgz for binaries on macOS and . zip for binaries
on Windows. During restore(), renv will search the cellar for a compatible package, and prefer
installation with that copy of the package if appropriate.

Projects

In order to determine whether a package can safely be removed from the cache, renv needs to
know which projects are using packages from the cache. Since packages may be symlinked from
the cache, and symlinks are by nature a one-way link, projects need to also report that they’re using
the renv cache.

To accomplish this, whenever renv is used with a project, it will record itself as being used within
a file located at:

* ${RENV_PATHS_ROOT}/projects

This file is list of projects currently using the renv cache. With this, renv can crawl projects
registered with renv and use that to determine if any packages within the cache are no longer in
use, and can be removed.

Examples

get the path to the project library
path <- renv::paths$library()

38 purge

project Retrieve the Active Project

Description

Retrieve the path to the active project (if any).

Usage

project(default = NULL)

Arguments

default The value to return when no project is currently active. Defaults to NULL.

Value

The active project directory, as a length-one character vector.

Examples

Not run:

get the currently-active renv project
renv::project()

End(Not run)

purge Purge Packages from the Cache

Description

Purge packages from the cache. This can be useful if a package which had previously been installed
in the cache has become corrupted or unusable, and needs to be reinstalled.

Usage

purge(package, ..., version = NULL, hash = NULL, prompt = interactive())

rebuild 39

Arguments
package A single package to be removed from the cache.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
version The package version to be removed. When NULL, all versions of the requested
package will be removed.
hash The specific hashes to be removed. When NULL, all hashes associated with a
particular package’s version will be removed.
prompt Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirm is accepted as an alias for prompt.
Details

purge () is an inherently destructive option. It removes packages from the cache, and so any project
which had symlinked that package into its own project library would find that package now unavail-
able. These projects would hence need to reinstall any purged packages. Take heed of this in case
you’re looking to purge the cache of a package which is difficult to install, or if the original sources
for that package are no longer available!

Value

The set of packages removed from the renv global cache, as a character vector of file paths.

Examples

Not run:

remove all versions of 'digest' from the cache
renv::purge(”digest”)

remove only a particular version of 'digest' from the cache
renv::purge(”digest”, version = "0.6.19")

End(Not run)

rebuild Rebuild the Packages in your Project Library

Description

Rebuild and reinstall packages in your library. This can be useful as a diagnostic tool — for example,
if you find that one or more of your packages fail to load, and you want to ensure that you are starting
from a clean slate.

40

Usage
rebuild(

rebuild

packages = NULL,

recursi

type =

ve =

NULL,

TRUE,

prompt = interactive(),
library = NULL,
project = NULL

Arguments

packages

recursive

type

prompt

library

project

Value

The package(s) to be rebuilt. When NULL, all packages in the library will be
reinstalled.

Boolean; should dependencies of packages be rebuilt recursively? Defaults to
TRUE.

Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

The type of package to install ("source" or "binary"). Defaults to the value of
getOption("pkgType").

Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirm is accepted as an alias for prompt.

The R library to be used. When NULL, the active project library will be used
instead.

The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.

A named list of package records which were installed by renv.

Examples

Not run

rebuild the 'dplyr' package + all of its dependencies
renv::rebuild("dplyr”, recursive = TRUE)

rebuild only 'dplyr'
renv::rebuild("dplyr"”, recursive = FALSE)

End(Not

run)

record 41

record Update Package Records in a Lockfile

Description

Use record() to record a new entry within an existing renv lockfile.

Usage

record(records, lockfile = NULL, project = NULL)

Arguments
records A list of named records, mapping package names to a definition of their source.
See Records for more details.
lockfile The path to a lockfile. By default, the project lockfile is used.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Details

This function can be useful when you need to change one or more of the package records within
an renv lockfile — for example, because a recorded package cannot be restored in a particular
environment, and you know of a suitable alternative.

Records

Records can be provided either using the remotes short-hand syntax, or by using an R list of entries
to record within the lockfile. See ?lockfiles for more information on the structure of a package
record.

Examples

Not run:

use digest 0.6.22 from package repositories -- different ways
of specifying the remote. use whichever is most natural
renv::record("digest@o.6.22")

renv::record(list(digest = "0.6.22"))

renv::record(list(digest = "digest@0.6.22"))

alternatively, provide a full record as a list
digest_record <- list(

Package = "digest",

Version = "0.6.22",

Source = "Repository”,

Repository = "CRAN"

42 refresh

)

renv::record(list(digest = digest_record))

End(Not run)

refresh Refresh the Local Cache of Available Packages

Description
Query the active R package repositories for available packages, and update the in-memory cache of
those packages.

Usage
refresh()

Details

Note that R also maintains its own on-disk cache of available packages, which is used by available.packages().
Calling refresh() will force an update of both types of caches. renv prefers using an in-memory

cache as on occasion the temporary directory can be slow to access (e.g. when it is a mounted

network filesystem).

Value
A list of package databases, invisibly — one for each repository currently active in the R session.
Note that this function is normally called for its side effects.

Examples

Not run:

check available packages
db <- available.packages()

wait some time (suppose packages are uploaded / changed in this time)
Sys.sleep(5)

refresh the local available packages database

(the old locally cached db will be removed)
db <- renv::refresh()

End(Not run)

rehash 43

rehash Re-Hash Packages in the renv Cache

Description

Re-hash packages in the renv cache, ensuring that any previously-cached packages are copied to a
new cache location appropriate for this version of renv. This can be useful if the cache scheme has
changed in a new version of renv, but you’d like to preserve your previously-cached packages.

Usage
rehash(prompt = interactive(), ...)
Arguments
prompt Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirm is accepted as an alias for prompt.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
Details

Any packages which are re-hashed will retain links to the location of the newly-hashed package,
ensuring that prior installations of renv can still function as expected.

remote Resolve a Remote

Description

Given a remote specification, resolve it into an renv package record that can be used for download
and installation (e.g. with install).

Usage

remote(spec)

Arguments

spec A remote specification. This should be a string, conforming to the Remotes
specification as defined in https: //remotes.r-1ib.org/articles/dependencies.
html.

https://remotes.r-lib.org/articles/dependencies.html
https://remotes.r-lib.org/articles/dependencies.html

44 remove

remove Remove Packages

Description

Remove (uninstall) R packages.

Usage

remove (packages, ..., library = NULL, project = NULL)

Arguments
packages A character vector of R packages to remove.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
library The library from which packages should be removed. When NULL, the active
library (that is, the first entry reported in . 1ibPaths()) is used instead.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Value

A vector of package records, describing the packages (if any) which were successfully removed.

Examples

Not run:

disable automatic snapshots
auto.snapshot <- getOption("renv.config.auto.snapshot")
options(renv.config.auto.snapshot = FALSE)

initialize a new project (with an empty R library)
renv::init(bare = TRUE)

install digest 0.6.19
renv::install("digest@0.6.19")

save library state to lockfile
renv: :snapshot()

remove digest from library
renv::remove("digest"”)

check library status
renv::status()

renv_lockfile_from_manifest 45

restore lockfile, thereby reinstalling digest 0.6.19
renv::restore()

restore automatic snapshots
options(renv.config.auto.snapshot = auto.snapshot)

End(Not run)

renv_lockfile_from_manifest
Generate renv.lock from an RStudio Connect manifest. json

Description
Use renv_lockfile_from_manifest() to convert amanifest. json file from an RStudio Connect
content bundle into an renv. lock lockfile.

Usage

renv_lockfile_from_manifest(manifest, lockfile = NA)

Arguments
manifest The path to amanifest. json file.
lockfile The path to the lockfile to be generated and / or updated. When NA (the default),
the generated lockfile is returned as an R object; otherwise, the lockfile will be
written to the path specified by lockfile.
Details

This function can be useful when you need to recreate the package environment of a piece of content
that is deployed to RStudio Connect. The content bundle contains a manifest. json file that is
used to recreate the package environment. This function will let you convert that manifest file to
an renv.lock file. Run renv::restore() after you’ve converted the file to restore the package
environment.

By default the lockfile argument is set to NA. This will not create a new renv. lock file. Rather,
it will return a lockfile object (see ?1ockfile) that can be used to create a new renv. lock file. If
lockfile is set to a character string, a new file will be created with that path — e.g. renv.lock —
and the lockfile object will be returned.

Value

An renv lockfile.

46 restore

repair Repair a Project Library

Description

Repair a project library whose cache symlinks have become broken. renv will attempt to reinstall
the requisite packages.

Usage

repair(library = NULL, lockfile = NULL, project = NULL)

Arguments
library The R library to be used. When NULL, the active project library will be used
instead.
lockfile The path to a lockfile (if any). When available, renv will use the lockfile when
attempting to infer the remote associated with the inaccessible version of each
missing package.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
restore Restore a Project
Description

Restore a project’s dependencies from a lockfile, as previously generated by snapshot ().

Usage

restore(

project = NULL,
library = NULL,
lockfile = NULL,
packages = NULL,
exclude = NULL,
rebuild = FALSE,

repos = NULL,

clean = FALSE,

prompt = interactive()

restore

Arguments

project

library
lockfile

packages

exclude

rebuild

repos

clean

prompt

Value

47

The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.

Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

The library paths to be used during restore. See Library for details.

The lockfile to be used for restoration of the associated project. When NULL, the
most recently generated lockfile for this project is used.

A subset of packages recorded in the lockfile to restore. When NULL (the de-
fault), all packages available in the lockfile will be restored. Any required recur-
sive dependencies of the requested packages will be restored as well.

A subset of packages to be excluded during restore. This can be useful for when
you’d like to restore all but a subset of packages from a lockfile. Note that if you
attempt to exclude a package which is required as the recursive dependency of
another package, your request will be ignored.

Force packages to be rebuilt, thereby bypassing any installed versions of the
package available in the cache? This can either be a boolean (indicating that all
installed packages should be rebuilt), or a vector of package names indicating
which packages should be rebuilt.

The repositories to use during restore, for packages installed from CRAN or an-
other similar R package repository. When set, this will override any repositories
declared in the lockfile. See also the repos.override option in config for an
alternate way to provide a repository override.

Boolean; remove packages not recorded in the lockfile from the target library?
Use clean = TRUE if you’d like the library state to exactly reflect the lockfile
contents after restore().

Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirmis accepted as an alias for prompt.

A named list of package records which were installed by renv.

Package Repositories

By default, the package repositories encoded in the lockfile will be used during restore, as opposed
to the repositories that might already be set in the current session (through getOption(”repos”)).
If you’d like to override the repositories used by renv during restore, you can use, for example:

renv::restore(repos = c(CRAN = <...>))

See also the repos.override option in config for an alternate way to provide a repository override.

48 revert

Library

When renv: :restore() is called, packages from the lockfile are compared against packages cur-
rently installed in the library paths specified by library. Any packages which have changed will
then be installed into the default library. If clean = TRUE, then packages that exist within the default
library, but aren’t recorded in the lockfile, will be removed as well.

See Also

Other reproducibility: lockfiles, snapshot()

Examples

Not run:
disable automatic snapshots
auto.snapshot <- getOption("renv.config.auto.snapshot")

options(renv.config.auto.snapshot = FALSE)

initialize a new project (with an empty R library)
renv::init(bare = TRUE)

install digest 0.6.19
renv::install("digest@0.6.19")

save library state to lockfile
renv: :snapshot()

remove digest from library
renv::remove("digest"”)

check library status
renv::status()

restore lockfile, thereby reinstalling digest 0.6.19
renv::restore()

restore automatic snapshots
options(renv.config.auto.snapshot = auto.snapshot)

End(Not run)

revert Revert Lockfile

Description

Revert the lockfile to its contents at a prior commit.

run 49

Usage
revert(commit = "HEAD", ..., project = NULL)
Arguments
commit The commit associated with a prior version of the lockfile.
Optional arguments; currently unused.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Details

The revert() function is currently only implemented for projects using git for version control.

Value

The commit used when reverting renv.lock. Note that this function is normally called for its side
effects.

Examples

Not run:

get history of previous versions of renv.lock in VCS
db <- renv::history()

choose an older commit
commit <- db$commit[5]

revert to that version of the lockfile
renv::revert(commit = commit)

End(Not run)

run Run a Script

Description
Run an R script, in the context of a project using renv. The script will be run within an R sub-
process.

Usage

run(script, ..., job = NULL, name = NULL, project = NULL)

50 scaffold
Arguments
script The path to an R script.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
job Run the requested script as an RStudio job? Requires a recent version of both
RStudio and the rstudioapi packages. When NULL, the script will be run as a
job if possible, and as a regular R process launched by system2() if not.
name The name to associate with the job, for scripts run as a job.
project The path to the renv project. This project will be loaded before the requested
script is executed. When NULL (the default), renv will automatically determine
the project root for the associated script if possible.
Value
The project directory, invisibly. Note that this function is normally called for its side effects.
scaffold Generate renv Project Infrastructure
Description
Write the renv project infrastructure for a project.
Usage
scaffold(
project = NULL,
version = NULL,
repos = getOption("repos”),
settings = NULL
)
Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
version The version of renv to associate with this project. By default, the version of
renv currently installed is used.
repos The R repositories to associate with this project.
settings A list of renv settings, to be applied to the project after creation. These should

map setting names to the desired values. See settings for more details.

settings 51

Details

Invoking renv: :scaffold() will:

* Install renv into the project library,

 Update the project .Rprofile so that renv is automatically loaded for new R sessions launched
in this project, and

e Write a bare lockfile renv. lock.
Examples

Not run:
create scaffolding with 'devtools' ignored
renv::scaffold(settings = list(ignored.packages = "devtools"))

End(Not run)

settings Project Settings

Description

Define project-local settings that can be used to adjust the behavior of renv with your particular
project.

Usage

settings

Format

An object of class 1ist of length 10.

Settings

bioconductor.version The Bioconductor version to be used with this project. Use this if you’d
like to lock the version of Bioconductor used on a per-project basis. When unset, renv will
try to infer the appropriate Bioconductor release using the BiocVersion package if installed;
if not, renv uses BiocManager: :version() to infer the appropriate Bioconductor version.

external.libraries A vector of library paths, to be used in addition to the project’s own private
library. This can be useful if you have a package available for use in some global library,
but for some reason renv is not able to install that package (e.g. sources or binaries for that
package are not publicly available, or you have been unable to orchestrate the pre-requisites
for installing some packages from source on your machine).

52

settings

ignored.packages A vector of packages, which should be ignored when attempting to snapshot
the project’s private library. Note that if a package has already been added to the lockfile, that
entry in the lockfile will not be ignored.

package.dependency.fields During dependency discovery, renv uses the fields of an installed
package’s DESCRIPTION file to determine that package’s recursive dependencies. By default,
the Imports, Depends and LinkingTo fields are used. If you’d prefer that renv also captures
the Suggests dependencies for a package, you can set this to c("Imports”, "Depends”,
"LinkingTo", "Suggests").

r.version The version of R to encode within the lockfile. This can be set as a project-specific
option if you’d like to allow multiple users to use the same renv project with different versions
of R. renv will still warn the user if the major + minor version of R used in a project does not
match what is encoded in the lockfile.

snapshot. type The type of snapshot to perform by default. See snapshot for more details.

use.cache Enable the renv package cache with this project. When active, renv will install pack-
ages into a global cache, and link packages from the cache into your renv projects as appro-
priate. This can greatly save on disk space and install time when for R packages which are
used across multiple projects in the same environment.

vcs.ignore.cellar Set whether packages within a project-local package cellar are excluded from
version control. See vignette("cellar"”, package = "renv"”) for more information.

vcs.ignore.library Set whether the renv project library is excluded from version control.

vcs.ignore.local Set whether renv project-specific local sources are excluded from version con-
trol.

Defaults

You can change the default values of these settings for newly-created renv projects by setting R
options for renv.settings or renv.settings.<name>. For example:

options(renv.settings = list(snapshot.type = "all"))
options(renv.settings.snapshot.type = "all")

If both of the renv.settings and renv.settings.<name> options are set for a particular key, the
option associated with renv.settings.<name> is used instead. We recommend setting these in an
appropriate startup profile, e.g. ~/.Rprofile or similar.

Examples

Not run:

view currently-ignored packaged
renv::settings$ignored. packages()

ignore a set of packages
renv::settings$ignored.packages("devtools”, persist = FALSE)

End(Not run)

snapshot 53

snapshot Snapshot a Project

Description

Call snapshot () to create a lockfile capturing the state of a project’s R package dependencies. The
lockfile can be used to later restore these project’s dependencies as required.

Usage

shapshot (
project = NULL,

library = NULL,

lockfile = paths$lockfile(project = project),
type = settings$snapshot.type(project = project),
repos = getOption("repos”),

packages = NULL,

prompt = interactive(),

update = FALSE,

force = FALSE,

reprex = FALSE

)
Arguments

project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

library The R libraries to snapshot. When NULL, the active R libraries (as reported by
.libPaths()) are used.

lockfile The location where the generated lockfile should be written. By default, the
lockfile is written to a file called renv.lock in the project directory. When
NULL, the lockfile (as an R object) is returned directly instead.

type The type of snapshot to perform. See Snapshot Type for more details.

repos The R repositories to be recorded in the lockfile. Defaults to the currently active
package repositories, as retrieved by getOption("repos”).

packages A vector of packages to be included in the lockfile. When NULL (the default),
all packages relevant for the type of snapshot being performed will be included.
When set, the type argument is ignored. Recursive dependencies of the speci-
fied packages will be added to the lockfile as well.

prompt Boolean; prompt the user before taking any action? For backwards compatibil-

ity, confirm is accepted as an alias for prompt.

54 snapshot

update Boolean; if the lockfile already exists, then attempt to update that lockfile with-
out removing any prior package records.
force Boolean; force generation of a lockfile even when pre-flight validation checks
have failed?
reprex Boolean; generate output appropriate for embedding the lockfile as part of a
reprex?
Details

See the lockfile documentation for more details on the structure of a lockfile.

Value

The generated lockfile, as an R object (invisibly). Note that this function is normally called for its
side effects.

Snapshot Type

Depending on how you prefer to manage dependencies, you might prefer selecting a different snap-
shot mode. The modes available are as follows:

"all" Capture all packages within the active R libraries in the lockfile. This is the quickest and
simplest method, but may lead to undesired packages (e.g. development dependencies) enter-
ing the lockfile.

"implicit” Only capture packages which appear to be used in your project in the lockfile. The
intersection of packages installed in your R libraries, alongside those used in your R code as
inferred by renv: :dependencies(), will enter the lockfile. This helps ensure that only the
packages your project requires will enter the lockfile, but may be slower if your project con-
tains a large number of files. If this becomes an issue, you might consider using . renvignore
files to limit which files renv uses for dependency discovery, or explicitly declaring your re-
quired dependencies in a DESCRIPTION file. You can also force a dependency on a particular
package by writing e.g. library(<package>) into a file called dependencies.R.

"explicit” Only capture packages which are explicitly listed in the project DESCRIPTION file.
This workflow is recommended for users who wish to manage their project’s R package de-
pendencies directly.

"custom” Like "implicit”, but use a custom user-defined filter instead. The filter should be
specified by the R option renv.snapshot.filter, and should either be a character vector
naming a function (e.g. "package: :method"), or be a function itself. The function should
only accept one argument (the project directory), and should return a vector of package names
to include in the lockfile.

By default, "implicit”-style snapshots are used. The snapshot type can be configured on a project-
specific basis using the renv project settings mechanism. For example, to use "explicit” snap-
shots in a project:

renv::settings$snapshot.type("explicit”)

When the packages argument is set, type is ignored, and instead only the requested set of packages,
and their recursive dependencies, will be written to the lockfile.

https://www.tidyverse.org/help/#reprex

status 55

See Also

Other reproducibility: lockfiles, restore()

Examples

Not run:
disable automatic snapshots
auto.snapshot <- getOption("renv.config.auto.snapshot")

options(renv.config.auto.snapshot = FALSE)

initialize a new project (with an empty R library)
renv::init(bare = TRUE)

install digest 0.6.19
renv::install("digest@0.6.19")

save library state to lockfile
renv: :snapshot()

remove digest from library
renv::remove("digest"”)

check library status
renv::status()

restore lockfile, thereby reinstalling digest 0.6.19
renv::restore()

restore automatic snapshots
options(renv.config.auto.snapshot = auto.snapshot)

End(Not run)

status Status

Description
Report differences between the project’s lockfile and the current state of the project’s library (if
any).

Usage

status(project = NULL, ..., library = NULL, lockfile = NULL, cache = FALSE)

56

Arguments

project

library

lockfile

cache

Value

status

The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.

Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.

The library paths. By default, the library paths associated with the requested
project are used.

The path to a lockfile. By default, the project lockfile (called renv.lock) is
used.

Boolean; perform diagnostics on the global package cache? When TRUE, renv
will validate that the packages installed into the cache are installed at the ex-
pected + proper locations, and validate the hashes used for those storage loca-
tions.

This function is normally called for its side effects.

Examples

Not run:

disable automatic snapshots
auto.snapshot <- getOption("renv.config.auto.snapshot")
options(renv.config.auto.snapshot = FALSE)

initialize a new project (with an empty R library)

renv::init(bare

TRUE)

install digest 0.6.19
renv::install("digest@0.6.19")

save library state to lockfile

renv: :snapshot()

remove digest from library
renv::remove("digest"”)

check library status

renv::status()

restore lockfile, thereby reinstalling digest ©0.6.19

renv::restore()

restore automatic snapshots
options(renv.config.auto.snapshot = auto.snapshot)

End(Not run)

update 57

update Update Packages

Description

Update packages which are currently out-of-date. Currently, only CRAN and GitHub package
sources are supported.

Usage
update(
packages = NULL,
exclude = NULL,
library = NULL,
rebuild = FALSE,
check = FALSE,
prompt = interactive(),
project = NULL
)
Arguments
packages A character vector of R packages to update. When NULL (the default), all pack-
ages will be updated.
Unused arguments, reserved for future expansion. If any arguments are matched
to ..., renv will signal an error.
exclude A set of packages to explicitly exclude from updating. Use renv: :update(exclude = <...>)
to update all packages except for a specific set of excluded packages.
library The R library to be used. When NULL, the active project library will be used
instead.
rebuild Force packages to be rebuilt, thereby bypassing any installed versions of the
package available in the cache? This can either be a boolean (indicating that all
installed packages should be rebuilt), or a vector of package names indicating
which packages should be rebuilt.
check Boolean; check for package updates without actually installing available up-
dates? This is useful when you’d like to determine what updates are available,
without actually installing those updates.
prompt Boolean; prompt the user before taking any action? For backwards compatibil-
ity, confirmis accepted as an alias for prompt.
project The project directory. If NULL, then the active project will be used. If no project

is currently active, then the current working directory is used instead.

58 upgrade

Details

Updates will only be checked from the same source — for example, if a package was installed from
GitHub, but a newer version is available on CRAN, that updated version will not be seen.

You can call renv: :update () with no arguments to update all packages within the project, exclud-
ing any packages ignored via the ignored. packages project setting. Use the exclude argument to
further refine the exclusion criteria if desired.

Value

A named list of package records which were installed by renv.

Examples

Not run:

update the 'dplyr' package
renv::update("dplyr")

End(Not run)

upgrade Upgrade renv

Description

Upgrade the version of renv associated with a project.

Usage

upgrade(project = NULL, version = NULL, reload = NULL, prompt = interactive())

Arguments
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
version The version of renv to be installed. By default, the latest version of renv as
available on the active R package repositories is used.
reload Boolean; reload renv after install? When NULL (the default), renv will be re-

loaded only if updating renv for the active project. Note that this may fail if
you’ve loaded packages which also depend on renv.

prompt Boolean; prompt upgrade before proceeding?

use 59

Details

By default, this function will attempt to install the latest version of renv as available on the active
R package repositories. If you’d instead like to try out a development version of renv, you can
explicitly request a different version of renv and that version of the package will be downloaded
and installed from GitHub. Use version = "main” to install the latest development version of renv,
as from the renv project’s GitHub page.

Value
A boolean value, indicating whether the requested version of renv was successfully installed. Note

that this function is normally called for its side effects.

Examples

Not run:

upgrade to the latest version of renv
renv: :upgrade()

upgrade to the latest version of renv on GitHub (development version)
renv::upgrade(version = "main”

End(Not run)

use Use a set of Packages

Description

Given a set of R package requirements, install those packages into the library path requested via
library, and then activate that library path.

Usage

use(

lockfile = NULL,
library = NULL,
isolate = FALSE,
attach = FALSE,
verbose = TRUE

https://github.com/rstudio/renv

60

Arguments
lockfile
library
isolate

attach

verbose

Details

use_python

The R packages to be used with this script. Ignored if lockfile is non-NULL.

The lockfile to use. When supplied, renv will use the packages as declared in
the lockfile.

The library path into which the requested packages should be installed. When
NULL (the default), a library path within the R temporary directory will be gener-
ated and used. Note that this same library path will be re-used on future calls to
renv: :use(), allowing renv: :use() to be used multiple times within a single
script.

Boolean; should the active library paths be included in the set of library paths
activated for this script? Set this to TRUE if you only want the packages provided
to renv: :use() to be visible on the library paths.

Boolean; should the set of requested packages be automatically attached? If
TRUE, packages will be loaded and attached via a call to Library () after install.
Ignored if lockfile is non-NULL.

Boolean; be verbose while installing packages?

renv: :use() is intended to be used within standalone R scripts. It can be useful when you’d like to
specify an R script’s dependencies directly within that script, and have those packages automatically
installed and loaded when the associated script is run. In this way, an R script can more easily be
shared and re-run with the exact package versions requested via use().

renv::use() is inspired in part by the groundhog package, which also allows one to specify a
script’s R package requirements within that same R script.

Value

This function is normally called for its side effects.

use_python

Use Python

Description

Associate a version of Python with your project.

Usage

use_python(
= NULL,

python
type =
name =

c("auto”, "virtualenv"”, "conda", "system"),

project = NULL

https://groundhogr.com/

use_python 61

Arguments
python The path to the version of Python to be used with this project. See Finding
Python for more details.
Optional arguments; currently unused.
type The type of Python environment to use. When "auto” (the default), virtual
environments will be used.
name The name or path that should be used for the associated Python environment.
If NULL and python points to a Python executable living within a pre-existing
virtual environment, that environment will be used. Otherwise, a project-local
environment will be created instead, using a name generated from the associated
version of Python.
project The project directory. If NULL, then the active project will be used. If no project
is currently active, then the current working directory is used instead.
Details

When Python integration is active, renv will:

» Save metadata about the requested version of Python in renv. lock — in particular, the Python

non non

version, and the Python type ("virtualenv", "conda", "system"),
 Capture the set of installed Python packages during renv: : snapshot (),

* Re-install the set of recorded Python packages during renv: :restore().
In addition, when the project is loaded, the following actions will be taken:
» The RENV_PYTHON environment variable will be set, indicating the version of Python currently
active for this sessions,

» The RETICULATE_PYTHON environment variable will be set, so that the reticulate package
can automatically use the requested copy of Python as appropriate,

* The requested version of Python will be placed on the PATH, so that attempts to invoke Python
will resolve to the expected version of Python.

You can override the version of Python used in a particular project by setting the RENV_PYTHON
environment variable; e.g. as part of the project’s .Renviron file. This can be useful if you find that
renv is unable to automatically discover a compatible version of Python to be used in the project.
Value
TRUE, indicating that the requested version of Python has been successfully activated. Note that this
function is normally called for its side effects.
Finding Python

In interactive sessions, when python = NULL, renv will prompt for an appropriate version of Python.
renv will search a pre-defined set of locations when attempting to find Python installations on the
system:

e getOption("renv.python.root"),

62 use_python

e /opt/python,

e /opt/local/python,

e ~/opt/python,

e /usr/local/opt (for macOS Homebrew-installed copies of Python),

* /opt/homebrew/opt (for M1 macOS Homebrew-installed copies of Python),
e ~/.pyenv/versions,

* Python instances available on the PATH.

In non-interactive sessions, renv will first check the RETICULATE_PYTHON environment variable; if
that is unset, renv will look for Python on the PATH. It is recommended that the version of Python
to be used is explicitly supplied for non-interactive usages of use_python().

Warning
We strongly recommend using Python virtual environments, for a few reasons:

1. If something goes wrong with a local virtual environment, you can safely delete that virtual
environment, and then re-initialize it later, without worry that doing so might impact other
software on your system.

2. If you choose to use a "system" installation of Python, then any packages you install or upgrade
will be visible to any other application that wants to use that same Python installation. Using
a virtual environment ensures that any changes made are isolated to that environment only.

3. Choosing to use Anaconda will likely invite extra frustration in the future, as you may be
required to upgrade and manage your Anaconda installation as new versions of Anaconda are
released. In addition, Anaconda installations tend to work poorly with software not specifi-
cally installed as part of that same Anaconda installation.

In other words, we recommend selecting "system" or "conda" only if you are an expert Python user
who is already accustomed to managing Python / Anaconda installations on your own.

Examples

Not run:

use python with a project
renv::use_python()

use python with a project; create the environment
within the project directory in the '.venv' folder
renv: :use_python(name = ".venv"

use python with a pre-existing virtual environment located elsewhere
renv::use_python(name = "~/.virtualenvs/env")

use virtualenv python with a project
renv::use_python(type = "virtualenv")

use conda python with a project
renv: :use_python(type = "conda")

use_python

End(Not run)

63

Index

+ datasets
config, 7
paths, 35
settings, 51
* renv
activate, 3
deactivate, 13
* reproducibility
lockfiles, 31
restore, 46
snapshot, 53
.expand_R_libs_env_var(), 9

activate, 3, 13
activate(), 22, 24, 29
autoload, 4

checkout, 5
clean, 6
config, 7, 25,47
consent, 12

deactivate, 4, 13
deactivate(), 4
dependencies, 14
dependencies(), 5, 9, 20, 23
diagnostics, 16

embed, 17
equip, 17

graph, 18

history, 19
hydrate, 20
hydrate(), 9

imbue, 22

init, 22
init(), 4, 22, 29
install, 25, 43

64

install(), 10, 28
install.packages, 27
isolate, 28

library(), 60

load, 29

load(), 4
lockfile, 30, 36, 54
lockfiles, 30, 31,48, 55

migrate, 33
modify, 34

paths, 12, 35
project, 38
purge, 38

rebuild, 39

record, 41

refresh, 42

rehash, 43

remote, 43

remove, 44

remove(), 10

renv (renv-package), 3
renv-package, 3
renv_lockfile_from_manifest, 45
repair, 46
restore, 32, 46, 55
restore(), 10, 26, 28, 31
revert, 48

run, 49

scaffold, 50
settings, 12, 23, 50, 51, 54
snapshot, 32, 48, 52, 53
snapshot(), 24, 31, 46
Startup, 8, 37

status, 55

system2(), 50

INDEX

tools::R_user_dir(), 35

update, 57
update(), 10
upgrade, 58
use, 59
use(), 17
use_python, 60

65

	renv-package
	activate
	autoload
	checkout
	clean
	config
	consent
	deactivate
	dependencies
	diagnostics
	embed
	equip
	graph
	history
	hydrate
	imbue
	init
	install
	isolate
	load
	lockfile
	lockfiles
	migrate
	modify
	paths
	project
	purge
	rebuild
	record
	refresh
	rehash
	remote
	remove
	renv_lockfile_from_manifest
	repair
	restore
	revert
	run
	scaffold
	settings
	snapshot
	status
	update
	upgrade
	use
	use_python
	Index

