Package ‘restriktor’

June 6, 2022

Title Restricted Statistical Estimation and Inference for Linear
Models

Version 0.3-500

Description Allow for easy-to-use testing or evaluating of linear equality and inequality
restrictions about parameters and effects in (generalized) linear statistical models.

Depends R(>=4.0.0)

Imports boot, ic.infer, lavaan(>= 0.6-10), MASS, mvtnorm, quadprog
License GPL (>=2)

LazyData yes

URL https://restriktor.org
NeedsCompilation no

Author Leonard Vanbrabant [aut, cre],
Yves Rosseel [ctb],
Aleksandra Dacko [ctb]

Maintainer Leonard Vanbrabant <info@restriktor.org>

Suggests
Repository CRAN
Date/Publication 2022-06-06 16:50:02 UTC

R topics documented:

restriktor-package L. e e e e
AngerManagementl e e e e e e
bootstrapD L e
Burns e
conTestC e e e e
conTestF e e
conTestLRT e
conTestScore e
conTestWald e
conTest_Ceq L e e e

https://restriktor.org

2 restriktor-package

conTesSt_SUMMATIY v v v v o e e e e e e e e e e e e e e e 36
con_weights_boot 39
Exam e e 41
FacialBurns 41
OTIC . o v v e 42
Hurricanes e e e 45
1 46
iht-methods e e e 54
restrikKtor L L e e e 55
restriktor-methods L 62
ZelazoKolb1972 e e e e 64
Index 66
restriktor-package Package for equality and inequality restricted estimation, model selec-

tion and hypothesis testing

Description

Package restriktor implements estimation, testing and evaluating of linear equality and inequal-
ity restriktions about parameters and effects for univariate and multivariate normal models and
generalized linear models.

Details
Package: restriktor
Type: Package
Version: 0.3-500
Date: 2022-06-03

License: GPL (>=2)
LazylLoad: yes

Function restriktor estimates the parameters of an univariate and multivariate linear model (1m),
robust estimation of the linear model (rlm) or a generalized linear model (glm) subject to linear
equality and/or inequality restriktions. The real work horses are the conLM, conMLM, the conRLM,
and the conGLM functions. A major advantage of restriktor is that the constraints can be specified
by a text-based description. This means that users do not have to specify the complex constraint
matrix (comparable with a contrast matrix) themselves.

The function restriktor offers the possibility to compute (model robust) standard errors under the
restriktions. The parameter estimates can also be bootstrapped, where bootstrapped standard errors
and confidence intervals are available via the summary function. Moreover, the function computes
the Generalized Order-restricted Information Criterion (GORIC), which is a modification of the
AIC and a generalization of the ORIC.

The function iht (alias conTest) conducts restricted hypothesis tests. F, Wald/LRT and score test-

restriktor-package 3

statistics are available. The null-distribution of these test-statistics takes the form of a mixture of
F-distributions. The mixing weights (a.k.a. chi-bar-square weights or level probabilities) can be
computed using the multivariate normal distribution function with additional Monte Carlo steps or
via a simulation approach. Bootstrap methods are available to calculate the mixing weights and to
compute the p-value directly. Parameters estimates under the null- and alternative-hypothesis are
available from the summary function.

The function goric (generalized order-restricted information criterion) computes GORIC values,
weights and relative-weights or GORICA (generalized order-restricted information crittion approx-
imation) values, weights and relative weights. The GORIC(A) values are comparable to the AIC
values. The function offers the possibility to evaluate an order-restricted hypothesis against its
complement, the unconstrained hypothesis or against a set of hypotheses. For now, only one order-
restricted hypothesis can be evaluated against its complement but work is in progress to evaluate a
set of order-restricted hypothesis against its complement.

The package makes use of various other R packages: quadprog is used for restricted estimation,
boot for bootstrapping, ic.infer for computing the mixing weights based on the multivariate normal
distribution, lavaan for parsing the constraint syntax.

Value

The output of function restriktor belongs to S3 class conLM, conMLM, conRLM or conGLM.
The output of function conTest belongs to S3 class conTest.

These classes offer print and summary methods.

Acknowledgements

This package uses as an internal function the function nchoosek from ic.infer, which is originally
from vsn, authored by Wolfgang Huber, available under LGPL.

The output style of the iht print function is strongly inspired on the summary of the ic.test
function from the ic.infer package.

Author(s)

Leonard Vanbrabant and Yves Rosseel - Ghent University

References

Groemping, U. (2010). Inference With Linear Equality And Inequality Constraints Using R: The
Package ic.infer. Journal of Statistical Software, Forthcoming.

Kuiper R.M., Hoijtink H., Silvapulle M.J. (2011). An Akaike-type Information Criterion for Model
Selection Under Inequality Constraints. Biometrika, 98, 495-501.

Kuiper R.M., Hoijtink H., Silvapulle M.J. (2012). Generalization of the Order-Restricted Informa-
tion Criterion for Multivariate Normal Linear Models. Journal of Statistical Planning and Infer-
ence, 142, 2454-2463. doi:10.1016/j.jspi.2012.03.007.

Robertson T, Wright F, Dykstra R (1988). Order-Restricted Inference. Wiley, New York.

Schoenberg, R. (1997). Constrained Maximum Likelihood. Computational Economics, 10, 251—
266.

4 AngerManagement

Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate anal-
ysis. International Statistical Review 56, 49-62.

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630.

Silvapulle, M. (1992b). Robust wald-type tests of one-sided hypotheses in the linear model. Journal
of the American Statistical Association, 87, 156—161.

Silvapulle, M. (1996). Robust bounded influence tests against one-sided hypotheses in general
parametric models. Statistics & probability letters, 31, 45-50.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Vanbrabant, L. and Kuiper, R. (n.d.). Giving the complement a compliment: Evaluating a theory-
based hypothesis against its complement using the GORIC.

See Also

See also restriktor, iht, packages boot, goric, ic.infer, mvtnorm, and quadprog.

Examples

Data preparation

Ages (in months) at which an infant starts to walk alone.
DATA <- ZelazoKolb1972

DATA <- subset(DATA, Group != "Control")

unrestricted linear model
fit.1m <- 1lm(Age ~ -1 + Group, data = DATA)
summary (fit.1lm)

restricted linear model with restriktions that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.

myConstraints <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

fit.con <- restriktor(fit.1lm, constraints = myConstraints)
summary (fit.con)

AngerManagement Reduction of aggression levels Dataset (4 treatment groups)

Description

The anger management dataset consists of reduction of aggression levels between week 1 (intake)
and week 8 (end of training) from four different treatment groups (No-exercises, Physical-exercises,
Behavioral-exercises, combination of physical and behavioral exercises).

bootstrapD 5

Usage

data(AngerManagement)

Format
A data frame of 40 observations of 4 treatment variables and covariate age.

Anger reduction in aggression levels
Group No, Physical, Behavioral, Both

Age persons’ age

References
Hoijtink, H. Informative Hypotheses: Theory and Practice for Behavioral and Social Scientists
Boca Raton, FL: Taylor & Francis, 2012.

Examples

head(AngerManagement)

bootstrapD Bootstrapping a Lavaan Model

Description

Bootstrap the D statistic.

Usage

bootstrapD(h® = NULL, h1 = NULL, constraints, type = "A",
bootstrap.type = "bollen.stine”, R = 1000L,
return.D = FALSE, double.bootstrap = "no",
double.bootstrap.R = 500L, double.bootstrap.alpha = 0.05,
verbose = FALSE, warn = -1L,
parallel = c("no”, "multicore"”, "snow"), ncpus = 1L, cl = NULL,
seed = NULL)

S3 method for class 'conTestlLavaan'

print(x, digits = max(3, getOption("digits") - 2), ...)
Arguments

he An object of class lavaan. The restricted model.

h1 An object of class lavaan. The unrestricted model.

X an object of class conTestLavaan.

constraints The imposed (in)equality constraints on the model.

type
bootstrap.type

R

return.D

bootstrapD

hypothesis test type "A", "B".

If "parametric”, the parametric bootstrap is used. If "bollen.stine”, the

semi-nonparametric Bollen-Stine bootstrap is used. The defaultis setto "bollen.stine”.

Integer. The number of bootstrap draws.

Logical; if TRUE, the function returns bootstrapped D-values.

double.bootstrap

If "standard” (default) the genuine double bootstrap is used to compute an
additional set of plug-in p-values for each bootstrap sample. If "no"”, no double
bootstrap is used. If "FDB", the fast double bootstrap is used to compute second
level LRT-values for each bootstrap sample. Note that the "FDB" is experimental
and should not be used by inexperienced users.

double.bootstrap.R

Integer; number of double bootstrap draws. The default value is set to 249.

double.bootstrap.alpha

verbose
warn
parallel

ncpus

cl

digits

seed

Author(s)

The significance level to compute the adjusted alpha based on the plugin p-
values. Only used if double.bootstrap = "standard”. The default value is
set to 0.05.

If TRUE, show information for each bootstrap draw.
Sets the handling of warning messages. See options.
The type of parallel operation to be used (if any). If missing, the default is "no".

Integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

An optional parallel or snow cluster for use if parallel = "snow". If not sup-

plied, a cluster on the local machine is created for the duration of the bootstrapLavaan

or bootstrapLRT call.
the number of significant digits to use when printing.
no additional arguments for now.

An integer to set the seed. Or NULL if no reproducible seeds are needed.

Leonard Vanbrabant

References

Bollen, K. and Stine, R. (1992) Bootstrapping Goodness of Fit Measures in Structural Equation
Models. Sociological Methods and Research, 21, 205-229.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Yuan, K.-H., Hayashi, K., & Yanagihara, H. (2007). A class of population covariance matrices
in the bootstrap approach to covariance structure analysis. Multivariate Behavioral Research, 42,

261-281.

bootstrapD

Examples

Not run:
HHHHHHH
real data example #i#
A
Multiple group path model for facial burns example.

model syntax with starting values.
burns.model <- 'Selfesteem ~ Age + c(ml1, f1)*TBSA + HADS +
start(-.10, -.20)*TBSA
HADS ~ Age + c(m2, f2)*TBSA + RUM +
start(.10, .20)*TBSA '

constraints syntax

burns.constraints <- 'f2 >0 ; ml <@
m2>0 ; fl1<@o
f2>m2; f1 <m'

we only generate 2 bootstrap samples in this example; in practice
you may wish to use a much higher number.
the double bootstrap was switched off; in practice you probably
want to set it to "standard”.
examplel <- conTestD(model = burns.model, data = FacialBurns,
R = 2, constraints = burns.constraints,
double.bootstrap = "no"”, group = "Sex")

examplel

SR

artificial example #i##

SRR

Simple ANOVA model with 3 groups (N = 20 per group)
set.seed(1234)

Y <- cbind(c(rnorm(20,0,1), rnorm(20,0.5,1), rnorm(20,1,1)))
grp <- c(rep("1", 20), rep("2", 20), rep("3", 20))

Data <- data.frame(Y, grp)

#create model matrix

fit.Im <- 1Im(Y ~ grp, data = Data)
mfit <- fit.lm$model

mm <- model.matrix(mfit)

Y <- model.response(mfit)
X <- data.frame(mm[,2:3])
names(X) <- c("d1", "d2")
Data.new <- data.frame(Y, X)

model
model <- 'Y ~ 1 + alxdl + a2*d2'

fit without constraints

8 Burns

fit <- lavaan::sem(model, data = Data.new)

constraints syntax: mul < mu2 < mu3
constraints <- ' al > @
al < a2 '

we only generate 10 bootstrap samples in this example; in practice
you may wish to use a much higher number, say > 1000. The double
bootstrap is not necessary in case of an univariate ANOVA model.
example2 <- conTestD(model = model, data = Data.new,

start = lavaan::parTable(fit),

R = 10L, double.bootstrap = "no",

constraints = constraints)
example2

End(Not run)

Burns Relation between the response variable PTSS and gender, age, TBSA,
guilt and anger.

Description

Simulated dataset based on the original model parameters. The original data are based on two
cohort studies in children from 0 to 4 and 8 to 18 years old with burns and their mother.

Usage

data(Burns)

Format

A data frame of 278 observations of 4 variables.

PTSS post-traumatic stress symptoms

gender gender

age age in years

TBSA estimated percentage total body surface area affected by second and third degree burns
guilt parental guilt feelings in relation to the burn event

anger parental anger feelings in relation to the burn event

References

Bakker A, Van der Heijden PG, Van Son MJ, Van Loey NE. Course of traumatic stress reactions
in couples after a burn event to their young child. Health Psychology 2013; 10(32):1076-1083,
doi:10.1037/a0033983.

conTestC 9

Egberts MR, van de Schoot R, Boekelaar A, Hendrickx H, Geenen R, NEE V. Child and adolescent
internalizing and externalizing problems 12 months postburn: the potential role of preburn func-
tioning, parental posttraumatic stress, and informant bias. Child \& Adolescent Psychiatry 2016;
25:791-803.

Examples

head (Burns)

conTestC one-sided t-test for iht

Description

conTestC tests linear inequality restricted hypotheses for (robust) linear models by a one-sided t-
test. This method is based on the union-intersection principle. It is called by the conTest function
if all restrictions are equalities. For more information see details.

Usage

S3 method for class 'restriktor'

conTestC(object, ...)
Arguments
object an object of class restriktor.

no additional arguments for now.

Details

Hypothesis test Type C:

» Test HO: at least one restriction false ("<") against HA: all constraints strikty true (">"). This
test is based on the intersection-union principle. Note that, this test only makes sense in case
of no equality constraints.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

10

Value

conTestC

An object of class conTest, for which a print is available. More specifically, it is a list with the

following items:

CON

Amat

bvec

meq

test

Ts
df.residual
pvalue
b.unrestr
b.restr
Sigma
R2.org
R2.reduced
boot

model.org

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

a list with useful information about the constraints.
constraints matrix.
vector of right-hand side elements.

number of equality constraints.

same as input.

test-statistic value.

the residual degrees of freedom.

tail probability for Ts.

unrestricted regression coefficients.

restricted regression coefficients.
variance-covariance matrix of unrestricted model.
unrestricted R-squared.

restricted R-squared.

"no", not used (yet).

original model.

Silvapulle, M.J. and Sen, P.K. (2005, chapter 5.). Constrained Statistical Inference. Wiley, New

York

See Also

quadprog, iht

Examples

example 1:

the data consist of ages (in months) at which an

infant starts to walk alone.

prepare data

DATA1 <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fitl.1m <- 1lm(Age ~ -1 + Group, data

the variable names can be used to impose constraints on

conTestF 11

the corresponding regression parameters.
coef(fit1.1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.1m, myConstraintsl1, type = "C")

another way is to first fit the restricted model
fit.restrl <- restriktor(fitl1.1lm, constraints = myConstraints1)

iht(fit.restr1, type = "C")

Not run:
Or in matrix notation.
Amatl <- rbind(c(-1, 0, 1),
cC o, 1, -1)
myRhs1 <- rep(@OL, nrow(Amat1))
myNeql <- @

fitl.con <- restriktor(fitl.1lm, constraints = Amat1,
rhs = myRhs1, neq = myNeql)
iht(fitl1.con, type = "C")

End(Not run)

conTestF F-bar test for iht

Description

conTestF tests linear equality and/or inequality restricted hypotheses for linear models by F-tests.
It can be used directly and is called by the conTest function if test = "F".

Usage

S3 method for class 'conLM'

conTestF(object, type = "A", neq.alt = 0,
boot = "no", R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

S3 method for class 'conRLM'

12

conTestF(object, type = "A", neq.alt = 0,
boot = "no

S3 method for class 'conGLM'

", R =9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)
conTestF(object, type = "A", neg.alt = 0,
boot = "no”, R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,

conTestF

Arguments
object
type

neq.alt

boot

p.distr

parallel

ncpus

cl

seed

verbose = FALSE, control = NULL, ...)

an object of class conLM, conRLM or conGLM.

hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.

integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.

the null-distribution of these test-statistics (except under type "C") takes the
form of a mixture of F-distributions. The tail probabilities can be computed di-
rectly via bootstrapping; if "parametric”, the p-value is computed based on the
parametric bootstrap. By default, samples are drawn from a normal distribution
with mean zero and varance one. See p.distr for other distributional options.
If "model.based”, a model-based bootstrap method is used. Instead of com-
puting the p-value via simulation, the p-value can also be computed using the
chi-bar-square weights. If "no"”, the p-value is computed based on the weights
obtained via simulation (mix.weights = "boot") or using the multivariate nor-
mal distribution function (mix.weights = "pmvnorm"). Note that, these weights
are already available in the restriktor objected and do not need to be estimated
again. However, there are two exception for objects of class conRLM, namely for
computing the p-value for the robust test = "Wald"” and the robust "score”. In
these cases the weights need to be recalculated.

integer; number of bootstrap draws for boot. The default value is set to 9999.

random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The distributional parameters will be passed in via

the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed value. The default value is set to 1234.

conTestF 13

verbose logical; if TRUE, information is shown at each bootstrap draw.
control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.

* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.

additional arguments to be passed to the p.distr function.

Details

The following hypothesis tests are available:

n_n

* Type A: Test HO: all constraints with equalities (
restriction (">") strictly true.

) active against HA: at least one inequality

n_n

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

» Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B" and
"global” are computed based on mixtures of F-distributions.

Note that, in case of equality constraints only, the null-distribution of the (robust) F-test statistics
is based on an F-distribution. The (robust) Wald- and (robust) score-test statistics are based on
chi-square distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meq.alt same as input neq.alt.

14 conTestF
iact number of active constraints.
type same as input.
test same as input.
Ts test-statistic value.
df.residual the residual degrees of freedom.
pvalue tail probability for Ts.
b.egrestr equality restricted regression coefficients. Only available for type = "A" and
type = "global”, else b.eqrestr = NULL.
b.unrestr unrestricted regression coefficients.
b.restr restricted regression coefficients.
b.restr.alt restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B"” else b.restr.alt = NULL.
Sigma variance-covariance matrix of unrestricted model.
R2.org unrestricted R-squared, not available for objects of class conGLM.
R2.reduced restricted R-squared, not available for objects of class conGLM.
boot same as input.
model.org original model.
Author(s)
Leonard Vanbrabant and Yves Rosseel
References
Kudo, A. (1963) A multivariate analogue of the one-sided test. Biometrika, 50, 403—418.
Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630
Silvapulle, M. (1996) On an F-type statistic for testing one-sided hypotheses and computation of
chi-bar-squared weights. Statistics & probability letters, 28, 137-141.
Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York
Wolak, F. (1987). An exact test for multiple inequality and equality constraints in the linear regres-
sion model. Journal of the American statistical association, 82, 782-793.
See Also
quadprog, iht
Examples

example 1:
the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data

conTestF

DATA1 <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fit1.1m <- Im(Age ~ -1 + Group, data = DATAT)

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef (fit1.1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.1m, myConstraints1)

another way is to first fit the restricted model
fit.restrl <- restriktor(fitl1.1lm, constraints = myConstraints1)

iht(fit.restr1)

Not run:
Or in matrix notation.
Amatl <- rbind(c(-1, 0, 1),
cC o, 1, -1)
myRhs1 <- rep(@OL, nrow(Amat1))
myNeql <- @

iht(fit1.1m, constraints = Amat1,
rhs = myRhs1, neq = myNeql)

End(Not run)

HEHHHHHHHERHE A

Artificial examples
HHHHHHHEHEE

generate data

n<-10

means <- ¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

fit unrestricted linear model
fit2.1m <- 1Im(y ~ -1 + group, data = DATA2)
coef(fit2.1m)

example 2: increasing means
myConstraints2 <- ' groupl < group2
group2 < group3

16

conTestF

group3 < group4 '

compute F-test for hypothesis test Type A and compute the tail
probability based on the parametric bootstrap. We only generate 9
bootstrap samples in this example; in practice you may wish to
use a much higher number.
iht(fit2.1m, constraints = myConstraints2, type = "A",
boot = "parametric”, R = 9)

or fit restricted linear model
fit2.con <- restriktor(fit2.1m, constraints = myConstraints2)

iht(fit2.con)

Not run:
increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c(0,-1, 1, 9,
c(o, 0,-1, 1))
myRhs2 <- rep(@L, nrow(Amat2))
myNeq2 <- 0

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", boot = "parametric”, R = 9)

End(Not run)

example 3:
combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2.1m, constraints = myConstraints3, type = "B"”, neq.alt = 1)

fit resticted model and compute model-based bootstrapped
standard errors. We only generate 9 bootstrap samples in this
example; in practice you may wish to use a much higher number.
Note that, a warning message may be thrown because the number of
bootstrap samples is too low.
fit3.con <- restriktor(fit2.1m, constraints = myConstraints3,
se = "boot.model.based”, B = 9)
iht(fit3.con, type = "B", neq.alt = 1)

example 4:

restriktor can also be used to define effects using the := operator
and impose constraints on them. For example, is the

average effect (AVE) larger than zero?

generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

conTestLRT 17

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

fit linear model with interaction
fit4.1m <- 1lm(y ~ X*Z, data = DATA3)

constraint syntax
myConstraints4 <- ' AVE := X + 16.86137%X.Z;
AVE > 0 '

iht(fit4.1lm, constraints = myConstraints4)

or
fit4.con <- restriktor(fit4.1lm, constraints = ' AVE := X + 16.86137*X.Z;
AVE > 0 ')
iht(fit4.con)
conTestLRT Likelihood-ratio-bar test for iht

Description

conTestLRT tests linear equality and/or inequality restricted hypotheses for linear models by LR-
tests. It can be used directly and is called by the conTest function if test = "LRT".

Usage

S3 method for class 'conLM'

conTestLRT(object, type = "A", neqg.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

S3 method for class 'conGLM'

conTestLRT(object, type = "A", neqg.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no"”, ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

S3 method for class 'conMLM'

conTestLRT(object, type = "A", neqg.alt = 0,
boot = "no", R = 9999, p.distr = rnorm,
parallel = "no"”, ncpus = 1L, cl = NULL, seed
verbose = FALSE, control = NULL, ...)

1234,

18 conTestLRT

Arguments

object an object of class conLM, conMLM or conGLM.

type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.

boot the null-distribution of these test-statistics (except under type "C", see details)
takes the form of a mixture of F-distributions. The tail probabilities can be
computed directly via bootstrapping; if "parametric”, the p-value is computed
based on the parametric bootstrap. By default, samples are drawn from a normal
distribution with mean zero and varance one. See p.distr for other distribu-
tional options. If "model.based”, a model-based bootstrap method is used. In-
stead of computing the p-value via simulation, the p-value can also be computed
using the chi-bar-square weights. If "no”, the p-value is computed based on
the weights obtained via simulation (mix.weights = "boot") or using the mul-
tivariate normal distribution function (mix.weights = "pmvnorm"”). Note that,
these weights are already available in the restriktor objected and do not need
to be estimated again. However, there are two exception for objects of class
conRLM, namely for computing the p-value for the robust test = "Wald"” and the
robust "score”. In these cases the weights need to be recalculated.

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The random generation distributional parameters will
be passed in via

parallel the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.
verbose logical; if TRUE, information is shown at each bootstrap draw.
control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.

* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.

additional arguments to be passed to the p.distr function.

conTestLRT 19

Details

The following hypothesis tests are available:

n_n

* Type A: Test HO: all constraints with equalities ("=") active against HA: at least one inequality
restriction (">") strictly true.

n_nmn

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

» Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B"” and
"global” are computed based on mixtures of F-distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meqg_alt same as input neq.alt.

iact number of active constraints.

type same as input.

test same as input.

Ts test-statistic value.

df.residual the residual degrees of freedom.

pvalue tail probability for Ts.

b_eqrestr equality restricted regression coefficients. Only available for type = "A" and

type = "global”, else b.eqrestr = NULL.
b_unrestr unrestricted regression coefficients.

b_restr restricted regression coefficients.

20 conTestLRT
b_restr_alt restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B" else b_restr_alt = NULL.
Sigma variance-covariance matrix of unrestricted model.
R2_org unrestricted R-squared, not available for objects of class conGLM.
R2_reduced restricted R-squared, not available for objects of class conGLM.
boot same as input.
model_org original model.
Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

See Also

quadprog, conTest

Examples

example 1:
the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fit1_1m <- 1lm(Age ~ -1 + Group, data = DATA1)

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef (fit1_1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1_1m, myConstraintsl, test = "LRT")
another way is to first fit the restricted model
fit_restrl <- restriktor(fit1_1lm, constraints = myConstraints1)

iht(fit_restrl, test = "LRT")

conTestLRT

Not run:
Or in matrix notation.
Amatl <- rbind(c(-1, 0, 1),
c(o, 1, -1))
myRhs1 <- rep(@OL, nrow(Amat1))
myNeql <- @

iht(fit1_1m, constraints = Amatl, test = "LRT",
rhs = myRhs1, neq = myNeql)

End(Not run)

HHHHHHEREEE

Artificial examples

AR A

generate data

n<-10

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

fit unrestricted linear model
fit2_1m <- Im(y ~ -1 + group, data = DATA2)
coef(fit2_1m)

example 2: increasing means

myConstraints2 <- ' groupl < group2
group2 < group3
group3 < group4 '

compute F-test for hypothesis test Type A and compute the tail

probability based on the parametric bootstrap. We only generate 9

bootstrap samples in this example; in practice you may wish to

use a much higher number.

iht(fit2_1m, constraints = myConstraints2, type = "A", test = "LRT",
boot = "parametric”, R = 9)

or fit restricted linear model
fit2_con <- restriktor(fit2_1m, constraints = myConstraints2)

iht(fit2_con, test = "LRT")

Not run:
increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c(0,-1, 1, @),
c(0, 0,-1, 1))
myRhs2 <- rep(@L, nrow(Amat2))
myNeq2 <- @

iht(fit2_con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,

21

22

type = "A", test = "LRT", boot = "parametric”, R = 9)
End(Not run)

example 3:
combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2_1m, constraints = myConstraints3, type = "B",
test = "LRT", neg.alt = 1)

fit resticted model and compute model-based bootstrapped
standard errors. We only generate 9 bootstrap samples in this
example; in practice you may wish to use a much higher number.
Note that, a warning message may be thrown because the number of
bootstrap samples is too low.
fit3_con <- restriktor(fit2_lm, constraints = myConstraints3,
se = "boot.model.based”, B = 9)
iht(fit3_con, type = "B", test = "LRT", neq.alt = 1)

example 4:

restriktor can also be used to define effects using the := operator
and impose constraints on them. For example, is the
average effect (AVE) larger than zero?

generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

fit linear model with interaction
fit4_1Im <- 1lm(y ~ X*Z, data = DATA3)

constraint syntax
myConstraints4 <- ' AVE := X + 16.86137%X.Z;
AVE > 0 '

iht(fit4_1m, constraints = myConstraints4, test = "LRT")

or

fit4_con <- restriktor(fit4_1m, constraints = ' AVE := X + 16.86137*X.Z;
AVE > 0 ')

iht(fit4_con, test = "LRT")

conTestScore

conTestScore Score-bar test for iht

conTestScore

Description

23

conTestScore tests linear equality and/or inequality restricted hypotheses for (robust) linear mod-
els by score-tests. It can be used directly and is called by the conTest function if test = "score”.

Usage

S3 method for class 'conLM'
conTestScore(object, type = "A", neq.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,

parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

S3 method for class 'conRLM'

conTestScore(object, type = "A", neq.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

S3 method for class 'conGLM'
conTestScore(object, type = "A", neq.alt = 0,
boot = "no"”, R = 9999, p.distr = rnorm,

parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

Arguments
object an object of class conLM, conRLM or conGLM.
type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details
for more information.
neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.
boot

the null-distribution of these test-statistics (except under type "C", see details)
takes the form of a mixture of F-distributions. The tail probabilities can be
computed directly via bootstrapping; if "parametric”, the p-value is computed
based on the parametric bootstrap. By default, samples are drawn from a normal
distribution with mean zero and varance one. See p.distr for other distribu-
tional options. If "model.based”, a model-based bootstrap method is used. In-
stead of computing the p-value via simulation, the p-value can also be computed
using the chi-bar-square weights. If "no”, the p-value is computed based on
the weights obtained via simulation (mix.weights = "boot") or using the mul-
tivariate normal distribution function (mix.weights = "pmvnorm"”). Note that,
these weights are already available in the restriktor objected and do not need
to be estimated again. However, there are two exception for objects of class
conRLM, namely for computing the p-value for the robust test = "Wald" and the
robust "score”. In these cases the weights need to be recalculated.

24 conTestScore

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The random generation distributional parameters will
be passed in via....

parallel the type of parallel operation to be used (if any). If missing, the default is set
Hnoll'

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.

verbose logical; if TRUE, information is shown at each bootstrap draw.

control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.

* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.

additional arguments to be passed to the p.distr function.

Details

The following hypothesis tests are available:

n_mn

* Type A: Test HO: all constraints with equalities (
restriction (">") strictly true.

) active against HA: at least one inequality

n_mn

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

» Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

* Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B" and
"global” are computed based on mixtures of F-distributions.

conTestScore 25

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.
Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meqg.alt same as input neq.alt.

iact number of active constraints.

type same as input.

test same as input.

Ts test-statistic value.

df.residual the residual degrees of freedom.

pvalue tail probability for Ts.

b.eqrestr equality restricted regression coefficients. Only available for type = "A" and

type = "global”, else b.eqrestr = NULL.

b.unrestr unrestricted regression coefficients.

b.restr restricted regression coefficients.

b.restr.alt restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B" else b.restr.alt = NULL.

Sigma variance-covariance matrix of unrestricted model.

R2.org unrestricted R-squared, not available for objects of class conGLM.

R2.reduced restricted R-squared, not available for objects of class conGLM.

boot same as input.

model.org original model.

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M. and Silvapulle, P. (1995). A score test against one-sided alternatives. American
statistical association, 90, 342-349.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics & probability letters, 31, 45-50.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

See Also

quadprog, conTest

26 conTestScore

Examples

example 1:
the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control”)

fit unrestricted linear model
fit1.1m <- 1Im(Age ~ -1 + Group, data = DATA1)

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef (fit1.1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.1m, myConstraintsl, test = "score")

another way is to first fit the restricted model

fit.restrl <- restriktor(fit1.1lm, constraints = myConstraints1)
iht(fit.restr1, test = "score")

Not run:

Or in matrix notation.
Amat1l <- rbind(c(-1, 0, 1),

cCo, 1, -1
myRhs1 <- rep(@L, nrow(Amat1))
myNeql <- 0
iht(fit1.1m, constraints = Amatl, test = "score”,

rhs = myRhs1, neq = myNeql)
End(Not run)

HHHHHHARHEE

Artificial examples
HHEHHHHHRHEEEHEHHEHHRAHHE

generate data

n<-10

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

conTestScore

fit unrestricted linear model
fit2.1m <- 1Im(y ~ -1 + group, data = DATA2)
coef(fit2.1m)

example 2: increasing means

myConstraints2 <- ' groupl < group2
group2 < group3
group3 < group4 '

compute F-test for hypothesis test Type A and compute the tail

probability based on the parametric bootstrap. We only generate 9
bootstrap samples in this example; in practice you may wish to

use a much higher number.

iht(fit2.1m, constraints = myConstraints2, type = "A", test = "score",

boot = "parametric”, R = 9)

or fit restricted linear model
fit2.con <- restriktor(fit2.1lm, constraints = myConstraints2)

conTest(fit2.con, test = "score")

Not run:
increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c(0,-1, 1, @),
c(0, 9,-1, 1))
myRhs2 <- rep(@OL, nrow(Amat2))
myNeq2 <- @

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", test = "score”, boot = "parametric”, R = 9)

End(Not run)

example 3:
combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2.1m, constraints = myConstraints3, type = "B", test = "score”, neqg.alt = 1)

fit resticted model and compute model-based bootstrapped
standard errors. We only generate 9 bootstrap samples in this
example; in practice you may wish to use a much higher number.
Note that, a warning message may be thrown because the number of
bootstrap samples is too low.
fit3.con <- restriktor(fit2.1lm, constraints = myConstraints3,
se = "boot.model.based”, B = 9)
iht(fit3.con, type = "B", test = "score”, neqg.alt = 1)

example 4:

27

28

S o o o o

<- 30

restriktor can also be used to define effects using the := operator
and impose constraints on them. For example, is the

average effect (AVE) larger than zero?

generate data

b0 <- 10; bl = 0.5; b2 =1; b3 = 1.5
X <= c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)
y <= b@ + b1*X + b2*Z + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

fit linear model with interaction
fit4.1m <- 1Im(y ~ X*Z, data = DATA3)

constraint syntax
myConstraints4 <- ' AVE := X + 16.86137*X.Z;

AVE > 0
iht(fit4.1m, constraints = myConstraints4, test = "score")
or
fit4.con <- restriktor(fit4.1m, constraints = ' AVE := X + 16.86137*X.Z;

AVE > 0 ')

iht(fit4.con, test = "score")

conTestWald

conTestWald

Wald-bar test for robust iht

Description

conTestWald tests linear equality and/or inequality restricted hypotheses for linear models by
Wald-tests. It can be used directly and is called by the conTest function if test = "Wald".

Usage

S3 method for class 'conRLM'

conTestWald(object, type = "A", neqg.alt = 0,

Arguments
object
type

boot = "no"”, R = 9999, p.distr = rnorm,
parallel = "no", ncpus = 1L, cl = NULL, seed = 1234,
verbose = FALSE, control = NULL, ...)

an object of class conRLM.

hypothesis test type "A", "B", "C", "global", or "summary" (default). See details

for more information.

conTestWald 29

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B"), see example 3.

boot the null-distribution of these test-statistics (except under type "C", see details)
takes the form of a mixture of F-distributions. The tail probabilities can be
computed directly via bootstrapping; if "parametric”, the p-value is computed
based on the parametric bootstrap. By default, samples are drawn from a normal
distribution with mean zero and varance one. See p.distr for other distribu-
tional options. If "model.based”, a model-based bootstrap method is used. In-
stead of computing the p-value via simulation, the p-value can also be computed
using the chi-bar-square weights. If "no”, the p-value is computed based on
the weights obtained via simulation (mix.weights = "boot") or using the mul-
tivariate normal distribution function (mix.weights = "pmvnorm”). Note that,
these weights are already available in the restriktor objected and do not need
to be estimated again. However, there are two exception for objects of class
conRLM, namely for computing the p-value for the robust test = "Wald"” and the
robust "score”. In these cases the weights need to be recalculated.

R integer; number of bootstrap draws for boot. The default value is set to 9999.

p.distr random generation distribution for the parametric bootstrap. For all available
distributions see ?distributions. For example, if rnorm, samples are drawn
from the normal distribution (default) with mean zero and variance one. If rt,
samples are drawn from a t-distribution. If rchisq, samples are drawn from a
chi-square distribution. The random generation distributional parameters will
be passed in via....

parallel the type of parallel operation to be used (if any). If missing, the default is set
lanVl.

ncpus integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

cl an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed seed value. The default value is set to 1234.

verbose logical; if TRUE, information is shown at each bootstrap draw.

control a list of control arguments:

* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
Only used for model of class Im.

* maxit the maximum number of iterations for the optimizer (default = 10000).
Only used for model of class mlm (not yet supported).

¢ tol numerical tolerance value. Estimates smaller than tol are set to 0.

additional arguments to be passed to the p.distr function.

Details

The following hypothesis tests are available:

n_n

» Type A: Test HO: all constraints with equalities (
restriction (">") strictly true.

) active against HA: at least one inequality

* Type B: Test HO: all constraints with inequalities (">") (including some equalities (

conTestWald

n_nmn

)) active

against HA: at least one restriction false (some equality constraints may be maintained).

* Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

» Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under
the null hypothesis (Wolak, 1987). In agreement with Silvapulle (1992), we found that the results
based on these mixtures of F-distributions approximate the tail probabilities of the robust tests better
than their asymptotic distributions. Therefore, all p-values for hypothesis test Type "A", "B" and

"global” are computed based on mixtures of F-distributions.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the

following items:

CON
Amat
bvec
meq
meq.alt
iact
type
test

Ts
df.residual
pvalue

b.egrestr

b.unrestr
b.restr
b.restr.alt

Sigma
R2.org
R2.reduced
boot
model.org

a list with useful information about the constraints.

constraints matrix.

vector of right-hand side elements.
number of equality constraints.
same as input neq.alt.

number of active constraints.

same as input.

same as input.

test-statistic value.

the residual degrees of freedom.

tail probability for Ts.

equality restricted regression coefficients.
type = "global”, else b.eqrestr = NULL.

unrestricted regression coefficients.

restricted regression coefficients.

Only available for type = "A" and

restricted regression coefficients under HA if some equality constraints are main-
tained. Only available for type = "B"” else b.restr.alt = NULL.

variance-covariance matrix of unrestricted model.

unrestricted R-squared, not available for objects of class conGLM.

restricted R-squared, not available for objects of class conGLM.

same as input.

original model.

conTestWald 31

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M. (1992b). Robust Wald-Type Tests of One-Sided Hypotheses in the Linear Model.
Journal of the American Statistical Association, 87, 156—161.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics & probability letters, 31, 45-50.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

See Also

quadprog, conTest

Examples

library(MASS)

example 1:

the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control”)

fit unrestricted robust linear model
fitl.rlm <- rlm(Age ~ -1 + Group, data = DATA1, method = "MM")

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef(fit1.rlm)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.rlm, myConstraintsl, test = "Wald")

another way is to first fit the restricted model
fit.restrl <- restriktor(fit1.rlm, constraints = myConstraints1)

iht(fit.restr1, test = "Wald")

Not run:
Or in matrix notation.
Amatl <- rbind(c(-1, @, 1),
c(o, 1, -1))
myRhs1 <- rep(@L, nrow(Amat1))

myNeql <- 0

iht(fit1.rlm, constraints = Amatl, test = "Wald”,
rhs = myRhs1, neq = myNeql)

End(Not run)

HHHHHHARHEE

Artificial examples
HHHHHHEAEEEH

generate data

n <- 30

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

fit unrestricted robust linear model
fit2.rlm <- rlm(y ~ -1 + group, data = DATA2, method = "MM")
coef (fit2.rlm)

example 2: increasing means

myConstraints2 <- ' groupl < group2
group2 < group3
group3 < group4 '

compute Wald-test for hypothesis test Type A and compute the tail
probability based on the parametric bootstrap. We only generate 9
bootstrap samples in this example; in practice you may wish to
use a much higher number.
iht(fit2.rlm, constraints = myConstraints2, type = "A",

test = "Wald”, boot = "parametric”, R = 9)

or fit restricted robust linear model
fit2.con <- restriktor(fit2.rlm, constraints = myConstraints2)

iht(fit2.con, test = "Wald")

Not run:
increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, @, 0),
c(0,-1, 1, @),
c(9, 9,-1, 1))
myRhs2 <- rep(@OL, nrow(Amat2))
myNeq2 <- @

iht(fit2.con, constraints = Amat2, rhs = myRhs2, neq = myNeq2,
type = "A", test = "Wald”, boot = "parametric”, R = 9)

End(Not run)

conTestWald

conTest_ceq 33

example 3:
combination of equality and inequality constraints.
myConstraints3 <- ' groupl = group2

group3 < group4 '

iht(fit2.rlm, constraints = myConstraints3, type = "B", test = "Wald", neq.alt = 1)

fit robust resticted model and compute model-based bootstrapped
standard errors. We only generate 9 bootstrap samples in this
example; in practice you may wish to use a much higher number.
Note that, a warning message may be thrown because the number of
bootstrap samples is too low.
fit3.con <- restriktor(fit2.rlm, constraints = myConstraints3,

se = "boot.model.based”, B = 9)
iht(fit3.con, type = "B", test = "Wald”, neq.alt = 1)

example 4:

restriktor can also be used to define effects using the := operator
and impose constraints on them. For example, is the
average effect (AVE) larger than zero?

generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <= c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + bI1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

fit linear model with interaction
fit3.rlm <- rlm(y ~ X*xZ, data = DATA3, method = "MM")

constraint syntax
myConstraints4 <- ' AVE := X + 16.86137*X.Z;
AVE > 0 '

iht(fit3.rlm, constraints = myConstraints4, test = "Wald")

or
fit3.con <- restriktor(fit3.rlm, constraints = ' AVE := X + 16.86137%X.Z;
AVE >0 ')
iht(fit3.con, test = "Wald")
conTest_ceq Tests for iht with equality constraints only

Description

conTest_ceq tests linear equality restricted hypotheses for (robust) linear models by F-, Wald-,

34

conTest_ceq

and score-tests. It can be used directly and is called by the conTest function if all restrictions are

equalities.

Usage

S3 method for class 'conLM'
conTest_ceq(object, test = "F", boot = "no",

R = 9999, p.distr = rnorm, parallel = "no",
ncpus = 1L, cl = NULL, seed = 1234, verbose = FALSE, ...)

n

S3 method for class 'conRLM'
conTest_ceq(object, test = "F", boot = "no",

R = 9999, p.distr = rnorm, parallel = "no",
ncpus = 1L, cl = NULL, seed = 1234, verbose = FALSE, ...)

S3 method for class 'conGLM'
conTest_ceq(object, test = "F", boot = "no",

Arguments

object
test

boot

p.distr

parallel

ncpus

R = 9999, p.distr = rnorm, parallel = "no",
ncpus = 1L, cl = NULL, seed = 1234, verbose = FALSE, ...)

an object of class conLM, conRLM or conGLM.
test statistic; for information about the null-distribution see details.

* for object of class Im and glm; if "F" (default), the classical F-statistic is
computed. If "Wald", the classical Wald-statistic is computed. If "score",
the classical score test statistic is computed.

* for object of class rlm; if "F" (default), a robust likelihood ratio type test
statistic (Silvapulle, 1992a) is computed. If "Wald", a robust Wald test
statistic (Silvapulle, 1992b) is computed. If "score", a score test statistic
(Silvapulle, 1996) is computed.

if "parametric”, the p-value is computed based on the parametric bootstrap.
See p.distr for available distributions. If "model.based”, a model-based
bootstrap method is used. Model-based bootstrapping is not supported for the
conGLM object yet.

integer; number of bootstrap draws for boot. The default value is set to 9999.

the p.distr function is specified by this function. For all available distributions
see ?distributions. For example, if rnorm, samples are drawn from the nor-
mal distribution (default) with mean zero and variance one. If rt, samples are
drawn from a t-distribution. If rchisq, samples are drawn from a chi-square
distribution. The distributional parameters will be passed in via.....

the type of parallel operation to be used (if any). If missing, the default is set

" n

no .

integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

conTest_ceq

cl

seed

verbose

Value

35

an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed value. The default value is set to 1234.
logical; if TRUE, information is shown at each bootstrap draw.

additional arguments to be passed to the p.distr function.

An object of class conTest, for which a print is available. More specifically, it is a list with the

following items:

CON
Amat
bvec
meq
test
Ts

df.residual

pvalue
b_unrestr
b_restr

R2_org

R2_reduced

Author(s)

a list with useful information about the constraints.
constraints matrix.

vector of right-hand side elements.
number of equality constraints.
same as input.

test-statistic value.

the residual degrees of freedom.
tail probability for Ts.

unrestricted regression coefficients.
restricted regression coefficients.
unrestricted R-squared.

restricted R-squared.

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics & probability letters, 31, 45-50.

Silvapulle, M. (1992b). Robust Wald-Type Tests of One-Sided Hypotheses in the Linear Model.
Journal of the American Statistical Association, 87, 156—161.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics & probability letters, 31, 45-50.

See Also

quadprog, iht

36 conTest_summary

Examples

example 1:
the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fit1.1m <- Im(Age ~ -1 + Group, data = DATAT)

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef(fit1.1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive = GroupPassive;
GroupPassive = GroupNo '

iht(fit1.1m, myConstraints1)

another way is to first fit the restricted model
fit_restrl <- restriktor(fitl1.1lm, constraints = myConstraints1)

iht(fit_restr1)

Not run:
Or in matrix notation.
Amatl <- rbind(c(-1, 0, 1),
c(C o, 1, -1)
myRhs1 <- rep(@OL, nrow(Amat1))
myNeql <- 2

iht(fit1.1m, constraints = Amat1,
rhs = myRhs1, neq = myNeql)

End(Not run)

conTest_summary function for computing all available hypothesis tests

Description

conTest_summary computes all available hypothesis tests and returns and object of class conTest
for which a print function is available. The conTest_summary can be used directly and is called by
the conTest function if type = "summary"”.

conTest_summary 37

Usage

S3 method for class 'restriktor'

conTest_summary(object, test = "F", ...)
Arguments
object an object of class restriktor.
test test statistic; for information about the null-distribution see details.

* for object of class Im; if "F" (default), the classical F-statistic is computed.
If "Wald", the classical Wald-statistic is computed. If "score", the classical
score test statistic is computed.

* for object of class rlm; if "F" (default), a robust likelihood ratio type test
statistic (Silvapulle, 1992a) is computed. If "Wald", a robust Wald test
statistic (Silvapulle, 1992b) is computed. If "score", a score test statistic
(Silvapulle, 1996) is computed.

the same arguments as passed to the iht function, except for type, of course.

Value

An object of class conTest, for which a print is available. More specifically, it is a list with the
following items:

CON a list with useful information about the constraints.

Amat constraints matrix.

bvec vector of right-hand side elements.

meq number of equality constraints.

meq.alt same as input neq.alt.

iact number of active constraints.

type same as input.

test same as input.

Ts test-statistic value.

df.residual the residual degrees of freedom.

pvalue tail probability for Ts.

b.eqrestr equality restricted regression coefficients. Only available for type = "A"” and
type = "global”, else b.eqrestr = NULL.

b.unrestr unrestricted regression coefficients.

b.restr restricted regression coefficients.

b.restr.alt restricted regression coefficients under HA if some equality constraints are main-
tained.

Sigma variance-covariance matrix of unrestricted model.

R2.org unrestricted R-squared.

38 conTest_summary

R2.reduced restricted R-squared.

boot same as input.

model.org original model.
Author(s)

Leonard Vanbrabant and Yves Rosseel

References
Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate anal-
ysis. International Statistical Review 56, 49-62.

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630.

Silvapulle, M. (1992b). Robust Wald-Type Tests of One-Sided Hypotheses in the Linear Model.
Journal of the American Statistical Association, 87, 156—161.

Silvapulle, M. and Silvapulle, P. (1995). A score test against one-sided alternatives. American
statistical association, 90, 342-349.

Silvapulle, M. (1996) On an F-type statistic for testing one-sided hypotheses and computation of
chi-bar-squared weights. Statistics & probability letters, 28, 137-141.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics & probability letters, 31, 45-50.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Wolak, F. (1987). An exact test for multiple inequality and equality constraints in the linear regres-
sion model. Journal of the American statistical association, 82, 782-793.

See Also

quadprog, iht

Examples

example 1:
the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fitl.1m <- 1lm(Age ~ -1 + Group, data = DATA1)

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef (fit1.1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the

con_weights_boot 39

mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.1m, myConstraints1)

another way is to first fit the restricted model
fit.restrl <- restriktor(fitl1.1lm, constraints = myConstraints1)

iht(fit.restr1)

Not run:
Or in matrix notation.
Amat1l <- rbind(c(-1, 0, 1),
c(C o, 1, -1))
myRhs1 <- rep(@L, nrow(Amat1))
myNeql <- @

fitl.con <- restriktor(fitl.1lm, constraints = Amat1,
rhs = myRhs1, neq = myNeql)
iht(fit1.con)

End(Not run)

con_weights_boot function for computing the chi-bar-square weights based on Monte
Carlo simulation.

Description

The null-distribution of the test statistics under inequality constraints takes the form of mixtures
of F-distributions. This function computes these mixing weights (a.k.a chi-bar-square weights and
level probabilities). It can be used directly and is called by the conTest function.

Usage

con_weights_boot(VCOV, Amat, meq,
R = 99999L, parallel = c("no”, "multicore”, "snow"),

ncpus = 1L, cl = NULL, seed = NULL, verbose = FALSE, ...)
Arguments
vcov variance-covariance matrix of the data for which the weights are to be calculated.
Amat constraints matrix R (or a vector in case of one constraint) and defines the left-

hand side of the constraint Rf > rhs, where each row represents one constraint.
The number of columns needs to correspond to the number of parameters esti-
mated (0). The rows should be linear independent, otherwise the function gives

40

meq

parallel

ncpus

cl

seed

verbose

Value

con_weights_boot

an error. For more information about constructing the matrix R and rhs see
restriktor.

integer (default = 0) treating the number of constraints rows as equality con-
straints instead of inequality constraints. For example, if meq = 2, this means
that the first two rows of the constraints matrix R are treated as equality con-
straints.

integer; number of bootstrap draws for mix.bootstrap. The default value is set
t0 99999.

the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the conTest call.

seed value.
logical; if TRUE, information is shown at each bootstrap draw.

no additional arguments for now.

The function returns a vector with the mixing weights

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Silvapulle, M.J. and Sen, P.K. (2005, p.79). Constrained Statistical Inference. Wiley, New York.

Examples

W <- matrix(c(1,0.5,0.5,1),2,2)
Amat <- rbind(c(9,1))

meq <- OL

we only generate 99 bootstrap samples in this
example; in practice you may wish to use a much higher number.
wt.bar <- con_weights_boot(W, Amat, meq, R = 99)

wt.bar

Exam 41

Exam Relation between exam scores and study hours, anxiety scores and
average point scores.

Description

The data provide information about students’ exam scores, average point score, the amount of study
hours and anxiety scores.

Usage

data(Exam)

Format
A data frame of 20 observations of 4 variables.
Scores exam scores
Hours study hours

Anxiety anxiety scores

APS average point score

References

The original source of these data is http://staff.bath.ac.uk/pssiw/stats2/examrevision.sav.

Examples

head(Exam)

FacialBurns Dataset for illustrating the conTest_conLavaan function.

Description

A dataset from the Dutch burn center (http://www.adbc.nl). The data were used to examine psy-
chosocial functioning in patients with facial burn wounds. Psychosocial functioning was measured
by Anxiety and depression symptoms (HADS), and self-esteem (Rosenberg’s self-esteem scale).

Usage

data(FacialBurns)

42 goric

Format
A data frame of 77 observations of 6 variables.

Selfesteem Rosenberg’s self-esteem scale
HADS Anxiety and depression scale

Age Age measured in years, control variable
TBSA Total Burned Surface Area

RUM Rumination, control variable

Sex Gender, grouping variable

Examples
head(FacialBurns)
goric Generalized Order-Restricted Information Criterion (Approximation)
Weights
Description

The goric function computes GORIC(A) weights, which are comparable to the Akaike weights.
Usage

goric(object, ...)

Default S3 method:

goric(object, ..., comparison = c("unconstrained”, "complement”, "none"),

VCOV = NULL, sample.nobs = NULL, type = "goric"”, auto.bound = FALSE, debug = FALSE)

S3 method for class 'con_goric'
print(x, digits = max(3, getOption("digits"”) - 4), ...)

S3 method for class 'con_goric'
summary(object, brief = TRUE, digits = max(3, getOption("digits") - 4), ...)

S3 method for class 'con_goric'

coef(object, ...)
Arguments
object an object containing the outcome of a statistical analysis. Currently, the follow-

ing objects can be processed:

* afitted object of class restriktor.
* a fitted unconstrained object of class 1m, r1m or glm.

goric 43

* anumeric vector containing the unconstrained estimates resulting from any
statistical analysis.
* afitted object of class CTmeta.
X an object of class con_goric.

this depends on the class of the object. If object is of class restriktor, further
objects of class restriktor can be passed. If object is of class 1m, rlm or glm,
the constraints can be passed. If object is of class lavaan, the standardized or
unstandardized vcov can be used, using setting standardized = TRUE. If object
is of class numeric, the constraints can be passed. See details for more informa-
tion.

comparison if "unconstrained" (default) the unconstrained model is included in the set of
models. If "complement" then the restricted object is compared against its com-
plement. Note that the complement can only be computed for one model/hypothesis
at a time (for now). If "none" the model is only compared against the models

provided by the user.

vcov variance-coviance matrix. Only needed if object is of class numeric and type =
"gorica".

sample.nobs not used for now.

type if "goric” (default), the generalized order-restricted information criterion value

is computed. If "gorica” the log-likihood is computed using the multivariate
normal distribution function.

auto.bound not used yet.
digits the number of significant digits to use when printing.
debug if TRUE, debugging information is printed out.
brief if FALSE, an extended overview is printed.

Details

The GORIC(A) values themselves are not interpretable and the interest lie in their differences. The
GORIC(A) weights reflect the support of each hypothesis in the set. To compare two hypotheses
(and not one to the whole set), one can examine the ratio of the two corresponding GORIC(A)
weights. To avoid selecting a weakly supported hypothesis as the best one, the unconstrained hy-
pothesis is usually included as safeguard.

In case of one order-constrained hypothesis, say H1, the complement Hc can be computed as com-
peting hypothesis. The complement is defined as Hc = not HI.

If the object(s) is of class restriktor the constraints are automatically extracted. Otherwise, the
constraint syntax can be parsed via the If the object is an unconstrained model of class 1m,
rlm or glm, then the constraints can be specified in two ways, see restriktor. Note that if the
constraints are written in matrix notation, then the constraints for each model/hypothesis is put in a
named list. For example, hl <- list(constraints = "x1 > 0", rhs = 0, neq = 0). The rhs and neq are
not required if they are equal to 0. If type = "gorica”, then the object might be a (named) numeric
vector. The constraints can again be specified in two ways, see restriktor. For examples, see
below.

To determine the penalty term values, the chi-bar-square weights (a.k.a. level probabilities) must
be computed. If "mix.weights = "pmvnorm" " (default), the chi-bar-square weights are com-
puted based on the multivariate normal distribution function with additional Monte Carlo steps.

44 goric

If "mix.weights = "boot" ", the chi-bar-square weights are computed using parametric bootstrap-
ping (see restriktor).

Value

The function returns a dataframe with the log-likelihood, penalty term, GORIC(A) values and the
GORIC(A) weights. Furthermore, a dataframe is returned with the relative GORIC(A) weights.

Author(s)

Leonard Vanbrabant and Rebecca Kuiper

References

Kuiper, R.M., Hoijtink, H., and Silvapulle, M.J. (2011). An Akaike-type information criterion for
model selection under inequality constraints. Biometrika, 98, 2, 495-501.

Vanbrabant, L. and Kuiper, R. (2020). Evaluating a theory-based hypothesis against its complement
using an AIC-type information criterion with an application to facial burn injury. Psychological
Methods.

Examples

library(MASS)

1m

unrestricted linear model for ages (in months) at which an
infant starts to walk alone.

prepare data
DATA <- subset(ZelazoKolb1972, Group != "Control")

fit unrestrikted linear model
fit1.1m <- 1lm(Age ~ Group, data = DATA)

some artificial restrictions

fitl.con <- restriktor(fit1.1m, constraints = "GroupPassive > @; GroupPassive < GroupNo")
fit2.con <- restriktor(fit1.1m, constraints = "GroupPassive > @; GroupPassive > GroupNo")
fit3.con <- restriktor(fit1.1m, constraints = "GroupPassive = @; GroupPassive < GroupNo")
fit4.con <- restriktor(fitl1.1m) # unrestricted model

goric(fitl.con, fit2.con, fit3.con, fit4.con)

fitl.con versus the complement
goric(fitl.con, comparison = "complement")

GORICA

generate data

n <- 10

x1 <= rnorm(n)

x2 <= rnorm(n)

y <= 1+ x1 + x2 + rnorm(n)

fit unconstrained linear model

Hurricanes 45

fit.1lm <- Im(y ~ x1 + x2)

extract unconstrained estimates

est <- coef(fit.1m)

unconstrained variance-covariance matrix
VCOV <- vcov(fit.1m)

constraint syntax (character)

h1 <= "x1 > 0"

h2 <- "x1 > 0; x2 > 0"

use fitted unconstrained linear model

out <- goric(fit.1lm, h1, h2, type = "gorica"”)

use unconstrained estimates

out <- goric(est, VCOV = VCOV, h1, h2, type = "gorica")

constraint syntax (matrix notation)

h1 <- list(constraints = c(0,1,0))

h2 <- list(constraints = rbind(c(9,1,0), c(0,0,1)))

out <- goric(fit.1lm, h1, h2, type = "gorica")

out <- goric(est, VCOV = VCOV, h1, h2, type = "gorica")

mlm

generate data

n <- 30

mu <- c(1,2,3,4)

Sigma <- matrix(5,4,4)
diag(Sigma) <- c(10,10,10,10)

#4VY's.

Y <= mvrnorm(n, mu, Sigma)

fit unrestricted multivariate linear model
fit2.mlm <= Im(Y ~ 1)

constraints
myConstraints2 <- rbind(c(-1,1,0,0), c(0,-1,1,0), c(0,0,-1,1))

fit restricted multivariate linear model
fit5.con <- restriktor(fit2.mlm, constraints = myConstraints2)

Hurricanes The Hurricanes Dataset

Description
The data provide information on the effect of El Nino (Cold, Neutral, Warm) on the number of
hurricanes from 1950 to 1995.

Usage

data(Hurricanes)

46

Format

iht

A data frame of 46 observations of 3 variables.

Year

Hurricanes Number of Hurricanes

EINino 1

References

=Cold, 2=Neutral, 3=Warm

The original source of these data is the National Hurricane Center in Australia. The dataset was
extracted from the table on page 5 in Silvapulle and Sen (2005).

Examples

head(Hurricanes)

iht

function for informative hypothesis testing (iht)

Description

iht tests linear equality and/or inequality restricted hypotheses for linear models.

Usage
iht(...)
conTest(object, constraints = NULL, type = "summary”, test = "F",

rhs = NULL, neq = 0, ...)

conTestD(model = NULL, data = NULL, constraints = NULL,

Arguments

object

model

type = c("A","B"), R = 1000L, bootstrap.type = "bollen.stine",
return.test = TRUE, neqg.alt = 0,

double.bootstrap = "standard”, double.bootstrap.R = 249,
double.bootstrap.alpha = 0.05,

parallel = c("no", "multicore”, "snow"),

ncpus = 1L, cl = NULL, verbose = FALSE, ...)

an object of class 1Im or rlm. In this case, the constraint syntax needs to be
specified

OR

an object of class restriktor. The constraints are inherited from the fitted
restriktor object and do not to be specified again.

lavaan model syntax specifying the model. See model.syntax for more infor-
mation.

iht 47

constraints there are two ways to constrain parameters. First, the constraint syntax consists
of one or more text-based descriptions, where the syntax can be specified as a
literal string enclosed by single quotes. Only the names of coef (model) can be
used as names. See details restriktor for more information.

Second, the constraint syntax consists of a matrix R (or a vector in case of one
constraint) and defines the left-hand side of the constraint R9 > rhs, where each
row represents one constraint. The number of columns needs to correspond to
the number of parameters estimated () by model. The rows should be linear
independent, otherwise the function gives an error. For more information about
constructing the matrix R and rhs see the details in the restriktor function.

data the data frame containing the observed variables being used to fit the lavaan
model.
type hypothesis test type "A", "B", "C", "global", or "summary" (default). See details

for more information.
test test statistic; for information about the null-distribution see details.

* for object of class Im; if "F" (default), the F-bar statistic (Silvapulle, 1996)
is computed. If "LRT", a likelihood ratio test statistic (Silvapulle and Sen,
2005, chp 3.) is computed. If "score", a global score test statistic (Silvapulle
and Silvapulle, 1995) is computed. Note that, in case of equality constraints
only, the usual unconstrained F-, Wald-, LR- and score-test statistic is com-
puted.

* for object of class rlm; if "F" (default), a robust likelihood ratio type test
statistic (Silvapulle, 1992a) is computed. If "Wald", a robust Wald test
statistic (Silvapulle, 1992b) is computed. If "score", a global score test
statistic (Silvapulle, and Silvapulle, 1995) is computed. Note that, in case of
equality constraints only, unconstrained robust F-, Wald-, score-test statis-
tics are computed.

* for object of class glm; if "F" (default), the F-bar statistic (Silvapulle, 1996)
is computed. If "LRT", a likelihood ratio test statistic (Silvapulle and Sen,
2005, chp 4.) is computed. If "score", a global score test statistic (Silvapulle
and Silvapulle, 1995) is computed. Note that, in case of equality constraints
only, the usual unconstrained F-, Wald-, LR- and score-test statistic is com-
puted.

rhs vector on the right-hand side of the constraints; R > rhs. The length of this
vector equals the number of rows of the constraints matrix R and consists of
zeros by default. Note: only used if constraints input is a matrix or vector.

neq integer (default = 0) treating the number of constraints rows as equality con-
straints instead of inequality constraints. For example, if neq = 2, this means
that the first two rows of the constraints matrix R are treated as equality con-
straints. Note: only used if constraints input is a matrix or vector.

neq.alt integer: number of equality constraints that are maintained under the alternative
hypothesis (for hypothesis test type "B").

R Integer; number of bootstrap draws. The default value is set to 1000.

bootstrap.type If "parametric”, the parametric bootstrap is used. If "bollen.stine”, the
semi-nonparametric Bollen-Stine bootstrap is used. The defaultis setto "bollen.stine".

48 iht

return.test Logical; if TRUE, the function returns bootstrapped test-values.

double.bootstrap
If "standard” (default) the genuine double bootstrap is used to compute an
additional set of plug-in p-values for each bootstrap sample. If "no", no double
bootstrap is used. If "FDB", the fast double bootstrap is used to compute second
level LRT-values for each bootstrap sample. Note that the "FDB" is experimental
and should not be used by inexperienced users.

double.bootstrap.R
Integer; number of double bootstrap draws. The default value is set to 249.

double.bootstrap.alpha

The significance level to compute the adjusted alpha based on the plugin p-
values. Only used if double.bootstrap = "standard”. The default value is

set to 0.05.
parallel The type of parallel operation to be used (if any). If missing, the default is set
Hnoll.
ncpus Integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.
cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created for the duration of the InformativeTesting
call.
verbose Logical; if TRUE, information is shown at each bootstrap draw.

futher options for the iht and/or restriktor function. See details for more
information.

Details
The following hypothesis tests are available:

n_n

* Type A: Test HO: all constraints with equalities (
restriction (">") strictly true.

) active against HA: at least one inequality

n_n

* Type B: Test HO: all constraints with inequalities (">") (including some equalities ("=")) active
against HA: at least one restriction false (some equality constraints may be maintained).

» Type C: Test HO: at least one restriction false ("<") against HA: all constraints strikty true
(">"). This test is based on the intersection-union principle (Silvapulle and Sen, 2005, chp
5.3). Note that, this test only makes sense in case of no equality constraints.

* Type global: equal to Type A but HO contains additional equality constraints. This test is
analogue to the global F-test in Im, where all coefficients but the intercept equal 0.

The null-distribution of hypothesis test Type C is based on a t-distribution (one-sided). Its power
can be poor in case of many inequalty constraints. Its main role is to prevent wrong conclusions
from significant results from hypothesis test Type A.

The exact finite sample distributions of the non-robust F-, score- and LR-test statistics based on
restricted OLS estimates and normally distributed errors, are a mixture of F-distributions under the
null hypothesis (Wolak, 1987). For the robust tests, we found that the results based on these mixtures
of F-distributions approximate the tail probabilities better than their asymptotic distributions.

iht

49

Note that, in case of equality constraints only, the null-distribution of the (non-)robust F-test statis-
tics are based on an F-distribution. The (non-)robust Wald- and (non-)robust score-test statistics are
based on chi-square distributions.

If object is of class 1m or rlm, the conTest function internally calls the restriktor function.

Arguments for the restriktor function can be passed on via the Additional arguments for
the conTest function can also passed on via the See for example conTestF for all available
arguments.

Value

An object of class conTest or conTestLavaan for which a print is available.

Author(s)

Leonard Vanbrabant and Yves Rosseel

References

Robertson, T., Wright, F.T. and Dykstra, R.L. (1988). Order Restricted Statistical Inference New
York: Wiley.

Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate anal-
ysis. International Statistical Review 56, 49-62.

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-sided hypotheses in the linear
model. Biometrika, 79, 621-630.

Silvapulle, M. (1992b). Robust Wald-Type Tests of One-Sided Hypotheses in the Linear Model.
Journal of the American Statistical Association, 87, 156-161.

Silvapulle, M. and Silvapulle, P. (1995). A score test against one-sided alternatives. American
statistical association, 90, 342-349.

Silvapulle, M. (1996) On an F-type statistic for testing one-sided hypotheses and computation of
chi-bar-squared weights. Statistics & probability letters, 28, 137-141.

Silvapulle, M. (1996) Robust bounded influence tests against one-sided hypotheses in general para-
metric models. Statistics & probability letters, 31, 45-50.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

Vanbrabant, L., Van de Schoot, R., Van Loey, N.E.E. & Rosseel, Y. (2017). A General Procedure for
Testing Inequality Constrained Hypotheses in SEM. Methodology European Journal of Research
Methods for the Behavioral and Social Sciences, 13, 61-70.

Van de Schoot, R., Hoijtink, H., & Dekovic, M. (2010). Testing inequality constrained hypotheses
in SEM models. Structural Equation Modeling, 17, 443-463.

Van de Schoot, R., Strohmeier, D. (2011). Testing informative hypotheses in SEM increases power:
An illustration contrasting classical. International Journal of Behavioral Development, 35, 180-
190.

Wolak, F. (1987). An exact test for multiple inequality and equality constraints in the linear regres-
sion model. Journal of the American statistical association, 82, 782-793.

50 iht

See Also

quadprog, conTest

Examples

example 1:
the data consist of ages (in months) at which an
infant starts to walk alone.

prepare data
DATA1 <- subset(ZelazoKolb1972, Group != "Control”)

fit unrestricted linear model
fit1.1m <- 1lm(Age ~ -1 + Group, data = DATA1)

the variable names can be used to impose constraints on
the corresponding regression parameters.
coef(fit1.1m)

constraint syntax: assuming that the walking
exercises would not have a negative effect of increasing the
mean age at which a child starts to walk.
myConstraintsl <- ' GroupActive < GroupPassive;
GroupPassive < GroupNo '

iht(fit1.1m, myConstraints1)

another way is to first fit the restricted model
fit.restrl <- restriktor(fit1.1lm, constraints = myConstraints1)

iht(fit.restr1)

Not run:
Or in matrix notation.
Amat1 <- rbind(c(-1, @, 1),
c(C o, 1, -1)
myRhs1 <- rep(@OL, nrow(Amat1))
myNeql <- @

iht(fit1.1m, constraints = Amat1,
rhs = myRhs1, neq = myNeql)

End(Not run)

HHHHHHHEEEEEH A
Artificial examples #i#
HHHHHHARHEEE
generate data

n<-10

means <- c¢(1,2,1,3)

nm <- length(means)

iht

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

fit unrestricted linear model
fit2.1m <- Im(y ~ -1 + group, data = DATA2)
coef (fit2.1m)

example 2: increasing means

myConstraints2 <- ' groupl < group2
group2 < group3
group3 < group4 '

compute F-test for hypothesis test Type A and compute the tail
probability based on the parametric bootstrap. We only generate 9
bootstrap samples in this example; in practice you may wish to
use a much higher number.
iht(fit2.1m, constraints = myConstraints2, type = "A",
boot = "parametric”, R = 9)

or fit restricted linear model
fit2.con <- restriktor(fit2.1m, constraints = myConstraints2)

iht(fit2.con)

Not run:
increasing means in matrix notation.
Amat2 <- rbind(c(-1, 1, 0, 0),
c(0,-1, 1, @),
c(0, 0,-1, 1))
myRhs2 <- rep(@L, nrow(Amat2))
myNeq2 <- @

iht(fit2.con, constraints = Amat2, rhs
type = "A"”, boot = "parametric”, R

myRhs2, neq = myNeq2,
9

End(Not run)

example 3: equality constraints only.

myConstraints3 <- ' groupl = group2
group2 = group3
group3 = group4 '

iht(fit2.1m, constraints = myConstraints3)

or
fit3.con <- restriktor(fit2.1lm, constraints = myConstraints3)
iht(fit3.con)

example 4:
combination of equality and inequality constraints.

51

52

myConstraints4 <- ' groupl = group2

group3 < group4 '
iht(fit2.1m, constraints = myConstraints4, type = "B"”, neq.alt = 1)

fit resticted model and compute model-based bootstrapped
standard errors. We only generate 9 bootstrap samples in this
example; in practice you may wish to use a much higher number.
Note that, a warning message may be thrown because the number of
bootstrap samples is too low.
fit4.con <- restriktor(fit2.1lm, constraints = myConstraints4,
se = "boot.model.based”, B = 9)
iht(fit4.con, type = "B", neqg.alt = 1)

example 5:

restriktor can also be used to define effects using the := operator
and impose constraints on them. For example, is the
average effect (AVE) larger than zero?

generate data

n <- 30

b0 <- 10; b1 = 0.5; b2 =1; b3 = 1.5

X <= c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1xX + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)
DATA3 = data.frame(cbind(y, X, Z))

fit linear model with interaction
fit5.1m <- 1lm(y ~ X*Z, data = DATA3)

constraint syntax
myConstraints5 <- ' AVE := X + 16.86137xX.Z;
AVE > 0 '

iht(fit5.1m, constraints = myConstraints5)

or

fit5.con <- restriktor(fit5.1m, constraints = ' AVE := X + 16.86137*X.Z;
AVE > 0 ')

iht(fit5.con)

Not run:
testing equality and/or inequality restrictions in SEM:

HHHHHEHEEE A
real data example #i##
AR
Multiple group path model for facial burns example.

model syntax with starting values.
burns.model <- 'Selfesteem ~ Age + c(ml, f1)*xTBSA + HADS +

iht

iht

start(-.10, -.20)*TBSA
HADS ~ Age + c(m2, f2)*TBSA + RUM +
start(.10, .20)*TBSA '

constraints syntax

burns.constraints <- 'f2 >0 ; ml <@
m>0 ; f1<0
f2>m2 ; f1 <ml'

we only generate 2 bootstrap samples in this example; in practice
you may wish to use a much higher number.
the double bootstrap was switched off; in practice you probably
want to set it to "standard”.
example6 <- iht(model = burns.model, data = FacialBurns,
R = 2, constraints = burns.constraints,
double.bootstrap = "no"”, group = "Sex")

example6

HHHHEEEEEE A

#i## artificial example #i#t#

HHHHEHHHEHHEHHH

Simple ANOVA model with 3 groups (N = 20 per group)
set.seed(1234)

Y <- cbind(c(rnorm(20,0,1), rnorm(20,0.5,1), rnorm(20,1,1)))
grp <- c(rep(”1", 20), rep("2", 20), rep("3", 20))

Data <- data.frame(Y, grp)

#create model matrix

fit.1lm <- 1Im(Y ~ grp, data = Data)
mfit <- fit.lm$model

mm <- model.matrix(mfit)

Y <- model.response(mfit)
X <- data.frame(mm[,2:3])
names(X) <- c("d1", "d2")
Data.new <- data.frame(Y, X)

model
model <- 'Y ~ 1 + al*xdl + a2%d2'

fit without constraints
fit <- lavaan::sem(model, data = Data.new)

constraints syntax: mul < mu2 < mu3
constraints <- ' al > @
al < a2 '

we only generate 10 bootstrap samples in this example; in practice
you may wish to use a much higher number, say > 1000. The double

bootstrap is not necessary in case of an univariate ANOVA model.
example7 <- iht(model = model, data = Data.new,

53

54

start = lavaan::parTable(fit),

R = 10L, double.bootstrap = "no",

constraints = constraints)
example?

End(Not run)

iht-methods

iht-methods Methods for iht

Description

Print function for objects of class conTest.

Usage

S3 method for class 'conTest'

print(x, digits = max(3, getOption("digits") - 2), ...)
Arguments

X an object of class conTest.

digits the number of significant digits to use when printing.

no additional arguments for now.

Examples

unrestricted linear model for ages (in months) at which an
infant starts to walk alone.

prepare data
DATA <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fit.1m <- 1m(Age ~ -1 + Group, data = DATA)

restricted linear model with restrictions that the walking

exercises would not have a negative effect of increasing the

mean age at which a child starts to walk.

fit.con <- restriktor(fit.lm, constraints = "GroupActive < GroupPassive;
GroupPassive < GroupNo")

iht(fit.con)

restriktor 55

restriktor Estimating linear regression models with (in)equality restrictions

Description

Function restriktor estimates the parameters of an univariate and a multivariate linear model
(1m), a robust estimation of the linear model (rlm) and a generalized linear model (glm) subject to
linear equality and linear inequality restrictions. It is a convenience function. The real work horses
are the conLM, conMLM, conRLM and the conGLM functions.

Usage

restriktor(object, constraints = NULL, ...)

S3 method for class 'lm'
conLM(object, constraints = NULL, se = "standard”,
B = 999, rhs = NULL, neq = OL, mix.weights = "pmvnorm”,
mix.bootstrap = 99999L, parallel = "no", ncpus = 1L,
cl = NULL, seed = NULL, control = list(),
verbose = FALSE, debug = FALSE, ...)

S3 method for class 'rlm'
conRLM(object, constraints = NULL, se = "standard”,
B = 999, rhs = NULL, neq = OL, mix.weights = "pmvnorm”,
mix.bootstrap = 99999L, parallel = "no", ncpus = 1L,
cl = NULL, seed = NULL, control = list(),
verbose = FALSE, debug = FALSE, ...)

S3 method for class 'glm'
conGLM(object, constraints = NULL, se = "standard"”,
B = 999, rhs = NULL, neq = OL, mix.weights = "pmvnorm”,
mix.bootstrap = 99999L, parallel = "no", ncpus = 1L,
cl = NULL, seed = NULL, control = list(),
verbose = FALSE, debug = FALSE, ...)

S3 method for class 'mlm'

conMLM(object, constraints = NULL, se = "none”,
B = 999, rhs = NULL, neq = OL, mix.weights = "pmvnorm”,
mix.bootstrap = 99999L, parallel = "no”, ncpus = 1L,
cl = NULL, seed = NULL, control = list(),

verbose = FALSE, debug = FALSE, ...)

Arguments

non non

object a fitted linear model object of class "Im", "mlm", "rlm" or "glm". For class "rlm"
only the loss function bisquare is supported for now, otherwise the function
gives an error.

56

constraints

se

rhs

neq

mix.weights

mix.bootstrap

parallel

ncpus

cl

restriktor

there are two ways to constrain parameters. First, the constraint syntax consists
of one or more text-based descriptions, where the syntax can be specified as a
literal string enclosed by single quotes. Only the names of coef(model) can
be used as names. See details for more information. Note that objects of class
"mlm" do not (yet) support this method.

Second, the constraint syntax consists of a matrix R (or a vector in case of one
constraint) and defines the left-hand side of the constraint Rf > rhs, where each
row represents one constraint. The number of columns needs to correspond to
the number of parameters estimated () by model. The rows should be linear
independent, otherwise the function gives an error. For more information about
constructing the matrix R and rhs see details.

if "standard" (default), conventional standard errors are computed based on in-
verting the observed augmented information matrix. If "const", homoskedas-
tic standard errors are computed. If "HCQ" or just "HC", heteroskedastic ro-
bust standard errors are computed (a.k.a Huber White). The options "HC1",
"HC2", "HC3", "HC4", "HC4m", and "HC5" are refinements of "HC®@". For more
details about heteroskedastic robust standard errors see the sandwich pack-
age. If "boot.standard", bootstrapped standard errors are computed using
standard bootstrapping. If "boot.model.based" or "boot.residual", boot-
strapped standard errors are computed using model-based bootstrapping. If
"none", no standard errors are computed. Note that for objects of class "mIm"
no standard errors are available (yet).

integer; number of bootstrap draws for se. The default value is set to 999.
Parallel support is available.

vector on the right-hand side of the constraints; R6 > rhs. The length of this
vector equals the number of rows of the constraints matrix R and consists of
zeros by default. Note: only used if constraints input is a matrix or vector.

integer (default = 0) treating the number of constraints rows as equality con-
straints instead of inequality constraints. For example, if neq = 2, this means
that the first two rows of the constraints matrix R are treated as equality con-
straints. Note: only used if constraints input is a matrix or vector.

if "pmvnorm” (default), the chi-bar-square weights are computed based on the
multivariate normal distribution function with additional Monte Carlo steps. If
"boot", the chi-bar-square weights are computed using parametric bootstrap-
ping. If "none”, no chi-bar-square weights are computed. The weights are nec-
essary in the restriktor. summary function for computing the GORIC. More-
over, the weights are re-used in the iht function for computing the p-value for
the test-statistic, unless the p-value is computed directly via bootstrapping.

integer; number of bootstrap draws for mix.weights = "boot”. The default
value is set to 99999. Parallel support is available.

the type of parallel operation to be used (if any). If missing, the default is set

" "

no .

integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.

an optional parallel or snow cluster for use if parallel = "snow". If not supplied,
a cluster on the local machine is created for the duration of the restriktor call.

restriktor 57

seed seed value.

control a list of control arguments:
* absval tolerance criterion for convergence (default = sqrt(.Machine$double.eps)).
* maxit the maximum number of iterations for the optimizer (default = 10000).
* tol numerical tolerance value. Estimates smaller than tol are set to 0.

verbose logical; if TRUE, information is shown at each bootstrap draw.

debug if TRUE, debugging information about the constraints is printed out.

no additional arguments for now.

Details

The constraint syntax can be specified in two ways. First as a literal string enclosed by single quotes
as shown below:

myConstraints <-
1. inequality constraints

x1 > 0

x1 < x2

! 2. equality constraints
x3 == x4; x4 == x5

or
X3 = x4; x4 = x5 "'

The variable names x1 to x5 refer to the corresponding regression coefficient. Thus, constraints are
impose on regression coefficients and not on the data.

Second, the above constraints syntax can also be written in matrix/vector notation as:

(The first column refers to the intercept, the remaining five columns refer to the regression coeffi-
cients x1 to x5.)

myConstraints <-

rbind(c(@, @, 0,-1, 1, @), #equality constraint x3 = x4
c(9, o0, 9, 0,-1, 1), #equality constraint x4 = x5
c(o, 1, o, 0, @, 0), #inequality constraint x1 > rhs
c(0,-1, 1, 0, @, 0)) #inequality constraint x1 < x2

the length of rhs is equal to the number of myConstraints rows.
myRhs <- ¢(0,0,0,0)

the first two rows should be considered as equality constraints
myNeq <- 2

Blank lines and comments can be used in between the constraints, and constraints can be split
over multiple lines. Both the hashtag (#) and the exclamation (!) characters can be used to start a
comment. Multiple constraints can be placed on a single line if they are separated by a semicolon
2

There can be three types of text-based descriptions in the constraints syntax:

58

restriktor

n_n

1. Equality constraints: The "==" or
x1 =1 or x1 = x2).

operator can be used to define equality constraints (e.g.,

2. Inequality constraints: The "<" or ">" operator can be used to define inequality constraints
(e.g., x1>1or x1<x2).

3. Newly defined parameters: The ":=" operator can be used to define new parameters, which
take on values that are an arbitrary function of the original model parameters. The function
must be specified in terms of the parameter names in coef (model) (e.g., new := x1 + 2xx2).
By default, the standard errors for these defined parameters are computed by using the so-
called Delta method.

Variable names of interaction effects in objects of class Im, rlm and glm contain a semi-colon (:)
between the variables. To impose constraints on parameters of interaction effects, the semi-colon
must be replaced by a dot () (e.g., x3:x4 becomes x3.x4). In addition, the intercept variable
names is shown as "(Intercept)". To impose restrictions on the intercept both parentheses must
be replaced by a dot ".Intercept." (e.g.,. Intercept. > 10). Note: in most practical situations
we do not impose restrictions on the intercept because we do not have prior knowledge about the
intercept. Moreover, the sign of the intercept can be changed arbitrarily by shifting the response
variable y.

Each element can be modified using arithmetic operators. For example, if x2 is expected to be twice
as large as x1, then "2*x2 = x1".

If constraints = NULL, the unrestricted model is fitted.

Value

An object of class restriktor, for which a print and a summary method are available. More specifi-
cally, it is a list with the following items:

CON a list with useful information about the restrictions.

call the matched call.

timing how much time several tasks take.

parTable a parameter table with information about the observed variables in the model
and the imposed restrictions.

b.unrestr unrestricted regression coefficients.

b.restr restricted regression coefficients.

residuals restricted residuals.

wresid a working residual, weighted for "inv.var" weights only (rlm only)

fitted restricted fitted mean values.

weights (only for weighted fits) the specified weights.

wgt the weights used in the IWLS process (rlm only).

scale the robust scale estimate used (rlm only).

stddev a scale estimate used for the standard errors.

R2.org unrestricted R-squared.

R2.reduced restricted R-squared.

restriktor

df.residual
s2.unrestr
s2.restr
loglik
Sigma
constraints
rhs

neq

wt.bar

iact
converged
iter

bootout

control
model.org
se

information

Author(s)

59

the residual degrees of freedom

mean squared error of unrestricted model.

mean squared error of restricted model.

restricted log-likelihood.

variance-covariance matrix of unrestricted model.
matrix with restrictions.

vector of right-hand side elements.

number of equality restrictions.

chi-bar-square mixing weights or a.k.a. level probabilities.
active restrictions.

did the IWLS converge (rlm only)?

number of iteration needed for convergence (rlm only).

object of class boot. Only available if bootstrapped standard errors are re-
quested, else bootout = NULL.

list with control options.
original model.
as input. This information is needed in the summary function.

observed information matrix with the inverted information matrix and the aug-
mented information matrix as attributes.

Leonard Vanbrabant and Yves Rosseel

References

Schoenberg, R. (1997). Constrained Maximum Likelihood. Computational Economics, 10, 251—

266.

Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate anal-
ysis. International Statistical Review 56, 49-62.

Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference. Wiley, New York

See Also

iht, goric

Examples

1m

unrestricted linear model for ages (in months) at which an
infant starts to walk alone.

prepare data

DATA1 <- subset(ZelazoKolb1972, Group != "Control”)

60

restriktor

fit unrestricted linear model
fit1.1m <- 1Im(Age ~ -1 + Group, data = DATA1)

the variable names can be used to impose restrictions on
the corresponding regression parameters.
coef (fit1.1m)

restricted linear model with restrictions that the walking

exercises would not have a negative effect of increasing the

mean age at which a child starts to walk.

fitl.con <- restriktor(fitl1.1lm, constraints = ' GroupActive < GroupPassive;
GroupPassive < GroupNo ')

summary (fit1.con)

Not run:

Or in matrix notation.

myConstraintsl <- rbind(c(-1, 1, @),
c(0,-1, 1))

myRhs1 <- rep(@L, nrow(R1))

myNeql <- @

fitl.con <- restriktor(fit1.1lm, constraints = myConstraintsi,
rhs = myRhs1, neq = myNeql)
summary (fit1.con)

End(Not run)

HHHHHHHA A
Artificial examples
HSHFHEHHRHRHEHREEEEH AR
library(MASS)

mlm

generate data

n <- 30

mu <- rep(Q, 4)

Sigma <- matrix(5,4,4)
diag(Sigma) <- c(10,10,10,10)

#4Y's.

Y <- mvrnorm(n, mu, Sigma)

fit unrestricted multivariate linear model
fit.mlm <- Im(Y ~ 1)

constraints
myConstraints2 <- diag(9,4)
diag(myConstraints2) <- 1

fit restricted multivariate linear model
fit2.con <- restriktor(fit.mlm, constraints = myConstraints2)

summary (fit2.con)

restriktor

rlm

generate data

n <- 10

means <- c¢(1,2,1,3)

nm <- length(means)

group <- as.factor(rep(1:nm, each = n))
y <= rnorm(n * nm, rep(means, each = n))
DATA2 <- data.frame(y, group)

fit unrestricted robust linear model
fit3.rlm <- rlm(y ~ -1 + group, data = DATA2, method = "MM")
coef(fit3.rlm)

increasing means

myConstraints3 <- ' groupl < group2
group2 < group3
group3 < group4 '

fit restricted robust linear model and compute

Huber-White (robust) standard errors.

fit3.con <- restriktor(fit3.rlm, constraints = myConstraints3,
se = "HCO")

summary (fit3.con)

Not run:

increasing means in matrix notation.

myConstraints3 <- rbind(c(-1, 1, @, 0),
c(0,-1, 1, @),
c(9, 0,-1, 1))

myRhs3 <- rep(0L, nrow(myConstraints3))

myNeg2 <- @

fit3.con <- restriktor(fit3.rlm, constraints = myConstraints3,
rhs = myRhs2, neq = myNeq2, se = "HCQ")
summary (fit3.con)

End(Not run)

equality restrictions only.

myConstraints4 <- ' groupl = group2
group2 = group3
group3 = group4 '

fit4.con <- restriktor(fit3.rlm, constraints = myConstraints4)
summary (fit4.con)

combination of equality and inequality restrictions.
myConstraints5 <- ' groupl = group2
group3 < group4 '

61

62

restriktor-methods

fit restricted model and compute model-based bootstrapped
standard errors. We only generate 9 bootstrap samples in this
example; in practice you may wish to use a much higher number.
fit5.con <- restriktor(fit3.rlm, constraints = myConstraints4,
se = "boot.model.based”, B = 9)
an error is probably thrown, due to a too low number of bootstrap draws.
summary (fit5.con)

restriktor can also be used to define effects using the := operator
and impose restrictions on them. For example, compute the average
effect (AVE) and impose the restriction AVE > 0.

generate data

<- 30

bo <- 10; bl = 0.5; b2 = 1; b3 = 1.5

X <- c(rep(c(@), n/2), rep(c(1), n/2))

set.seed(90)

Z <- rnorm(n, 16, 5)

y <= b0 + b1*X + b2xZ + b3*X*Z + rnorm(n, @, sd = 10)

DATA3 = data.frame(cbind(y, X, Z))

S oH H o H OB

fit linear model with interaction
fit6.1m <- 1lm(y ~ X*Z, data = DATA3)

fit6.con <- restriktor(fit6.1lm, constraints = ' AVE := X + 16.86137*X.Z;
AVE > @ ')
summary (fit6.con)

restriktor-methods Methods for restriktor

Description

restricted estimation and confidence intervals for (robust) linear (in)equality restricted hypotheses.

Usage

S3 method for class 'restriktor'
print(x, digits = max(3, getOption("digits") - 2), ...)

S3 method for class 'restriktor'
summary (object, bootCIs = TRUE,
bty = "perc”, level = 0.95, goric = "goric"”, ...)

S3 method for class 'summary.restriktor'
print(x, digits = max(3, getOption("digits"”) - 2),

signif.stars = getOption("show.signif.stars"), ...)

S3 method for class 'restriktor'

restriktor-methods 63

coef(object, ...)

S3 method for class 'restriktor'
model.matrix(object, ...)

S3 method for class 'restriktor'

logLik(object, ...)
Arguments
object an object of class restriktor.
X an object of class restriktor.
bootCIs if TRUE (default), nonparametric bootstrap confidence intervals are generated.

Only available if object contains bootout object.

bty a character string representing the type of interval required. The value should be

any of the values "norm”, "basic”,"perc”,"bca”. The value "stud” is not
supported. For more details see boot.ci.

level the confidence level of the interval (default = 0.95).

goric if "goric"” (default), the generalized order-restricted information criterion value
is computed. If "gorica” the log-likihood is computed using the multivariate
normal distribution function. If "goricc” or "goricca”, a small sample ver-
sion of the "goric” or "gorica” is computed.

digits the number of significant digits to use when printing.
signif.stars If TRUE, "significance stars are printed for each coefficient.

no additional arguments for now.

Details

The function print returns the restricted coefficients. The output from the print. summary.conLM
function provides information that is comparable with the output from print.summary.1lm. Addi-
tional information is provided about the unrestricted and restricted R-square and by default the out-

put of the GORIC. If bootstrapped standard errors are requested (e.g., option se = "boot.model . based”
in the restriktor function and bootCI = TRUE in the summary function) standard errors and con-
fidence intervals are provided.

Value

The function summary computes and returns a list of summary statistics of the fitted unrestricted
and restricted (robust) linear model given in object, plus

se.type type of standard error computed, equal to input se in the restriktor function.
residuals the weighted residuals.

coefficients a p x 4 matrix with columns for the estimated coefficient, its standard error, t-
statistic and corresponding p-value. If bootCIs = TRUE and the bootout object
is available in the object, bootstrapped standard errors and confidence intervals
are produced.

64 ZelazoKolb1972

rdf residual degrees of freedom.

R2.org unrestricted R-squared.

R2.reduced restricted R-squared.

goric goric value and attributed its penalty term and log-likelihood.
Examples

unrestricted linear model for ages (in months) at which an
infant starts to walk alone.

prepare data
DATA <- subset(ZelazoKolb1972, Group != "Control")

fit unrestricted linear model
fit.1lm <- 1m(Age ~ -1 + Group, data = DATA)

restricted linear model with restrictions that the walking

exercises would not have a negative effect of increasing the

mean age at which a child starts to walk.

fit.con <- restriktor(fit.1lm, constraints = ' GroupActive < GroupPassive;
GroupPassive < GroupNo ')

summary (fit.con)

ZelazoKolb1972 "Walking" in the newborn (4 treatment groups)

Description

The Zelazo, Zelazo and Kolb (1972) dataset consists of ages (in months) at which an infant starts to
walk alone from four different treatment groups (Active-exercise, Passive-exercise, 8§ week Control,
No-exercise).

Usage

data(ZelazoKolb1972)

Format

A data frame of 23 observations of 4 treatment variables.

Age Age in months

Group Active-exercise, Passive-exercise, 8-week Control group, No-exercise

References

Zelazo, PR., Zelazo, N.A., and Kolb, S. (1972). "Walking in the Newborn". Science, New Series,
176, 314-315

ZelazoKolb1972

Examples

head(ZelazoKolb1972)

65

Index

AngerManagement, 4

boot.ci, 63
bootstrapD, 5
Burns, 8

coef.con_goric (goric), 42
coef.restriktor (restriktor-methods), 62
con_weights_boot, 39

conGLM.glm (restriktor), 55
conLM.1m (restriktor), 55
conMLM.mlm (restriktor), 55
conRLM.rlm(restriktor), 55
conTest, 20, 25, 31, 50

conTest (iht), 46

contest (iht), 46

conTest-methods (iht-methods), 54
conTest_ceq, 33
conTest_summary, 36

conTestC, 9

conTestD (iht), 46

contestD (iht), 46

conTestF, 11, 49

conTestLRT, 17

conTestScore, 22

conTestWald, 28

Exam, 41

FacialBurns, 41

goric, 42,59

Hurricanes, 45

iht, 4, 10, 14, 35, 37, 38, 46, 56, 59
iht-methods, 54

iht_summary (conTest_summary), 36

lavaan, 5

66

loglik.restriktor (restriktor-methods),
62

model .matrix.restriktor
(restriktor-methods), 62
model.syntax, 46

options, 6

print.con_goric (goric), 42

print.conTest (iht-methods), 54

print.conTestlLavaan (bootstrapD), 5

print.restriktor (restriktor-methods),
62

print.summary.restriktor
(restriktor-methods), 62

quadprog, 10, 14, 20, 25, 31, 35, 38, 50

restriktor, 4, 40, 43, 44, 47, 49, 55
restriktor-methods, 62
restriktor-package, 2

summary.con_goric (goric), 42
summary.restriktor
(restriktor-methods), 62

ZelazoKolb1972, 64

	restriktor-package
	AngerManagement
	bootstrapD
	Burns
	conTestC
	conTestF
	conTestLRT
	conTestScore
	conTestWald
	conTest_ceq
	conTest_summary
	con_weights_boot
	Exam
	FacialBurns
	goric
	Hurricanes
	iht
	iht-methods
	restriktor
	restriktor-methods
	ZelazoKolb1972
	Index

