riverplot: A Gallery
January Weiner

2017-04-24

Abstract

Sankey plots are a type of diagram that is convenient to illustrate how flow of information, resources
etc. separates and joins, much like observing how rivers split and merge. For example, they can be used
to compare different clusterings.

Contents
Introduction 1
Part 1: Gallery 1

Import and export of goods

e

The famous Minard plot L e e

Part 2: Customizing plots with riverplot
Afirst example L e e e
Fixing the order of nodes e
Pre-specified x and y values e
Vertical alignment using paramter gravityo oL
Controlling the node width on the picture (parameter yscale and node_margin)

Specifying the plotting area with plot_area. L L.

© 0w 0w g O O ot W«

Specifying the plotting area with usr and overlaying riverplots
More about adjusting the usr parameter (adjust.usr=TRUE) and yscale 10
Problematic output with PDFs (fix.pdf option) 10

Introduction

This document consists of two parts. The first part shows a few more or less complex examples with a few
explanations of the code. The second, which is visually grey and boring, elaborates on using the different
graphical parameters of riverplot. Bottom line: I put the examples first, because they are more interesting,
but if you really want to fiddle with the finer points of the graphics, you need to refer to part 2.

Part 1: Gallery

Import and export of goods

For this example, I have selected a few

options(stringsAsFactors=FALSE)

goods exports / imports for 2015 in billions
edges <- read.csv(text="N1,N2,Value
From EU,To China,170.4

From China,To EU,350.6

From EU,To US,426.0

From US,To EU,272.7

From China,To US,482

From US,To China,116",

header=T, stringsAsFactors=FALSE)
print(edges)

N1 N2 Value
1 From EU To China 170.
2 From China To EU 350.
3 From EU To US 426.
4 From US To EU 272.
5 From China To US 482.
6 From US To China 116.

O O N O O b

nodes <- data.frame(ID=unique(c(edges$N1, edges$N2)),
x=rep(c(1,2), each=3), y=c(1,2,3,2,1,3))

cols <- c(China="#00990066",
EU ="#00009966",
Us ="#99000066")

style <- sapply(nodes$ID, function(id)
list(col=cols[gsub("(From|To) ", "", id) 1), simplify=FALSE)

r <- makeRiver(nodes=nodes, edges=edges, styles=style)
par(bg="grey98")

d <- list(srt=0, textcex=1.5) # default style

plot(r, plot_area=1, nodewidth=10, default_style=d)

In the second example, the goal is to put the same information on a geographical map. For this, first a map
should be shown and colored, and then the Sankey diagram should be overlayed at prespecified positions.

eu <- c("Austria", "Italy", "Belgium", "Latvia", "Bulgaria',

"Lithuania", "Croatia", "Luxembourg", "Cyprus", "Malta", "Czech Republic",
"Netherlands", "Denmark", "Poland", "Estonia", "Portugal", "Finland", "Romania",
"France", "Slovakia", "Germany", "Slovenia", "Greece", "Spain", "Hungary", "Sweden",

"Ireland", "United Kingdom")

library(maptools)

data(wrld_simpl)

m <- wrld_simpl[wrld_simpl@data$NAME != "Antarctica",]
nodes$labels <- gsub(" .x", "", nodes$ID)

nodes$x <- c(15, 106, -101,
106, 15, -101)

nodes$y <- c(53, 21, 49,

40, 63, 29)
ccol <- rep("grey", nrow(m@data))
ccol[m@data$NAME == "China"] <- cols["China"]
ccol[m@data$IS02 == "US"] <- cols["US"]

ccol[m@data$NAME %in’, eu] <- cols["EU"]

r <- makeRiver(nodes=nodes, edges=edges, styles=style)
plot(m, border=F, col=ccol)

d <- list(srt=0, textcex=1.5)
plot(r, add=T, rescale=F, yscale=0.02, default_style=d, nodewidth=5)

The famous Minard plot

library(riverplot)

data(minard)

nodes <- minard$nodes

edges <- minard$edges

colnames(nodes) <- c("ID", "x", "y")

colnames(edges) <- c("N1", "N2", "Value", "direction")

color the edges by troop movement direction
edges$col <- c("#ebcbaa", "black") [factor(edges$direction)]

color edges by their color rather than by gradient between the nodes
The "edgecol" column is interpreted as a style keyword with wvalue "col"
edges$edgecol <- "col"

generate the riverplot object and a style
river <- makeRiver(nodes, edges)
style <- list(edgestyle= "straight", nodestyle= "invisible")

plot the generated object. Given that we want to plot the cities as well

(external data), the user coordinates for the plot and for the exzternal

data should be the same. This is achteved by the adjust.usrT option.

Alternatively, one can call plot.new, set usr manually and call riverplot

with the options rescale=FALSE and add=TRUE.

plot_area parameter is for creating suitable margins within the plot area
par(bg="grey98", mar=rep(3,4))

plot(river, 1lty=1, default_style=style, plot_area=c(0.9, 0.7), adjust.usr=TRUE)
u <- par("usr")

rect(ul1]l, ul[3], ul2], ul4l)

add latitude and longitude

abline(h=54:56, col="grey")

bglabel(ull], 54:56, sprintf("}d°N", 54:56), pos="topright", bg=NA, col="grey", font=3)
1bl <- seq(20, 40, by=5)

abline(v=1bl, col='"grey")

bglabel(1bl, u[3], sprintf("Jd°E", 1bl), pos="topright", bg=NA, col="grey", font=3)

Add cities. Use "label()" to have a background frame and better

positioning.

with(minard$cities, points(Longitude, Latitude, pch=19))
with(minard$cities, bglabel(Longitude, Latitude, Name, pos="topright"))

Moscou

Polotzk

itebsk tino
.Gloubc koe i ¢

Part 2: Customizing plots with riverplot

A first example

Sankey plots are used to illustrate the flow of quantities. In riverplot, sankey plots consist of nodes and edges.
Edges always have a defined breadth — they do not dwindle or broaden when going from node to node.

In order to use riverplot, an object holding the data must first be defined. The object can be generated
manually or with makeRiver, a function that additionally checks whether the information in the object is
consistent and correct.

We start with a simple object with a few nodes and edges. There are many ways how the object can be
constructed (consult the manual for makeRiver for that), but data frames for nodes and edges are probably
the easiest:

library(riverplot)
options(stringsAsFactors=FALSE)
nodes <- data.frame(ID=LETTERS[1:7], x=c(1, 1, 1, 1, 2, 3, 3))
edges <- data.frame(ID=pasteO("E.", letters[1:6]),
Ni=c("A", "B", "C", "D", "F", "G"),
N2=c("E", "E", "E", "E", "E", "E"),
Value=c(10, 40, 20, 5, 25, 50))
par (mar=rep(0,4))
r <- makeRiver(nodes, edges)
plot(xr)

In the following, it will be shown how to customize this simple plot.

Fixing the order of nodes

The order of nodes matters. As you can see above, the nodes are stacked from bottom to top using the order
in which they were defined in the nodes data frame. Reversing this order will result in a different picture:

nodes2 <- nodes[7:1,]
r2 <- makeRiver(nodes2, edges)
plot(r2)

Pre-specified x and y values

A finer control can be achieved by directly providing (pinning) positions of the nodes on the figure. The
easiest way to achieve this is by letting riverplot generate the positions in the first place, and then tuning
them according to own preferences:

r2 <- plot(r)

str(r2$nodes) # nodes contain now column "y"

'data.frame': 7 obs. of 6 variables:
$ ID . ChI' IIAII IIBlI IICII IIDII
##H $ x : num -0.00408 -0.00408 -0.00408 -0.00408 0.5 ...

¢ size : num 0.0369 0.1477 0.0738 0.0185 0.2769 ...
$ sizeL: num 0 0 0 0 0.277 ...

$ sizeR: num 0.0369 0.1477 0.0738 0.0185 0.2769 ...
$y : num 0.338 0.458 0.597 0.671 0.542 ...

r2$nodes["E", "y"] <- 1
plot(r2)

The node “E” is now elevated well above the other nodes. However, note that the relative node widths have
changed; this is because of the yscale parameter — see below.

Vertical alignment using paramter gravity

The way nodes and edges are stacked on the plots depends on the parameter gravity. Depending on it, the
nodes will be sticking to the bottom, top or center of the figure:

par (mfrow=c(1,3))

plot(r, gravity="b")

plot(r, gravity='"c"

plot(r, gravity="t") # default

Controlling the node width on the picture (parameter yscale and node_margin)

Essentially, riverplot runs in one of two modes. By default, you don’t need to provide an exact location of all
nodes generated by riverplot. In this case, the width of the edges shown on the figure results from two factors:
the amount of space available for plotting and the margin between the nodes (parameter node_margin), as
the fraction of all available space.

par (mfrow=c(1,3))

plot(r, node_margin=0.1) # default
plot(r, node_margin=0.5)

plot(r, node_margin=0.9)

o o la}
- O] w o
(6] o (@) o
w
w w
o o o
w
< < <

However, if the node y positions are specified (by the column y of the nodes data frame), another paramter
controls the width of the nodes: yscale (normally set to “auto”).

par (mfrow=c(1,3))

plot(r2, yscale=0.1)
plot(r2, yscale=0.5)
plot(r2, yscale=0.9)

A B CD

A B CD

A B CD
G

Specifying the plotting area with plot_area

Sometimes it is useful to impose a certain geometry of the plot. This can be, of course, achieved with changing
the margins (like with par(mar=...) above), the size of the plotting device etc. However, additionally the
parameter plot_area or usr (see below) can be used. The parameter plot_area specifies both the horizontal
and the vertical fraction of the space used by the plot, either as two separate numbers or as one number for
both these fractions. By default, riverplot uses 100% of the horizontal space and 50% of the vertical space, so
plot_areais c(1, 0.5).

We use additionally the parameter bty="o" to draw a box around the plot.

par (mfrow=c(1,3))

par (mar=rep(1,4))

plot(r, plot_area=c(1l, 0.5), bty="o0") # default

plot(r, plot_area=1, bty="o") # maz area in both directions
plot(r, plot_area=c(0.5, 1), bty="o") # squeezed laterally

Specifying the plotting area with usr and overlaying riverplots

A more finely tuned control of the area of the plot is achieved with the parameter usr, which has the same
syntax as par (usr=...); that is, it give the coordinates of the bounding box of the plot in the form of c(x1,
x2, y1, y2). Combined with the parameter add=TRUE, this allows to place a sankey diagram on top of
another diagram in a specified box.

plot (NULL, xlim=c(1,10), ylim=c(1,10), bty="n", xlab="", ylab="")
abline(h=1:10, col="grey")

abline(v=1:10, col="grey")

plot(r, add=TRUE, usr=c(2,8,2,8), plot_area=1, bty="o")

plot(r, add=TRUE, usr=c(1,4,1,4), plot_area=1, bty="o")

plot(r, add=TRUE, usr=c(7,12,7,12), plot_area=1, bty="o")

Note that while usr sets the boundary box of the Sankey diagram, the plot_area still controls the area of
the box that is occupied by the diagram. In the code above, the plot_area is set to 1 to occupy the whole
bounding box.

More about adjusting the usr parameter (adjust.usr=TRUE) and yscale

In general, riverplot does not modify the par ("usr") parameter, and instead adjusts the x and y coordinates
of the nodes as well as widths (Value) of the edges. This actually is the opposite of the typical plotting
behavior in R, but makes it easier to add the Sankey diagram to existing plots.

However, sometimes it is desired to plot precisely using the coordinates specified by the graph, for example,
because one wishes to add additional, external information to the figure. This is, for example, the case of the
Minard data set, in which the node coordinates should correspond to external data — geographical coordinates
of the cities added to the plot after plotting the Sankey diagram (see the Minard example in the gallery).

Specifying adjust.usr=TRUE modifies the usr parameter by setting par("usr").

par (mfrow=c(1,2))

nodes2 <- nodes[order(nodes$ID),]

nodes2$y <- c(50%(1:4),125,100,150)

r2 <- makeRiver(nodes2, edges)

plot(r2, adjust.usr=TRUE, plot_area=c(0.8,0.8))
points(nodes2$x, nodes2%y, cex=3)

axis(side=1)

axis(side=2)

plot(r2, adjust.usr=TRUE, plot_area=c(0.8,0.8), yscale=0.5)
points(nodes2$x, nodes2$y, cex=3)

@ ®

200
|

150
©
©
©
©

100
®
®
®
®

50
L

) C

[T T T T T 1
0.5 1.0 15 2.0 2.5 3.0 3.5

Note that if adjust.usr is TRUE, and yscale is auto (default), then yscale is set to 1. That means, the
Value of edges is directly representing their thickness. If the Value of an edge was 20, then it will be 20 thick
(in user coordinates). However, you can still manipulate it by setting another yscale. This is shown on the
right panel above.

Note also that adjust.usr also implies that rescale is FALSE (it would make little sense otherwise).

Problematic output with PDFs (fix.pdf option)

Sometimes you will see thin white lines on the PDF versions of your plots. The reason for this is in rendering
of the PDFs, not in the code of riverplot or R itself, but it is annyoing.

10

R cannot generate a “true” gradient (whatever that would be). To create a gradient, riverplot creates objects
which consist of hundreds of smaller objects, each of them being a polygon with a single foreground color.
This usually looks good on the standard R device; usually the produced bitmap graphics (such as PNG) looks
fine as well. However, the created PDFs may look very awkward.

If you use the option fix.pdf=TRUE when generating riverplots, the individual polygons will be slightly
overlapping. This will fix the “thin white lines” effect, but only providing that you do not use transparent
colors.

11

	Introduction
	Part 1: Gallery
	Import and export of goods
	The famous Minard plot

	Part 2: Customizing plots with riverplot
	A first example
	Fixing the order of nodes
	Pre-specified x and y values
	Vertical alignment using paramter gravity
	Controlling the node width on the picture (parameter yscale and node_margin)
	Specifying the plotting area with plot_area
	Specifying the plotting area with usr and overlaying riverplots
	More about adjusting the usr parameter (adjust.usr=TRUE) and yscale
	Problematic output with PDFs (fix.pdf option)

