
Package ‘rhype’
August 6, 2022

Title Work with Hypergraphs in R

Version 0.3.0

Description Create and manipulate hypergraph objects. This early version of
rhype allows for the output of matrices associated with the hypergraphs
themselves. It also uses these matrices to calculate hypergraph spectra and
perform spectral comparison. Functionality coming soon includes calculation
of hyperpaths and hypergraph centrality measures.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.1

Imports Matrix, R6, RSpectra

Suggests spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

Language en-US

NeedsCompilation no

Author Hugh Warden [aut, cre] (<https://orcid.org/0000-0002-4308-7316>)

Maintainer Hugh Warden <hugh.warden@outlook.com>

Repository CRAN

Date/Publication 2022-08-06 13:30:02 UTC

R topics documented:
adjacency_matrix . 2
degree . 3
eigenvector_centrality . 4
eigenvector_centrality_factor . 4
example_hype . 5
has_real_coef . 6
hyperedge_list . 6
hyperedge_names . 7
hyperedge_weights . 7

1

https://orcid.org/0000-0002-4308-7316

2 adjacency_matrix

hype_from_edge_list . 8
hype_from_inc_mat . 9
hype_info . 10
hype_norm_lap_mat . 12
hype_order . 12
hype_size . 13
incidence_matrix . 13
is_directed . 14
is_oriented . 15
is_weighted . 15
laplacian_matrix . 16
pseudo_invert . 16
spectra . 17
spectral_distance . 17
spectral_distance_disc . 18
validate_hypergraph . 19
vertex_names . 19
vertex_weights . 20
vert_norm_lap_mat . 21

Index 22

adjacency_matrix Find the Adjacency Matrix of a Hypergraph

Description

An adjacency matrix is a square matrix with both rows and columns being indexed by vertices.
For each entry, the number is proportional to the strength of the connection going from the vertex
represented as the row and the vertex represented by the column. For undirected hypergraphs, this
matrix is symmetric but this is usually not the case for directed.

Usage

adjacency_matrix(hype, normalise = TRUE, self_adj = TRUE, as_matrix = FALSE)

Arguments

hype A hypergraph object

normalise Whether the matrix should be normalised to either 1 or 0

self_adj Whether self adjacency should be represented

as_matrix Whether the output should be coerced into a simple matrix

Details

Great care should be taken when using a hypergraph with mixed positive and negative real coeffi-
cients as there is a chance no adjacency will be registered for two adjacenct vertices. rhype does not
check for these cases and they must be checked for by the user.

degree 3

Value

A matrix of adjacencies between vertices of a hypergraph.

Examples

h1 <- example_hype()
adjacency_matrix(h1)

h2 <- example_hype(oriented = TRUE, directed = TRUE)
adjacency_matrix(h2)

degree Find the Degree of Vertices in a Hypergraph

Description

The degree of a vertex is a way of expressing how many connections there are from a vertex to the
rest of the hypergraph. The current version of rhype has three methods for computing degree.

Usage

degree(hype, method = "vertex")

Arguments

hype A hypergraph object

method The method for calculating degree. Out of "vertex", "vertex_simple", "hyperedge"
and "hyperedge_simple"

Details

"vertex" counts the number of ways it is possible to move to another vertex. If there are multiple
hyperedges connecting two vertices, then each of these hyperedges will be counted as a new way to
move between these two vertices. For weighted hypergraphs or hypergraphs with real coefficients,
the strength of connection between two vertices is a functions of the weights and real coefficients.

"vertex_simple" just counts the number of vertices it is possible to reach in one step from the
given vertex, no matter how many hyperedges connect them.

"hyperedge" represents the strength with which a vertex connects with itself through the hy-
peredges it is a member of. This is taken from the work of Jurgen Jost and Raffaella Mulas
doi: 10.1016/j.aim.2019.05.025. For unweighted hypergraphs without real coefficients this is equiv-
alent to "hyperedge_simple".

"hyperedge_simple" just counts the number of hyperedges a vertex is a member of.

Value

A vector representing the degree of each vertex with respect to the given method.

https://doi.org/10.1016/j.aim.2019.05.025

4 eigenvector_centrality_factor

Examples

h1 <- example_hype()
degree(h1)

eigenvector_centrality

Calculate The Eigenvector Centrality Of A Hypergraph

Description

To calculate the eigenvector centrality of a hypergraph, each vertex is assigned a value that is pro-
portional to the sum of the value of its neighbours.

Usage

eigenvector_centrality(hype)

Arguments

hype A hypergraph object

Value

A vector of values representing the eigenvector centrality of each node

Examples

h1 <- example_hype()
eigenvector_centrality(h1)

eigenvector_centrality_factor

Calculate The Eigenvector Centrality Scaling Factor Of A Hypergraph

Description

To calculate the eigenvector centrality of a hypergraph, each vertex is assigned a value that is pro-
portional to the sum of the value of its neighbours. This function gives the scaling factor relating
the value of each node to the sum of the value of its neighbours.

Usage

eigenvector_centrality_factor(hype)

example_hype 5

Arguments

hype A hypergraph object

Value

A number representing the scaling factor relating the value of each node to the sum of the value of
its neighbours

Examples

h1 <- example_hype()
eigenvector_centrality_factor(h1)

example_hype Generate an Example Hypergraph

Description

Quickly generate an example hypergraph. Can be used for quickly testing and trialing examples.

Usage

example_hype(
oriented = FALSE,
directed = FALSE,
vertex_weighted = FALSE,
edge_weighted = FALSE,
real_coef = FALSE

)

Arguments

oriented Logical value representing whether the example hypergraph should be oriented

directed Logical value representing whether the example hypergraph should be directed
vertex_weighted

Logical value representing whether the example hypergraph should have vertex
weights

edge_weighted Logical value representing whether the example hypergraph should have hyper-
edge weights

real_coef Logical value representing whether the example hypergraph should have real
coefficients relating vertices to hyperedges

Value

An example hypergraph with the given properties

6 hyperedge_list

Examples

h1 <- example_hype()
h2 <- example_hype(oriented = TRUE)
h3 <- example_hype(oriented = TRUE, directed = TRUE)
h4 <- example_hype(oriented = TRUE, directed = TRUE, real_coef = TRUE)

has_real_coef Does a Hypergraph Have Real Coefficients

Description

Takes a hypergraph object and returns whether there are real coefficients associating vertices to
hyperedges.

Usage

has_real_coef(hype)

Arguments

hype A hypergraph object.

Value

A logical value indicating whether there are real cofficients associating vertices to hyperedges.

Examples

h <- example_hype()
has_real_coef(h)

hyperedge_list Get Hyperedge List

Description

Take a hypergraph object and return its hyperedge list.

Usage

hyperedge_list(hype)

Arguments

hype A hypergraph object

hyperedge_names 7

Value

A hyperedge list. See main documentation for more details on its structure

Examples

h <- example_hype()
hyperedge_list(h)

hyperedge_names Get Hyperedge Names

Description

Takes a hypergraph object and returns the names of the hyperedges.

Usage

hyperedge_names(hype)

Arguments

hype A hypergraph object.

Value

A vector of strings representing the names of the the hyperedges. If the hyperedges have no names
assocaited with them it will return NULL instead.

Examples

h <- example_hype()
hyperedge_names(h)

hyperedge_weights Get Hyperedge Weights

Description

Takes a hypergraph object and returns the weights associated with each hyperedge

Usage

hyperedge_weights(hype)

Arguments

hype A hypergraph object.

8 hype_from_edge_list

Value

A vector of weights asssociated with the hyperedges. If the are no weights assicated with the
hyperedges then NULL is returned instead.

Examples

h <- example_hype()
hyperedge_weights(h)

hype_from_edge_list Create a Hypergraph From a Hyperedge List

Description

Create a Hypergraph From a Hyperedge List

Usage

hype_from_edge_list(elist, directed = FALSE)

Arguments

elist A hyperedge list. For an unoriented hypergraph, a hyperedge is just a vector
of the vertices contained within the hyperedge. Each vertex is represented as a
string. For an oriented hypergraph, each hyperedge is itself a list of two vectors.
Each of these vectors contains strings representing the vertices contained in one
end of the hyperedge. For a directed hypergraph, each hyperedge is also a list of
two vectors. In the directed case, the first vector represents the vertices contained
in the tail of the hyperedge and the second the vertices contained in the head.
These two entries are also named from and to.

directed A logical value representing whether the hypergraph should be directed.

Value

A hypergraph object with the given hyperedge structure.

Examples

l1 <- list(
h1 = c("a", "b", "c"),
h2 = c("c", "d", "e"),
h3 = c("a", "e")

)
hype1 <- hype_from_edge_list(l1)

l2 <- list(
h1 = list(

c("a", "b"),

hype_from_inc_mat 9

c("b", "c")
),
h2 = list(

c("b", "c", "d"),
c("e", "f")

),
h3 = list(

"f",
"a"

)
)
hype2 <- hype_from_edge_list(l2)
hype3 <- hype_from_edge_list(l2, directed = TRUE)

hype_from_inc_mat Create a Hypergraph From an Incidence Matrix

Description

Create a Hypergraph From an Incidence Matrix

Usage

hype_from_inc_mat(inc_mat, directed = FALSE, real_coef = FALSE)

Arguments

inc_mat An incidence matrix or, for an oriented hypergraph, a list of two incidence ma-
trices.

directed A logical value representing whether the hypergraph should be directed.

real_coef A logical value representing whether the hypergraph should have real coeffi-
cients associating vertices to hyperedges.

Value

A hypergraph object with the given incidence structure.

Examples

i1 <- matrix(
c(1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0),
nrow = 5,
ncol = 3,
dimnames = list(

paste0("v", 1:5),
paste0("h", 1:3)

)
)
hype1 <- hype_from_inc_mat(i1)

10 hype_info

i2 <- list(
matrix(
c(1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0),
nrow = 4,
ncol = 3,
dimnames = list(

paste0("v", 1:4),
paste0("h", 1:3)

)
),
matrix(

c(0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0),
nrow = 4,
ncol = 3,
dimnames = list(

paste0("v", 1:4),
paste0("h", 1:3)

)
)

)
hype2 <- hype_from_inc_mat(i2)
hype3 <- hype_from_inc_mat(i2, directed = TRUE)

hype_info Print More Detail About a Hypergraph

Description

Get a more detailed printout of what is contained within a hypergraph object to understand more
about its structure as a whole without having to repeatedly call other functions.

Usage

hype_info(
hype,
numv = TRUE,
elist = TRUE,
vnames = TRUE,
vweights = TRUE,
enames = TRUE,
eweights = TRUE,
weighted = TRUE,
oriented = TRUE,
directed = TRUE,
real_coef = TRUE,
inc_mat = TRUE

)

hype_info 11

Arguments

hype A hypergraph object

numv A logical variable indicating whether information about the number of vertices
should be printed

elist A logical variable indicating whether information about the hyperedge list should
be printed

vnames A logical variable indicating whether information about the vertex names should
be printed

vweights A logical variable indicating whether information about the vertex weights should
be printed

enames A logical variable indicating whether information about the hyperedge names
should be printed

eweights A logical variable indicating whether information about the hyperedge weights
should be printed

weighted A logical variable indicating whether information about the hypergraph weight-
ing should be printed

oriented A logical variable indicating whether information about the hypergraph orienta-
tion should be printed

directed A logical variable indicating whether information about the hypergraph direc-
tion should be printed

real_coef A logical variable indicating whether information about the hypergraph real co-
efficients should be printed

inc_mat A logical variable indicating whether information about the hypergraph inci-
dence matrix should be printed

Details

This gives a more detailed look at the whole hypegraph object. It is intended solely to aid the user
when using rhype and generally should not be included in final scripts. If a user wants to include this
in their final script it is instead heavily encouraged that they use other rhype functions to generate
their own bespoke messages.

Examples

hype1 <- example_hype()
hype_info(hype1)

hype2 <- example_hype(vertex_weighted = TRUE, edge_weighted = TRUE)
hype_info(hype2)

hype3 <- example_hype(oriented = TRUE, directed = TRUE, real_coef = TRUE)
hype_info(hype3)

12 hype_order

hype_norm_lap_mat Find the Hyperedge Normalised Laplacian Matrix of a Hypergraph

Description

As defined by Jurgen Jost and Raffaella Mulas doi: 10.1016/j.aim.2019.05.025

Usage

hype_norm_lap_mat(hype)

Arguments

hype A hypergraph object

Value

The hyperedge normalised laplacian matrix of the hypergraph

Examples

h1 <- example_hype()
hype_norm_lap_mat(h1)

hype_order Get The Order Of A Hypergraph

Description

The order of a hypergraph is the number of vertices it has

Usage

hype_order(hype)

Arguments

hype A hypergraph object

Value

A number representing the number of vertices in the hypergraph

Examples

hype <- example_hype()
hype_order(hype)

https://doi.org/10.1016/j.aim.2019.05.025

hype_size 13

hype_size Get The Size Of A Hypergraph

Description

The size of a hypergraph is the number of hyperedges it contains

Usage

hype_size(hype)

Arguments

hype A hypergraph object

Value

A number representing the number of hyperedges in a hypergraph

incidence_matrix Find the Incidence Matrix of a Hypergraph

Description

An incidence matrix has rows indexed by vertices and columns indexed by hyperedges. Each entry
is non-zero if the associated vertex is a member of the associated hyperedge. For an oriented
hypergraph, this returns a list of two matrices with the first representing incidence to one end of the
hyperedges and the second representing incidence to the other end. For a directed hypergraph the
first represents incidence to the tail of a hyperedge and the second represents incidence to the head.

Usage

incidence_matrix(hype, augment_oriented = TRUE, as_matrix = FALSE)

Arguments

hype A hypergraph object
augment_oriented

Whether to augment an oriented hypergraph
as_matrix Whether to coerce the result to a simple matrix

Details

It is hard to use the incidence matrices of oriented undirected hypergraphs in calculations. The
augment_oriented option turns the hypergraph into a directed hypergraph, but each hyperedge is
represented twice, once pointing in each direction. This is much easier to use for further calcula-
tions.

14 is_directed

Value

An incidence matrix or a list of two incidence matrices.

Examples

h1 <- example_hype()
incidence_matrix(h1)

h2 <- example_hype(oriented = TRUE, directed = TRUE)
incidence_matrix(h2)

is_directed Is a Hypergraph Directed

Description

Takes a hypergraph object and returns whether the hyperedges are directed.

Usage

is_directed(hype)

Arguments

hype A hyeprgraph object.

Value

A logical value indicating whether the hyperedges are directed.

Examples

h <- example_hype()
is_directed(h)

is_oriented 15

is_oriented Is a Hypergraph Oriented

Description

Takes a hypergraph object and returns whether the hyperedges are oriented.

Usage

is_oriented(hype)

Arguments

hype A hypergraph object.

Value

A logical value indicating whether the hyperedges are oriented.

Examples

h <- example_hype()
is_oriented(h)

is_weighted Is a Hypergraph Weighted

Description

Takes a hypergraph object and returns whether a hypergraph has weights associated with its vertices
or hyperedges.

Usage

is_weighted(hype)

Arguments

hype A hypergraph object.

Value

A logical value indicating whether the hypergraph has weights associated with its vertices or hyper-
edges.

Examples

h <- example_hype()
is_weighted(h)

16 pseudo_invert

laplacian_matrix Find the Laplacian Matrix of a Hypergraph

Description

Find the Laplacian Matrix of a Hypergraph

Usage

laplacian_matrix(hype)

Arguments

hype A hypergraph object

Value

The laplacian matrix of the hypergraph

Examples

h1 <- example_hype()
laplacian_matrix(h1)

pseudo_invert Pseudo-Invert a Vector

Description

Pseudoinversion is where a vector has each non-zero element inverted and each zero element re-
mains untouched. This is useful for pseudoinverting matrices that only have non-zero entries on the
leading diagonal.

Usage

pseudo_invert(vec)

Arguments

vec A vector of numbers

Value

A vector of pseudo-inverted numbers

spectra 17

spectra Find the Spectra of a Hypergraph

Description

Find the Spectra of a Hypergraph

Usage

spectra(hype, matrix = "laplacian", n = NULL)

Arguments

hype A hypergraph object

matrix The matrix to calculate the spectra with respect to. Out of "laplacian", "adjacency",
"vert_norm_lap_mat" and "hype_norm_lap_mat"

n The number of eigenvalues or eigenvectors to calculate. If left empty or as NULL
all will be calculated.

Value

The eigen decomposition of the given matrix of the given hypergraph

Examples

h <- example_hype()
spectra(h)

spectral_distance Find the Spectral Distance Between Two Hypergraphs

Description

Find the Spectral Distance Between Two Hypergraphs

Usage

spectral_distance(hype1, hype2, matrix = "laplacian")

Arguments

hype1 A hypergraph object

hype2 A hypergraph object

matrix The matrix to calculate the spectral distance with respect to. Out of "laplacian",
"adjacency", "vert_norm_lap_mat" and "hype_norm_lap_mat"

18 spectral_distance_disc

Value

A number representing the spectral distance between the two hypergraphs with respect to the given
matrix

Examples

h1 <- example_hype()
h2 <- example_hype()
spectral_distance(h1, h2)

spectral_distance_disc

Find the Spectral Distance From the Fully Disconnected Hypergraph

Description

Find the Spectral Distance From the Fully Disconnected Hypergraph

Usage

spectral_distance_disc(hype, matrix = "vert_norm_lap_mat")

Arguments

hype A hypergraph object

matrix The matrix to calculate the spectra with respect to. Out of "vert_norm_lap_mat"
and "hype_norm_lap_mat"

Value

The spectral distance from the disconnected hypergraph

Examples

h <- example_hype()
spectral_distance_disc(h)

validate_hypergraph 19

validate_hypergraph Quickly Validate a Hypergraph

Description

When using the rhype functions, the integrity of a hypergraph object should remain intact. However,
as the properties of a hypergraph object are dependent on one another, it is possible in the case of
an error or direct object manipulation by the user that a hypergraph object’s integrity is corrupted.
This will cause other rhype functions to either throw errors or to calculate incorrect answers. This
function is not exhaustive but will perform multiple sanity checks on hypergraph objects and is a
good place to start when debugging.

Usage

validate_hypergraph(hype, return = FALSE, verbose = TRUE)

Arguments

hype A hypergraph object

return A logical variable stating whether any output should be returned from the func-
tion

verbose A logical variable indicating whether the function should output text to the
screen

Value

Outputs text to screen of any problems found within the hypergraph object. If return is set to
TRUE then a logical output will be returned. This logical output will be TRUE if it passed all of the
tests, FALSE if it failed any test that proves the structure of the hypergraph is broken or NULL if it
failed a test that most hypergraphs used practically should pass, but doesn’t necessarily mean the
hypergraph is broken, see text output for more details.

Examples

h <- example_hype()
validate_hypergraph(h)

vertex_names Get Vertex Names

Description

Takes a hypergraph object and returns the names of its vertices.

20 vertex_weights

Usage

vertex_names(hype)

Arguments

hype A hypergraph object.

Value

A vector of strings of vertex names

Examples

h <- example_hype()
vertex_names(h)

vertex_weights Get Vertex Weights

Description

Takes a hypergraph object and returns the weights associated with its vertices.

Usage

vertex_weights(hype)

Arguments

hype A hypergraph object.

Value

A vector of weights associated with each vertex. If the hypergraph has no weights associated with
its vertices it will return NULL instead.

Examples

h <- example_hype()
vertex_weights(h)

vert_norm_lap_mat 21

vert_norm_lap_mat Find the Vertex Normalised Laplacian Matrix of a Hypergraph

Description

As defined by Jurgen Jost and Raffaella Mulas doi: 10.1016/j.aim.2019.05.025

Usage

vert_norm_lap_mat(hype)

Arguments

hype A hypergraph object

Value

The vertex normalised laplacian matrix of the hypergraph

Examples

h1 <- example_hype()
vert_norm_lap_mat(h1)

https://doi.org/10.1016/j.aim.2019.05.025

Index

adjacency_matrix, 2

degree, 3

eigenvector_centrality, 4
eigenvector_centrality_factor, 4
example_hype, 5

has_real_coef, 6
hype_from_edge_list, 8
hype_from_inc_mat, 9
hype_info, 10
hype_norm_lap_mat, 12
hype_order, 12
hype_size, 13
hyperedge_list, 6
hyperedge_names, 7
hyperedge_weights, 7

incidence_matrix, 13
is_directed, 14
is_oriented, 15
is_weighted, 15

laplacian_matrix, 16

pseudo_invert, 16

spectra, 17
spectral_distance, 17
spectral_distance_disc, 18

validate_hypergraph, 19
vert_norm_lap_mat, 21
vertex_names, 19
vertex_weights, 20

22

	adjacency_matrix
	degree
	eigenvector_centrality
	eigenvector_centrality_factor
	example_hype
	has_real_coef
	hyperedge_list
	hyperedge_names
	hyperedge_weights
	hype_from_edge_list
	hype_from_inc_mat
	hype_info
	hype_norm_lap_mat
	hype_order
	hype_size
	incidence_matrix
	is_directed
	is_oriented
	is_weighted
	laplacian_matrix
	pseudo_invert
	spectra
	spectral_distance
	spectral_distance_disc
	validate_hypergraph
	vertex_names
	vertex_weights
	vert_norm_lap_mat
	Index

